aboutsummaryrefslogtreecommitdiff
path: root/core/src/com/google/inject/internal/util/CustomConcurrentHashMap.java
blob: 8915d700287ed509fdb85986fc2e6a8d156b099c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
/*
 * Copyright (C) 2009 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.inject.internal.util;

import java.io.IOException;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.concurrent.locks.ReentrantLock;

/**
 * A framework for concurrent hash map implementations. The
 * CustomConcurrentHashMap class itself is not extensible and does not contain
 * any methods. Use {@link Builder} to create a custom concurrent hash map
 * instance. Client libraries implement {@link Strategy}, and this class
 * provides the surrounding concurrent data structure which implements {@link
 * ConcurrentMap}. Additionally supports implementing maps where {@link
 * Map#get} atomically computes values on demand (see {@link
 * Builder#buildComputingMap(ComputingStrategy, com.google.inject.internal.util.Function)}).
 *
 * <p>The resulting hash table supports full concurrency of retrievals and
 * adjustable expected concurrency for updates. Even though all operations are
 * thread-safe, retrieval operations do <i>not</i> entail locking,
 * and there is <i>not</i> any support for locking the entire table
 * in a way that prevents all access.
 *
 * <p>Retrieval operations (including {@link Map#get}) generally do not
 * block, so may overlap with update operations (including
 * {@link Map#put} and {@link Map#remove}). Retrievals reflect the results
 * of the most recently <i>completed</i> update operations holding
 * upon their onset. For aggregate operations such as {@link Map#putAll}
 * and {@link Map#clear}, concurrent retrievals may reflect insertion or
 * removal of only some entries. Similarly, iterators return elements
 * reflecting the state of the hash table at some point at or since the
 * creation of the iterator. They do <i>not</i> throw
 * {@link java.util.ConcurrentModificationException}. However, iterators can
 * only be used by one thread at a time.
 *
 * <p>The resulting {@link ConcurrentMap} and its views and iterators implement
 * all of the <i>optional</i> methods of the {@link java.util.Map} and {@link
 * java.util.Iterator} interfaces. Partially reclaimed entries are never
 * exposed through the views or iterators.
 *
 * <p>For example, the following strategy emulates the behavior of
 * {@link java.util.concurrent.ConcurrentHashMap}:
 *
 * <pre> {@code
 * class ConcurrentHashMapStrategy<K, V>
 *     implements CustomConcurrentHashMap.Strategy<K, V,
 *     InternalEntry<K, V>>, Serializable {
 *   public InternalEntry<K, V> newEntry(K key, int hash,
 *       InternalEntry<K, V> next) {
 *     return new InternalEntry<K, V>(key, hash, null, next);
 *   }
 *   public InternalEntry<K, V> copyEntry(K key,
 *       InternalEntry<K, V> original, InternalEntry<K, V> next) {
 *     return new InternalEntry<K, V>(key, original.hash, original.value, next);
 *   }
 *   public void setValue(InternalEntry<K, V> entry, V value) {
 *     entry.value = value;
 *   }
 *   public V getValue(InternalEntry<K, V> entry) { return entry.value; }
 *   public boolean equalKeys(K a, Object b) { return a.equals(b); }
 *   public boolean equalValues(V a, Object b) { return a.equals(b); }
 *   public int hashKey(Object key) { return key.hashCode(); }
 *   public K getKey(InternalEntry<K, V> entry) { return entry.key; }
 *   public InternalEntry<K, V> getNext(InternalEntry<K, V> entry) {
 *     return entry.next;
 *   }
 *   public int getHash(InternalEntry<K, V> entry) { return entry.hash; }
 *   public void setInternals(CustomConcurrentHashMap.Internals<K, V,
 *       InternalEntry<K, V>> internals) {} // ignored
 * }
 *
 * class InternalEntry<K, V> {
 *   final K key;
 *   final int hash;
 *   volatile V value;
 *   final InternalEntry<K, V> next;
 *   InternalEntry(K key, int hash, V value, InternalEntry<K, V> next) {
 *     this.key = key;
 *     this.hash = hash;
 *     this.value = value;
 *     this.next = next;
 *   }
 * }
 * }</pre>
 *
 * To create a {@link java.util.concurrent.ConcurrentMap} using the strategy
 * above:
 *
 * <pre>{@code
 *   ConcurrentMap<K, V> map = new CustomConcurrentHashMap.Builder()
 *       .build(new ConcurrentHashMapStrategy<K, V>());
 * }</pre>
 *
 * @author Bob Lee
 * @author Doug Lea
 */
final class CustomConcurrentHashMap {

  /** Prevents instantiation. */
  private CustomConcurrentHashMap() {}

  /**
   * Builds a custom concurrent hash map.
   */
  final static class Builder {

    float loadFactor = 0.75f;
    int initialCapacity = 16;
    int concurrencyLevel = 16;

    /**
     * Sets a custom load factor (defaults to 0.75).
     *
     * @throws IllegalArgumentException if loadFactor <= 0
     */
    public Builder loadFactor(float loadFactor) {
      if (loadFactor <= 0) {
        throw new IllegalArgumentException();
      }
      this.loadFactor = loadFactor;
      return this;
    }

    /**
     * Sets a custom initial capacity (defaults to 16). Resizing this or any
     * other kind of hash table is a relatively slow operation, so, when
     * possible, it is a good idea to provide estimates of expected table
     * sizes.
     *
     * @throws IllegalArgumentException if initialCapacity < 0
     */
    public Builder initialCapacity(int initialCapacity) {
      if (initialCapacity < 0) {
        throw new IllegalArgumentException();
      }
      this.initialCapacity = initialCapacity;
      return this;
    }

    /**
     * Guides the allowed concurrency among update operations. Used as a
     * hint for internal sizing. The table is internally partitioned to try to
     * permit the indicated number of concurrent updates without contention.
     * Because placement in hash tables is essentially random, the actual
     * concurrency will vary. Ideally, you should choose a value to accommodate
     * as many threads as will ever concurrently modify the table. Using a
     * significantly higher value than you need can waste space and time,
     * and a significantly lower value can lead to thread contention. But
     * overestimates and underestimates within an order of magnitude do
     * not usually have much noticeable impact. A value of one is
     * appropriate when it is known that only one thread will modify and
     * all others will only read. Defaults to {@literal 16}.
     *
     * @throws IllegalArgumentException if concurrencyLevel < 0
     */
    public Builder concurrencyLevel(int concurrencyLevel) {
      if (concurrencyLevel <= 0) {
        throw new IllegalArgumentException();
      }
      this.concurrencyLevel = concurrencyLevel;
      return this;
    }

    /**
     * Creates a new concurrent hash map backed by the given strategy.
     *
     * @param strategy used to implement and manipulate the entries
     *
     * @param <K> the type of keys to be stored in the returned map
     * @param <V> the type of values to be stored in the returned map
     * @param <E> the type of internal entry to be stored in the returned map
     *
     * @throws NullPointerException if strategy is null
     */
    public <K, V, E> ConcurrentMap<K, V> buildMap(Strategy<K, V, E> strategy) {
      if (strategy == null) {
        throw new NullPointerException("strategy");
      }
      return new Impl<K, V, E>(strategy, this);
    }

    /**
     * Creates a {@link ConcurrentMap}, backed by the given strategy, that
     * supports atomic, on-demand computation of values. {@link Map#get}
     * returns the value corresponding to the given key, atomically computes
     * it using the computer function passed to this builder, or waits for
     * another thread to compute the value if necessary. Only one value will
     * be computed for each key at a given time.
     *
     * <p>If an entry's value has not finished computing yet, query methods
     * besides {@link java.util.Map#get} return immediately as if an entry
     * doesn't exist. In other words, an entry isn't externally visible until
     * the value's computation completes.
     *
     * <p>{@link Map#get} in the returned map implementation throws:
     * <ul>
     * <li>{@link NullPointerException} if the key is null or the
     *  computer returns null</li>
     * <li>or {@link ComputationException} wrapping an exception thrown by the
     *  computation</li>
     * </ul>
     *
     * <p><b>Note:</b> Callers of {@code get()} <i>must</i> ensure that the key
     *  argument is of type {@code K}. {@code Map.get()} takes {@code Object},
     *  so the key type is not checked at compile time. Passing an object of
     *  a type other than {@code K} can result in that object being unsafely
     *  passed to the computer function as type {@code K} not to mention the
     *  unsafe key being stored in the map.
     *
     * @param strategy used to implement and manipulate the entries
     * @param computer used to compute values for keys
     *
     * @param <K> the type of keys to be stored in the returned map
     * @param <V> the type of values to be stored in the returned map
     * @param <E> the type of internal entry to be stored in the returned map
     *
     * @throws NullPointerException if strategy or computer is null
     */
    public <K, V, E> ConcurrentMap<K, V> buildComputingMap(
        ComputingStrategy<K, V, E> strategy,
        Function<? super K, ? extends V> computer) {
      if (strategy == null) {
        throw new NullPointerException("strategy");
      }
      if (computer == null) {
        throw new NullPointerException("computer");
      }

      return new ComputingImpl<K, V, E>(strategy, this, computer);
    }
  }

  /**
   * Implements behavior specific to the client's concurrent hash map
   * implementation. Used by the framework to create new entries and perform
   * operations on them.
   *
   * <p>Method parameters are never null unless otherwise specified.
   *
   * <h3>Partially Reclaimed Entries</h3>
   *
   * <p>This class does <i>not</i> allow {@code null} to be used as a key.
   * Setting values to null is not permitted, but entries may have null keys
   * or values for various reasons. For example, the key or value may have
   * been garbage collected or reclaimed through other means.
   * CustomConcurrentHashMap treats entries with null keys and values as
   * "partially reclaimed" and ignores them for the most part. Entries may
   * enter a partially reclaimed state but they must not leave it. Partially
   * reclaimed entries will not be copied over during table expansions, for
   * example. Strategy implementations should proactively remove partially
   * reclaimed entries so that {@link Map#isEmpty} and {@link Map#size()}
   * return up-to-date results.
   *
   * @param <K> the type of keys to be stored in the returned map
   * @param <V> the type of values to be stored in the returned map
   * @param <E> internal entry type, not directly exposed to clients in map
   *  views
   */
  public interface Strategy<K, V, E> {

    /**
     * Constructs a new entry for the given key with a pointer to the given
     * next entry.
     *
     * <p>This method may return different entry implementations
     * depending upon whether next is null or not. For example, if next is
     * null (as will often be the case), this factory might use an entry
     * class that doesn't waste memory on an unnecessary field.
     *
     * @param key for this entry
     * @param hash of key returned by {@link #hashKey}
     * @param next entry (used when implementing a hash bucket as a linked
     *  list, for example), possibly null
     * @return a new entry
     */
    abstract E newEntry(K key, int hash, E next);

    /**
     * Creates a copy of the given entry pointing to the given next entry.
     * Copies the value and any other implementation-specific state from
     * {@code original} to the returned entry. For example,
     * CustomConcurrentHashMap might use this method when removing other
     * entries or expanding the internal table.
     *
     * @param key for {@code original} as well as the returned entry.
     *  Explicitly provided here to prevent reclamation of the key at an
     *  inopportune time in implementations that don't otherwise keep
     *  a strong reference to the key.
     * @param original entry from which the value and other
     *  implementation-specific state should be copied
     * @param newNext the next entry the new entry should point to, possibly
     *  null
     */
    E copyEntry(K key, E original, E newNext);

    /**
     * Sets the value of an entry using volatile semantics. Values are set
     * synchronously on a per-entry basis.
     *
     * @param entry to set the value on
     * @param value to set
     */
    void setValue(E entry, V value);

    /**
     * Gets the value of an entry using volatile semantics.
     *
     * @param entry to get the value from
     */
    V getValue(E entry);

    /**
     * Returns true if the two given keys are equal, false otherwise. Neither
     * key will be null.
     *
     * @param a key from inside the map
     * @param b key passed from caller, not necesarily of type K
     *
     * @see Object#equals the same contractual obligations apply here
     */
    boolean equalKeys(K a, Object b);

    /**
     * Returns true if the two given values are equal, false otherwise. Neither
     * value will be null.
     *
     * @param a value from inside the map
     * @param b value passed from caller, not necesarily of type V
     *
     * @see Object#equals the same contractual obligations apply here
     */
    boolean equalValues(V a, Object b);

    /**
     * Returns a hash code for the given key.
     *
     * @see Object#hashCode the same contractual obligations apply here
     */
    int hashKey(Object key);

    /**
     * Gets the key for the given entry. This may return null (for example,
     * if the key was reclaimed by the garbage collector).
     *
     * @param entry to get key from
     * @return key from the given entry
     */
    K getKey(E entry);

    /**
     * Gets the next entry relative to the given entry, the exact same entry
     * that was provided to {@link Strategy#newEntry} when the given entry was
     * created.
     *
     * @return the next entry or null if null was passed to
     *  {@link Strategy#newEntry}
     */
    E getNext(E entry);

    /**
     * Returns the hash code that was passed to {@link Strategy#newEntry})
     * when the given entry was created.
     */
    int getHash(E entry);

// TODO:
//    /**
//     * Notifies the strategy that an entry has been removed from the map.
//     *
//     * @param entry that was recently removed
//     */
//    void remove(E entry);

    /**
     * Provides an API for interacting directly with the map's internal
     * entries to this strategy. Invoked once when the map is created.
     * Strategies that don't need access to the map's internal entries
     * can simply ignore the argument.
     *
     * @param internals of the map, enables direct interaction with the
     *  internal entries
     */
    void setInternals(Internals<K, V, E> internals);
  }

  /**
   * Provides access to a map's internal entries.
   */
  public interface Internals<K, V, E> {

// TODO:
//    /**
//     * Returns a set view of the internal entries.
//     */
//    Set<E> entrySet();

    /**
     * Returns the internal entry corresponding to the given key from the map.
     *
     * @param key to retrieve entry for
     *
     * @throws NullPointerException if key is null
     */
    E getEntry(K key);

    /**
     * Removes the given entry from the map if the value of the entry in the
     * map matches the given value.
     *
     * @param entry to remove
     * @param value entry must have for the removal to succeed
     *
     * @throws NullPointerException if entry is null
     */
    boolean removeEntry(E entry, @Nullable V value);

    /**
     * Removes the given entry from the map.
     *
     * @param entry to remove
     *
     * @throws NullPointerException if entry is null
     */
    boolean removeEntry(E entry);
  }

  /**
   * Extends {@link Strategy} to add support for computing values on-demand.
   * Implementations should typically intialize the entry's value to a
   * placeholder value in {@link #newEntry(Object, int, Object)} so that
   * {@link #waitForValue(Object)} can tell the difference between a
   * pre-intialized value and an in-progress computation. {@link
   * #copyEntry(Object, Object, Object)} must detect and handle the case where
   * an entry is copied in the middle of a computation. Implementations can
   * throw {@link UnsupportedOperationException} in {@link #setValue(Object,
   * Object)} if they wish to prevent users from setting values directly.
   *
   * @see Builder#buildComputingMap(ComputingStrategy, Function)
   */
  public interface ComputingStrategy<K, V, E> extends Strategy<K, V, E> {

    /**
     * Computes a value for the given key and stores it in the given entry.
     * Called as a result of {@link Map#get}. If this method throws an
     * exception, CustomConcurrentHashMap will remove the entry and retry
     * the computation on subsequent requests.
     *
     * @param entry that was created
     * @param computer passed to {@link Builder#buildMap}
     *
     * @throws ComputationException if the computation threw an exception
     * @throws NullPointerException if the computer returned null
     *
     * @return the computed value
     */
    V compute(K key, E entry, Function<? super K, ? extends V> computer);

    /**
     * Gets a value from an entry waiting for the value to be set by {@link
     * #compute} if necessary. Returns null if a value isn't available at
     * which point CustomConcurrentHashMap tries to compute a new value.
     *
     * @param entry to return value from
     * @return stored value or null if the value isn't available
     *
     * @throws InterruptedException if the thread was interrupted while
     *  waiting
     */
    V waitForValue(E entry) throws InterruptedException;
  }

  /**
   * Applies a supplemental hash function to a given hash code, which defends
   * against poor quality hash functions. This is critical when the
   * concurrent hash map uses power-of-two length hash tables, that otherwise
   * encounter collisions for hash codes that do not differ in lower or upper
   * bits.
   *
   * @param h hash code
   */
  private static int rehash(int h) {
    // Spread bits to regularize both segment and index locations,
    // using variant of single-word Wang/Jenkins hash.
    h += (h << 15) ^ 0xffffcd7d;
    h ^= (h >>> 10);
    h += (h << 3);
    h ^= (h >>> 6);
    h += (h << 2) + (h << 14);
    return h ^ (h >>> 16);
  }

  /** The concurrent hash map implementation. */
  static class Impl<K, V, E> extends AbstractMap<K, V>
      implements ConcurrentMap<K, V>, Serializable {

    /*
     * The basic strategy is to subdivide the table among Segments,
     * each of which itself is a concurrently readable hash table.
     */

    /* ---------------- Constants -------------- */

    /**
     * The maximum capacity, used if a higher value is implicitly specified by
     * either of the constructors with arguments.  MUST be a power of two <=
     * 1<<30 to ensure that entries are indexable using ints.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The maximum number of segments to allow; used to bound constructor
     * arguments.
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * Number of unsynchronized retries in size and containsValue methods before
     * resorting to locking. This is used to avoid unbounded retries if tables
     * undergo continuous modification which would make it impossible to obtain
     * an accurate result.
     */
    static final int RETRIES_BEFORE_LOCK = 2;

    /* ---------------- Fields -------------- */

    /**
     * The strategy used to implement this map.
     */
    final Strategy<K, V, E> strategy;

    /**
     * Mask value for indexing into segments. The upper bits of a key's hash
     * code are used to choose the segment.
     */
    final int segmentMask;

    /**
     * Shift value for indexing within segments. Helps prevent entries that
     * end up in the same segment from also ending up in the same bucket.
     */
    final int segmentShift;

    /**
     * The segments, each of which is a specialized hash table
     */
    final Segment[] segments;

    /**
     * The load factor for the hash table.
     */
    final float loadFactor;

    /**
     * Creates a new, empty map with the specified strategy, initial capacity,
     * load factor and concurrency level.
     */
    Impl(Strategy<K, V, E> strategy, Builder builder) {
      this.loadFactor = builder.loadFactor;
      int concurrencyLevel = builder.concurrencyLevel;
      int initialCapacity = builder.initialCapacity;

      if (concurrencyLevel > MAX_SEGMENTS) {
        concurrencyLevel = MAX_SEGMENTS;
      }

      // Find power-of-two sizes best matching arguments
      int segmentShift = 0;
      int segmentCount = 1;
      while (segmentCount < concurrencyLevel) {
        ++segmentShift;
        segmentCount <<= 1;
      }
      this.segmentShift = 32 - segmentShift;
      segmentMask = segmentCount - 1;
      this.segments = newSegmentArray(segmentCount);

      if (initialCapacity > MAXIMUM_CAPACITY) {
        initialCapacity = MAXIMUM_CAPACITY;
      }

      int segmentCapacity = initialCapacity / segmentCount;
      if (segmentCapacity * segmentCount < initialCapacity) {
        ++segmentCapacity;
      }

      int segmentSize = 1;
      while (segmentSize < segmentCapacity) {
          segmentSize <<= 1;
      }
      for (int i = 0; i < this.segments.length; ++i) {
        this.segments[i] = new Segment(segmentSize);
      }

      this.strategy = strategy;

      strategy.setInternals(new InternalsImpl());
    }

    int hash(Object key) {
      int h = strategy.hashKey(key);
      return rehash(h);
    }

    class InternalsImpl implements Internals<K, V, E>, Serializable {

      static final long serialVersionUID = 0;

      public E getEntry(K key) {
        if (key == null) {
          throw new NullPointerException("key");
        }
        int hash = hash(key);
        return segmentFor(hash).getEntry(key, hash);
      }

      public boolean removeEntry(E entry, V value) {
        if (entry == null) {
          throw new NullPointerException("entry");
        }
        int hash = strategy.getHash(entry);
        return segmentFor(hash).removeEntry(entry, hash, value);
      }

      public boolean removeEntry(E entry) {
        if (entry == null) {
          throw new NullPointerException("entry");
        }
        int hash = strategy.getHash(entry);
        return segmentFor(hash).removeEntry(entry, hash);
      }
    }

    @SuppressWarnings("unchecked")
    Segment[] newSegmentArray(int ssize) {
      // Note: This is the only way I could figure out how to create
      // a segment array (the compile has a tough time with arrays of
      // inner classes of generic types apparently). Safe because we're
      // restricting what can go in the array and no one has an
      // unrestricted reference.
      return (Segment[]) Array.newInstance(Segment.class, ssize);
    }

    /* ---------------- Small Utilities -------------- */

    /**
     * Returns the segment that should be used for key with given hash
     *
     * @param hash the hash code for the key
     * @return the segment
     */
    Segment segmentFor(int hash) {
      return segments[(hash >>> segmentShift) & segmentMask];
    }

    /* ---------------- Inner Classes -------------- */

    /**
     * Segments are specialized versions of hash tables.  This subclasses from
     * ReentrantLock opportunistically, just to simplify some locking and avoid
     * separate construction.
     */
    @SuppressWarnings("serial") // This class is never serialized.
    final class Segment extends ReentrantLock {

      /*
       * Segments maintain a table of entry lists that are ALWAYS
       * kept in a consistent state, so can be read without locking.
       * Next fields of nodes are immutable (final).  All list
       * additions are performed at the front of each bin. This
       * makes it easy to check changes, and also fast to traverse.
       * When nodes would otherwise be changed, new nodes are
       * created to replace them. This works well for hash tables
       * since the bin lists tend to be short. (The average length
       * is less than two for the default load factor threshold.)
       *
       * Read operations can thus proceed without locking, but rely
       * on selected uses of volatiles to ensure that completed
       * write operations performed by other threads are
       * noticed. For most purposes, the "count" field, tracking the
       * number of elements, serves as that volatile variable
       * ensuring visibility.  This is convenient because this field
       * needs to be read in many read operations anyway:
       *
       *   - All (unsynchronized) read operations must first read the
       *     "count" field, and should not look at table entries if
       *     it is 0.
       *
       *   - All (synchronized) write operations should write to
       *     the "count" field after structurally changing any bin.
       *     The operations must not take any action that could even
       *     momentarily cause a concurrent read operation to see
       *     inconsistent data. This is made easier by the nature of
       *     the read operations in Map. For example, no operation
       *     can reveal that the table has grown but the threshold
       *     has not yet been updated, so there are no atomicity
       *     requirements for this with respect to reads.
       *
       * As a guide, all critical volatile reads and writes to the
       * count field are marked in code comments.
       */

      /**
       * The number of elements in this segment's region.
       */
      volatile int count;

      /**
       * Number of updates that alter the size of the table. This is used
       * during bulk-read methods to make sure they see a consistent snapshot:
       * If modCounts change during a traversal of segments computing size or
       * checking containsValue, then we might have an inconsistent view of
       * state so (usually) must retry.
       */
      int modCount;

      /**
       * The table is expanded when its size exceeds this threshold. (The
       * value of this field is always {@code (int)(capacity * loadFactor)}.)
       */
      int threshold;

      /**
       * The per-segment table.
       */
      volatile AtomicReferenceArray<E> table;

      Segment(int initialCapacity) {
        setTable(newEntryArray(initialCapacity));
      }

      AtomicReferenceArray<E> newEntryArray(int size) {
        return new AtomicReferenceArray<E>(size);
      }

      /**
       * Sets table to new HashEntry array. Call only while holding lock or in
       * constructor.
       */
      void setTable(AtomicReferenceArray<E> newTable) {
        this.threshold = (int) (newTable.length() * loadFactor);
        this.table = newTable;
      }

      /**
       * Returns properly casted first entry of bin for given hash.
       */
      E getFirst(int hash) {
        AtomicReferenceArray<E> table = this.table;
        return table.get(hash & (table.length() - 1));
      }

      /* Specialized implementations of map methods */

      public E getEntry(Object key, int hash) {
        Strategy<K, V, E> s = Impl.this.strategy;
        if (count != 0) { // read-volatile
          for (E e = getFirst(hash); e != null; e = s.getNext(e)) {
            if (s.getHash(e) != hash) {
              continue;
            }

            K entryKey = s.getKey(e);
            if (entryKey == null) {
              continue;
            }

            if (s.equalKeys(entryKey, key)) {
              return e;
            }
          }
        }

        return null;
      }

      V get(Object key, int hash) {
        E entry = getEntry(key, hash);
        if (entry == null) {
          return null;
        }

        return strategy.getValue(entry);
      }

      boolean containsKey(Object key, int hash) {
        Strategy<K, V, E> s = Impl.this.strategy;
        if (count != 0) { // read-volatile
          for (E e = getFirst(hash); e != null; e = s.getNext(e)) {
            if (s.getHash(e) != hash) {
              continue;
            }

            K entryKey = s.getKey(e);
            if (entryKey == null) {
              continue;
            }

            if (s.equalKeys(entryKey, key)) {
              // Return true only if this entry has a value.
              return s.getValue(e) != null;
            }
          }
        }

        return false;
      }

      boolean containsValue(Object value) {
        Strategy<K, V, E> s = Impl.this.strategy;
        if (count != 0) { // read-volatile
          AtomicReferenceArray<E> table = this.table;
          int length = table.length();
          for (int i = 0; i < length; i++) {
            for (E e = table.get(i); e != null; e = s.getNext(e)) {
              V entryValue = s.getValue(e);

              // If the value disappeared, this entry is partially collected,
              // and we should skip it.
              if (entryValue == null) {
                continue;
              }

              if (s.equalValues(entryValue, value)) {
                return true;
              }
            }
          }
        }

        return false;
      }

      boolean replace(K key, int hash, V oldValue, V newValue) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          for (E e = getFirst(hash); e != null; e = s.getNext(e)) {
            K entryKey = s.getKey(e);
            if (s.getHash(e) == hash && entryKey != null
                && s.equalKeys(key, entryKey)) {
              // If the value disappeared, this entry is partially collected,
              // and we should pretend like it doesn't exist.
              V entryValue = s.getValue(e);
              if (entryValue == null) {
                return false;
              }

              if (s.equalValues(entryValue, oldValue)) {
                s.setValue(e, newValue);
                return true;
              }
            }
          }

          return false;
        } finally {
          unlock();
        }
      }

      V replace(K key, int hash, V newValue) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          for (E e = getFirst(hash); e != null; e = s.getNext(e)) {
            K entryKey = s.getKey(e);
            if (s.getHash(e) == hash && entryKey != null
                && s.equalKeys(key, entryKey)) {
              // If the value disappeared, this entry is partially collected,
              // and we should pretend like it doesn't exist.
              V entryValue = s.getValue(e);
              if (entryValue == null) {
                return null;
              }

              s.setValue(e, newValue);
              return entryValue;
            }
          }

          return null;
        } finally {
          unlock();
        }
      }

      V put(K key, int hash, V value, boolean onlyIfAbsent) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          int count = this.count;
          if (count++ > this.threshold) { // ensure capacity
            expand();
          }

          AtomicReferenceArray<E> table = this.table;
          int index = hash & (table.length() - 1);

          E first = table.get(index);

          // Look for an existing entry.
          for (E e = first; e != null; e = s.getNext(e)) {
            K entryKey = s.getKey(e);
            if (s.getHash(e) == hash && entryKey != null
                && s.equalKeys(key, entryKey)) {
              // We found an existing entry.

              // If the value disappeared, this entry is partially collected,
              // and we should pretend like it doesn't exist.
              V entryValue = s.getValue(e);
              if (onlyIfAbsent && entryValue != null) {
                return entryValue;
              }

              s.setValue(e, value);
              return entryValue;
            }
          }

          // Create a new entry.
          ++modCount;
          E newEntry = s.newEntry(key, hash, first);
          s.setValue(newEntry, value);
          table.set(index, newEntry);
          this.count = count; // write-volatile
          return null;
        } finally {
          unlock();
        }
      }

      /**
       * Expands the table if possible.
       */
      void expand() {
        AtomicReferenceArray<E> oldTable = table;
        int oldCapacity = oldTable.length();
        if (oldCapacity >= MAXIMUM_CAPACITY) {
          return;
        }

        /*
         * Reclassify nodes in each list to new Map.  Because we are
         * using power-of-two expansion, the elements from each bin
         * must either stay at same index, or move with a power of two
         * offset. We eliminate unnecessary node creation by catching
         * cases where old nodes can be reused because their next
         * fields won't change. Statistically, at the default
         * threshold, only about one-sixth of them need cloning when
         * a table doubles. The nodes they replace will be garbage
         * collectable as soon as they are no longer referenced by any
         * reader thread that may be in the midst of traversing table
         * right now.
         */

        Strategy<K, V, E> s = Impl.this.strategy;
        AtomicReferenceArray<E> newTable = newEntryArray(oldCapacity << 1);
        threshold = (int) (newTable.length() * loadFactor);
        int newMask = newTable.length() - 1;
        for (int oldIndex = 0; oldIndex < oldCapacity; oldIndex++) {
          // We need to guarantee that any existing reads of old Map can
          //  proceed. So we cannot yet null out each bin.
          E head = oldTable.get(oldIndex);

          if (head != null) {
            E next = s.getNext(head);
            int headIndex = s.getHash(head) & newMask;

            // Single node on list
            if (next == null) {
              newTable.set(headIndex, head);
            } else {
              // Reuse the consecutive sequence of nodes with the same target
              // index from the end of the list. tail points to the first
              // entry in the reusable list.
              E tail = head;
              int tailIndex = headIndex;
              for (E last = next; last != null; last = s.getNext(last)) {
                int newIndex = s.getHash(last) & newMask;
                if (newIndex != tailIndex) {
                  // The index changed. We'll need to copy the previous entry.
                  tailIndex = newIndex;
                  tail = last;
                }
              }
              newTable.set(tailIndex, tail);

              // Clone nodes leading up to the tail.
              for (E e = head; e != tail; e = s.getNext(e)) {
                K key = s.getKey(e);
                if (key != null) {
                  int newIndex = s.getHash(e) & newMask;
                  E newNext = newTable.get(newIndex);
                  newTable.set(newIndex, s.copyEntry(key, e, newNext));
                } else {
                  // Key was reclaimed. Skip entry.
                }
              }
            }
          }
        }
        table = newTable;
      }

      V remove(Object key, int hash) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          int count = this.count - 1;
          AtomicReferenceArray<E> table = this.table;
          int index = hash & (table.length() - 1);
          E first = table.get(index);

          for (E e = first; e != null; e = s.getNext(e)) {
            K entryKey = s.getKey(e);
            if (s.getHash(e) == hash && entryKey != null
                && s.equalKeys(entryKey, key)) {
              V entryValue = strategy.getValue(e);
              // All entries following removed node can stay
              // in list, but all preceding ones need to be
              // cloned.
              ++modCount;
              E newFirst = s.getNext(e);
              for (E p = first; p != e; p = s.getNext(p)) {
                K pKey = s.getKey(p);
                if (pKey != null) {
                  newFirst = s.copyEntry(pKey, p, newFirst);
                } else {
                  // Key was reclaimed. Skip entry.
                }
              }
              table.set(index, newFirst);
              this.count = count; // write-volatile
              return entryValue;
            }
          }

          return null;
        } finally {
          unlock();
        }
      }

      boolean remove(Object key, int hash, Object value) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          int count = this.count - 1;
          AtomicReferenceArray<E> table = this.table;
          int index = hash & (table.length() - 1);
          E first = table.get(index);

          for (E e = first; e != null; e = s.getNext(e)) {
            K entryKey = s.getKey(e);
            if (s.getHash(e) == hash && entryKey != null
                && s.equalKeys(entryKey, key)) {
              V entryValue = strategy.getValue(e);
              if (value == entryValue || (value != null && entryValue != null
                  && s.equalValues(entryValue, value))) {
                // All entries following removed node can stay
                // in list, but all preceding ones need to be
                // cloned.
                ++modCount;
                E newFirst = s.getNext(e);
                for (E p = first; p != e; p = s.getNext(p)) {
                  K pKey = s.getKey(p);
                  if (pKey != null) {
                    newFirst = s.copyEntry(pKey, p, newFirst);
                  } else {
                    // Key was reclaimed. Skip entry.
                  }
                }
                table.set(index, newFirst);
                this.count = count; // write-volatile
                return true;
              } else {
                return false;
              }
            }
          }

          return false;
        } finally {
          unlock();
        }
      }

      public boolean removeEntry(E entry, int hash, V value) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          int count = this.count - 1;
          AtomicReferenceArray<E> table = this.table;
          int index = hash & (table.length() - 1);
          E first = table.get(index);

          for (E e = first; e != null; e = s.getNext(e)) {
            if (s.getHash(e) == hash && entry.equals(e)) {
              V entryValue = s.getValue(e);
              if (entryValue == value || (value != null
                  && s.equalValues(entryValue, value))) {
                // All entries following removed node can stay
                // in list, but all preceding ones need to be
                // cloned.
                ++modCount;
                E newFirst = s.getNext(e);
                for (E p = first; p != e; p = s.getNext(p)) {
                  K pKey = s.getKey(p);
                  if (pKey != null) {
                    newFirst = s.copyEntry(pKey, p, newFirst);
                  } else {
                    // Key was reclaimed. Skip entry.
                  }
                }
                table.set(index, newFirst);
                this.count = count; // write-volatile
                return true;
              } else {
                return false;
              }
            }
          }

          return false;
        } finally {
          unlock();
        }
      }

      public boolean removeEntry(E entry, int hash) {
        Strategy<K, V, E> s = Impl.this.strategy;
        lock();
        try {
          int count = this.count - 1;
          AtomicReferenceArray<E> table = this.table;
          int index = hash & (table.length() - 1);
          E first = table.get(index);

          for (E e = first; e != null; e = s.getNext(e)) {
            if (s.getHash(e) == hash && entry.equals(e)) {
              // All entries following removed node can stay
              // in list, but all preceding ones need to be
              // cloned.
              ++modCount;
              E newFirst = s.getNext(e);
              for (E p = first; p != e; p = s.getNext(p)) {
                K pKey = s.getKey(p);
                if (pKey != null) {
                  newFirst = s.copyEntry(pKey, p, newFirst);
                } else {
                  // Key was reclaimed. Skip entry.
                }
              }
              table.set(index, newFirst);
              this.count = count; // write-volatile
              return true;
            }
          }

          return false;
        } finally {
          unlock();
        }
      }

      void clear() {
        if (count != 0) {
          lock();
          try {
            AtomicReferenceArray<E> table = this.table;
            for (int i = 0; i < table.length(); i++) {
              table.set(i, null);
            }
            ++modCount;
            count = 0; // write-volatile
          } finally {
            unlock();
          }
        }
      }
    }

    /* ---------------- Public operations -------------- */

    /**
     * Returns {@code true} if this map contains no key-value mappings.
     *
     * @return {@code true} if this map contains no key-value mappings
     */
    @Override public boolean isEmpty() {
      final Segment[] segments = this.segments;
      /*
       * We keep track of per-segment modCounts to avoid ABA
       * problems in which an element in one segment was added and
       * in another removed during traversal, in which case the
       * table was never actually empty at any point. Note the
       * similar use of modCounts in the size() and containsValue()
       * methods, which are the only other methods also susceptible
       * to ABA problems.
       */
      int[] mc = new int[segments.length];
      int mcsum = 0;
      for (int i = 0; i < segments.length; ++i) {
        if (segments[i].count != 0) {
          return false;
        } else {
          mcsum += mc[i] = segments[i].modCount;
        }
      }
      // If mcsum happens to be zero, then we know we got a snapshot
      // before any modifications at all were made.  This is
      // probably common enough to bother tracking.
      if (mcsum != 0) {
        for (int i = 0; i < segments.length; ++i) {
          if (segments[i].count != 0 ||
              mc[i] != segments[i].modCount) {
            return false;
          }
        }
      }
      return true;
    }

    /**
     * Returns the number of key-value mappings in this map.  If the map
     * contains more than {@code Integer.MAX_VALUE} elements, returns
     * {@code Integer.MAX_VALUE}.
     *
     * @return the number of key-value mappings in this map
     */
    @Override public int size() {
      final Segment[] segments = this.segments;
      long sum = 0;
      long check = 0;
      int[] mc = new int[segments.length];
      // Try a few times to get accurate count. On failure due to
      // continuous async changes in table, resort to locking.
      for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
        check = 0;
        sum = 0;
        int mcsum = 0;
        for (int i = 0; i < segments.length; ++i) {
          sum += segments[i].count;
          mcsum += mc[i] = segments[i].modCount;
        }
        if (mcsum != 0) {
          for (int i = 0; i < segments.length; ++i) {
            check += segments[i].count;
            if (mc[i] != segments[i].modCount) {
              check = -1; // force retry
              break;
            }
          }
        }
        if (check == sum) {
          break;
        }
      }
      if (check != sum) { // Resort to locking all segments
        sum = 0;
        for (Segment segment : segments) {
          segment.lock();
        }
        for (Segment segment : segments) {
          sum += segment.count;
        }
        for (Segment segment : segments) {
          segment.unlock();
        }
      }
      if (sum > Integer.MAX_VALUE) {
        return Integer.MAX_VALUE;
      } else {
        return (int) sum;
      }
    }

    /**
     * Returns the value to which the specified key is mapped, or {@code null}
     * if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key {@code k} to
     * a value {@code v} such that {@code key.equals(k)}, then this method
     * returns {@code v}; otherwise it returns {@code null}.  (There can be at
     * most one such mapping.)
     *
     * @throws NullPointerException if the specified key is null
     */
    @Override public V get(Object key) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      int hash = hash(key);
      return segmentFor(hash).get(key, hash);
    }

    /**
     * Tests if the specified object is a key in this table.
     *
     * @param key possible key
     * @return {@code true} if and only if the specified object is a key in
     *         this table, as determined by the {@code equals} method;
     *         {@code false} otherwise.
     * @throws NullPointerException if the specified key is null
     */
    @Override public boolean containsKey(Object key) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      int hash = hash(key);
      return segmentFor(hash).containsKey(key, hash);
    }

    /**
     * Returns {@code true} if this map maps one or more keys to the specified
     * value. Note: This method requires a full internal traversal of the hash
     * table, and so is much slower than method {@code containsKey}.
     *
     * @param value value whose presence in this map is to be tested
     * @return {@code true} if this map maps one or more keys to the specified
     *         value
     * @throws NullPointerException if the specified value is null
     */
    @Override public boolean containsValue(Object value) {
      if (value == null) {
        throw new NullPointerException("value");
      }

      // See explanation of modCount use above

      final Segment[] segments = this.segments;
      int[] mc = new int[segments.length];

      // Try a few times without locking
      for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
        int mcsum = 0;
        for (int i = 0; i < segments.length; ++i) {
          @SuppressWarnings("UnusedDeclaration")
          int c = segments[i].count;
          mcsum += mc[i] = segments[i].modCount;
          if (segments[i].containsValue(value)) {
            return true;
          }
        }
        boolean cleanSweep = true;
        if (mcsum != 0) {
          for (int i = 0; i < segments.length; ++i) {
            @SuppressWarnings("UnusedDeclaration")
            int c = segments[i].count;
            if (mc[i] != segments[i].modCount) {
              cleanSweep = false;
              break;
            }
          }
        }
        if (cleanSweep) {
          return false;
        }
      }
      // Resort to locking all segments
      for (Segment segment : segments) {
        segment.lock();
      }
      boolean found = false;
      try {
        for (Segment segment : segments) {
          if (segment.containsValue(value)) {
            found = true;
            break;
          }
        }
      } finally {
        for (Segment segment : segments) {
          segment.unlock();
        }
      }
      return found;
    }

    /**
     * Maps the specified key to the specified value in this table. Neither the
     * key nor the value can be null.
     *
     * <p> The value can be retrieved by calling the {@code get} method with a
     * key that is equal to the original key.
     *
     * @param key   key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with {@code key}, or {@code null}
     *         if there was no mapping for {@code key}
     * @throws NullPointerException if the specified key or value is null
     */
    @Override public V put(K key, V value) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      if (value == null) {
        throw new NullPointerException("value");
      }
      int hash = hash(key);
      return segmentFor(hash).put(key, hash, value, false);
    }

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key, or
     *         {@code null} if there was no mapping for the key
     * @throws NullPointerException if the specified key or value is null
     */
    public V putIfAbsent(K key, V value) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      if (value == null) {
        throw new NullPointerException("value");
      }
      int hash = hash(key);
      return segmentFor(hash).put(key, hash, value, true);
    }

    /**
     * Copies all of the mappings from the specified map to this one. These
     * mappings replace any mappings that this map had for any of the keys
     * currently in the specified map.
     *
     * @param m mappings to be stored in this map
     */
    @Override public void putAll(Map<? extends K, ? extends V> m) {
      for (Entry<? extends K, ? extends V> e : m.entrySet()) {
        put(e.getKey(), e.getValue());
      }
    }

    /**
     * Removes the key (and its corresponding value) from this map. This method
     * does nothing if the key is not in the map.
     *
     * @param key the key that needs to be removed
     * @return the previous value associated with {@code key}, or {@code null}
     *         if there was no mapping for {@code key}
     * @throws NullPointerException if the specified key is null
     */
    @Override public V remove(Object key) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      int hash = hash(key);
      return segmentFor(hash).remove(key, hash);
    }

    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if the specified key is null
     */
    public boolean remove(Object key, Object value) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      int hash = hash(key);
      return segmentFor(hash).remove(key, hash, value);
    }

    /**
     * {@inheritDoc}
     *
     * @throws NullPointerException if any of the arguments are null
     */
    public boolean replace(K key, V oldValue, V newValue) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      if (oldValue == null) {
        throw new NullPointerException("oldValue");
      }
      if (newValue == null) {
        throw new NullPointerException("newValue");
      }
      int hash = hash(key);
      return segmentFor(hash).replace(key, hash, oldValue, newValue);
    }

    /**
     * {@inheritDoc}
     *
     * @return the previous value associated with the specified key, or
     *         {@code null} if there was no mapping for the key
     * @throws NullPointerException if the specified key or value is null
     */
    public V replace(K key, V value) {
      if (key == null) {
        throw new NullPointerException("key");
      }
      if (value == null) {
        throw new NullPointerException("value");
      }
      int hash = hash(key);
      return segmentFor(hash).replace(key, hash, value);
    }

    /**
     * Removes all of the mappings from this map.
     */
    @Override public void clear() {
      for (Segment segment : segments) {
        segment.clear();
      }
    }

    Set<K> keySet;

    /**
     * Returns a {@link java.util.Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are reflected in the
     * set, and vice-versa. The set supports element removal, which removes the
     * corresponding mapping from this map, via the {@code Iterator.remove},
     * {@code Set.remove}, {@code removeAll}, {@code retainAll}, and
     * {@code clear} operations. It does not support the {@code add} or
     * {@code addAll} operations.
     *
     * <p>The view's {@code iterator} is a "weakly consistent" iterator that
     * will never throw {@link java.util.ConcurrentModificationException}, and
     * guarantees to traverse elements as they existed upon construction of the
     * iterator, and may (but is not guaranteed to) reflect any modifications
     * subsequent to construction.
     */
    @Override public Set<K> keySet() {
      Set<K> ks = keySet;
      return (ks != null) ? ks : (keySet = new KeySet());
    }

    Collection<V> values;

    /**
     * Returns a {@link java.util.Collection} view of the values contained in
     * this map. The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa. The collection supports
     * element removal, which removes the corresponding mapping from this map,
     * via the {@code Iterator.remove}, {@code Collection.remove},
     * {@code removeAll}, {@code retainAll}, and {@code clear} operations. It
     * does not support the {@code add} or {@code addAll} operations.
     *
     * <p>The view's {@code iterator} is a "weakly consistent" iterator that
     * will never throw {@link java.util.ConcurrentModificationException}, and
     * guarantees to traverse elements as they existed upon construction of the
     * iterator, and may (but is not guaranteed to) reflect any modifications
     * subsequent to construction.
     */
    @Override public Collection<V> values() {
      Collection<V> vs = values;
      return (vs != null) ? vs : (values = new Values());
    }

    Set<Entry<K, V>> entrySet;

    /**
     * Returns a {@link java.util.Set} view of the mappings contained in this
     * map. The set is backed by the map, so changes to the map are reflected in
     * the set, and vice-versa. The set supports element removal, which removes
     * the corresponding mapping from the map, via the {@code Iterator.remove},
     * {@code Set.remove}, {@code removeAll}, {@code retainAll}, and
     * {@code clear} operations. It does not support the {@code add} or
     * {@code addAll} operations.
     *
     * <p>The view's {@code iterator} is a "weakly consistent" iterator that
     * will never throw {@link java.util.ConcurrentModificationException}, and
     * guarantees to traverse elements as they existed upon construction of the
     * iterator, and may (but is not guaranteed to) reflect any modifications
     * subsequent to construction.
     */
    public Set<Entry<K, V>> entrySet() {
      Set<Entry<K, V>> es = entrySet;
      return (es != null) ? es : (entrySet = new EntrySet());
    }

    /* ---------------- Iterator Support -------------- */

    abstract class HashIterator {

      int nextSegmentIndex;
      int nextTableIndex;
      AtomicReferenceArray<E> currentTable;
      E nextEntry;
      WriteThroughEntry nextExternal;
      WriteThroughEntry lastReturned;

      HashIterator() {
        nextSegmentIndex = segments.length - 1;
        nextTableIndex = -1;
        advance();
      }

      public boolean hasMoreElements() {
        return hasNext();
      }

      final void advance() {
        nextExternal = null;

        if (nextInChain()) {
          return;
        }

        if (nextInTable()) {
          return;
        }

        while (nextSegmentIndex >= 0) {
          Segment seg = segments[nextSegmentIndex--];
          if (seg.count != 0) {
            currentTable = seg.table;
            nextTableIndex = currentTable.length() - 1;
            if (nextInTable()) {
              return;
            }
          }
        }
      }

      /**
       * Finds the next entry in the current chain. Returns true if an entry
       * was found.
       */
      boolean nextInChain() {
        Strategy<K, V, E> s = Impl.this.strategy;
        if (nextEntry != null) {
          for (nextEntry = s.getNext(nextEntry); nextEntry != null;
              nextEntry = s.getNext(nextEntry)) {
            if (advanceTo(nextEntry)) {
              return true;
            }
          }
        }
        return false;
      }

      /**
       * Finds the next entry in the current table. Returns true if an entry
       * was found.
       */
      boolean nextInTable() {
        while (nextTableIndex >= 0) {
          if ((nextEntry = currentTable.get(nextTableIndex--)) != null) {
            if (advanceTo(nextEntry) || nextInChain()) {
              return true;
            }
          }
        }
        return false;
      }

      /**
       * Advances to the given entry. Returns true if the entry was valid,
       * false if it should be skipped.
       */
      boolean advanceTo(E entry) {
        Strategy<K, V, E> s = Impl.this.strategy;
        K key = s.getKey(entry);
        V value = s.getValue(entry);
        if (key != null && value != null) {
          nextExternal = new WriteThroughEntry(key, value);
          return true;
        } else {
          // Skip partially reclaimed entry.
          return false;
        }
      }

      public boolean hasNext() {
        return nextExternal != null;
      }

      WriteThroughEntry nextEntry() {
        if (nextExternal == null) {
          throw new NoSuchElementException();
        }
        lastReturned = nextExternal;
        advance();
        return lastReturned;
      }

      public void remove() {
        if (lastReturned == null) {
          throw new IllegalStateException();
        }
        Impl.this.remove(lastReturned.getKey());
        lastReturned = null;
      }
    }

    final class KeyIterator extends HashIterator implements Iterator<K> {

      public K next() {
        return super.nextEntry().getKey();
      }
    }

    final class ValueIterator extends HashIterator implements Iterator<V> {

      public V next() {
        return super.nextEntry().getValue();
      }
    }

    /**
     * Custom Entry class used by EntryIterator.next(), that relays setValue
     * changes to the underlying map.
     */
    final class WriteThroughEntry extends AbstractMapEntry<K, V> {
      final K key;
      V value;

      WriteThroughEntry(K key, V value) {
        this.key = key;
        this.value = value;
      }

      public K getKey() {
        return key;
      }

      public V getValue() {
        return value;
      }

      /**
       * Set our entry's value and write through to the map. The value to
       * return is somewhat arbitrary here. Since a WriteThroughEntry does not
       * necessarily track asynchronous changes, the most recent "previous"
       * value could be different from what we return (or could even have been
       * removed in which case the put will re-establish). We do not and
       * cannot guarantee more.
       */
      @Override public V setValue(V value) {
        if (value == null) {
          throw new NullPointerException();
        }
        V oldValue = Impl.this.put(getKey(), value);
        this.value = value;
        return oldValue;
      }
    }

    final class EntryIterator extends HashIterator
        implements Iterator<Entry<K, V>> {

      public Entry<K, V> next() {
        return nextEntry();
      }
    }

    final class KeySet extends AbstractSet<K> {

      public Iterator<K> iterator() {
        return new KeyIterator();
      }

      public int size() {
        return Impl.this.size();
      }

      @Override public boolean isEmpty() {
        return Impl.this.isEmpty();
      }

      @Override public boolean contains(Object o) {
        return Impl.this.containsKey(o);
      }

      @Override public boolean remove(Object o) {
        return Impl.this.remove(o) != null;
      }

      @Override public void clear() {
        Impl.this.clear();
      }
    }

    final class Values extends AbstractCollection<V> {

      public Iterator<V> iterator() {
        return new ValueIterator();
      }

      public int size() {
        return Impl.this.size();
      }

      @Override public boolean isEmpty() {
        return Impl.this.isEmpty();
      }

      @Override public boolean contains(Object o) {
        return Impl.this.containsValue(o);
      }

      @Override public void clear() {
        Impl.this.clear();
      }
    }

    final class EntrySet extends AbstractSet<Entry<K, V>> {

      public Iterator<Entry<K, V>> iterator() {
        return new EntryIterator();
      }

      @Override public boolean contains(Object o) {
        if (!(o instanceof Entry)) {
          return false;
        }
        Entry<?, ?> e = (Entry<?, ?>) o;
        Object key = e.getKey();
        if (key == null) {
          return false;
        }
        V v = Impl.this.get(key);

        return v != null && strategy.equalValues(v, e.getValue());
      }

      @Override public boolean remove(Object o) {
        if (!(o instanceof Entry)) {
          return false;
        }
        Entry<?, ?> e = (Entry<?, ?>) o;
        Object key = e.getKey();
        return key != null && Impl.this.remove(key, e.getValue());
      }

      public int size() {
        return Impl.this.size();
      }

      @Override public boolean isEmpty() {
        return Impl.this.isEmpty();
      }

      @Override public void clear() {
        Impl.this.clear();
      }
    }

    /* ---------------- Serialization Support -------------- */

    private static final long serialVersionUID = 0;

    private void writeObject(java.io.ObjectOutputStream out)
        throws IOException {
      out.writeInt(size());
      out.writeFloat(loadFactor);
      out.writeInt(segments.length); // concurrencyLevel
      out.writeObject(strategy);
      for (Entry<K, V> entry : entrySet()) {
        out.writeObject(entry.getKey());
        out.writeObject(entry.getValue());
      }
      out.writeObject(null); // terminate entries
    }

    /**
     * Fields used during deserialization. We use a nested class so we don't
     * load them until we need them. We need to use reflection to set final
     * fields outside of the constructor.
     */
    static class Fields {

      static final Field loadFactor = findField("loadFactor");
      static final Field segmentShift = findField("segmentShift");
      static final Field segmentMask = findField("segmentMask");
      static final Field segments = findField("segments");
      static final Field strategy = findField("strategy");

      static Field findField(String name) {
        try {
          Field f = Impl.class.getDeclaredField(name);
          f.setAccessible(true);
          return f;
        } catch (NoSuchFieldException e) {
          throw new AssertionError(e);
        }
      }
    }

    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream in)
        throws IOException, ClassNotFoundException {
      try {
        int initialCapacity = in.readInt();
        float loadFactor = in.readFloat();
        int concurrencyLevel = in.readInt();
        Strategy<K, V, E> strategy = (Strategy<K, V, E>) in.readObject();

        Fields.loadFactor.set(this, loadFactor);

        if (concurrencyLevel > MAX_SEGMENTS) {
          concurrencyLevel = MAX_SEGMENTS;
        }

        // Find power-of-two sizes best matching arguments
        int segmentShift = 0;
        int segmentCount = 1;
        while (segmentCount < concurrencyLevel) {
          ++segmentShift;
          segmentCount <<= 1;
        }
        Fields.segmentShift.set(this, 32 - segmentShift);
        Fields.segmentMask.set(this, segmentCount - 1);
        Fields.segments.set(this, newSegmentArray(segmentCount));

        if (initialCapacity > MAXIMUM_CAPACITY) {
          initialCapacity = MAXIMUM_CAPACITY;
        }

        int segmentCapacity = initialCapacity / segmentCount;
        if (segmentCapacity * segmentCount < initialCapacity) {
          ++segmentCapacity;
        }

        int segmentSize = 1;
        while (segmentSize < segmentCapacity) {
            segmentSize <<= 1;
        }
        for (int i = 0; i < this.segments.length; ++i) {
          this.segments[i] = new Segment(segmentSize);
        }

        Fields.strategy.set(this, strategy);

        while (true) {
          K key = (K) in.readObject();
          if (key == null) {
            break; // terminator
          }
          V value = (V) in.readObject();
          put(key, value);
        }
      } catch (IllegalAccessException e) {
        throw new AssertionError(e);
      }
    }
  }

  static class ComputingImpl<K, V, E> extends Impl<K, V, E> {

    static final long serialVersionUID = 0;

    final ComputingStrategy<K, V, E> computingStrategy;
    final Function<? super K, ? extends V> computer;

    /**
     * Creates a new, empty map with the specified strategy, initial capacity,
     * load factor and concurrency level.
     */
    ComputingImpl(ComputingStrategy<K, V, E> strategy, Builder builder,
        Function<? super K, ? extends V> computer) {
      super(strategy, builder);
      this.computingStrategy = strategy;
      this.computer = computer;
    }

    @Override public V get(Object k) {
      /*
       * This cast isn't safe, but we can rely on the fact that K is almost
       * always passed to Map.get(), and tools like IDEs and Findbugs can
       * catch situations where this isn't the case.
       *
       * The alternative is to add an overloaded method, but the chances of
       * a user calling get() instead of the new API and the risks inherent
       * in adding a new API outweigh this little hole.
       */
      @SuppressWarnings("unchecked")
      K key = (K) k;

      if (key == null) {
        throw new NullPointerException("key");
      }

      int hash = hash(key);
      Segment segment = segmentFor(hash);
      outer: while (true) {
        E entry = segment.getEntry(key, hash);
        if (entry == null) {
          boolean created = false;
          segment.lock();
          try {
            // Try again--an entry could have materialized in the interim.
            entry = segment.getEntry(key, hash);
            if (entry == null) {
              // Create a new entry.
              created = true;
              int count = segment.count;
              if (count++ > segment.threshold) { // ensure capacity
                segment.expand();
              }
              AtomicReferenceArray<E> table = segment.table;
              int index = hash & (table.length() - 1);
              E first = table.get(index);
              ++segment.modCount;
              entry = computingStrategy.newEntry(key, hash, first);
              table.set(index, entry);
              segment.count = count; // write-volatile
            }
          } finally {
            segment.unlock();
          }

          if (created) {
            // This thread solely created the entry.
            boolean success = false;
            try {
              V value = computingStrategy.compute(key, entry, computer);
              if (value == null) {
                throw new NullPointerException(
                    "compute() returned null unexpectedly");
              }
              success = true;
              return value;
            } finally {
              if (!success) {
                segment.removeEntry(entry, hash);
              }
            }
          }
        }

        // The entry already exists. Wait for the computation.
        boolean interrupted = false;
        try {
          while (true) {
            try {
              V value = computingStrategy.waitForValue(entry);
              if (value == null) {
                // Purge entry and try again.
                segment.removeEntry(entry, hash);
                continue outer;
              }
              return value;
            } catch (InterruptedException e) {
              interrupted = true;
            }
          }
        } finally {
          if (interrupted) {
            Thread.currentThread().interrupt();
          }
        }
      }
    }
  }

  /**
   * A basic, no-frills implementation of {@code Strategy} using {@link
   * SimpleInternalEntry}. Intended to be subclassed to provide customized
   * behavior. For example, the following creates a map that uses byte arrays as
   * keys: <pre>   {@code
   *
   *   return new CustomConcurrentHashMap.Builder().buildMap(
   *       new SimpleStrategy<byte[], V>() {
   *         public int hashKey(Object key) {
   *           return Arrays.hashCode((byte[]) key);
   *         }
   *         public boolean equalKeys(byte[] a, Object b) {
   *           return Arrays.equals(a, (byte[]) b);
   *         }
   *       });}</pre>
   *
   * With nothing overridden, it yields map behavior equivalent to that of
   * {@link ConcurrentHashMap}.
   */
  static class SimpleStrategy<K, V>
      implements Strategy<K, V, SimpleInternalEntry<K, V>> {
    public SimpleInternalEntry<K, V> newEntry(
        K key, int hash, SimpleInternalEntry<K, V> next) {
      return new SimpleInternalEntry<K, V>(key, hash, null, next);
    }
    public SimpleInternalEntry<K, V> copyEntry(K key,
        SimpleInternalEntry<K, V> original, SimpleInternalEntry<K, V> next) {
      return new SimpleInternalEntry<K, V>(
          key, original.hash, original.value, next);
    }
    public void setValue(SimpleInternalEntry<K, V> entry, V value) {
      entry.value = value;
    }
    public V getValue(SimpleInternalEntry<K, V> entry) {
      return entry.value;
    }
    public boolean equalKeys(K a, Object b) {
      return a.equals(b);
    }
    public boolean equalValues(V a, Object b) {
      return a.equals(b);
    }
    public int hashKey(Object key) {
      return key.hashCode();
    }
    public K getKey(SimpleInternalEntry<K, V> entry) {
      return entry.key;
    }
    public SimpleInternalEntry<K, V> getNext(SimpleInternalEntry<K, V> entry) {
      return entry.next;
    }
    public int getHash(SimpleInternalEntry<K, V> entry) {
      return entry.hash;
    }
    public void setInternals(
        Internals<K, V, SimpleInternalEntry<K, V>> internals) {
      // ignore?
    }
  }

  /**
   * A basic, no-frills entry class used by {@link SimpleInternalEntry}.
   */
  static class SimpleInternalEntry<K, V> {
    final K key;
    final int hash;
    final SimpleInternalEntry<K, V> next;
    volatile V value;
    SimpleInternalEntry(
        K key, int hash, @Nullable V value, SimpleInternalEntry<K, V> next) {
      this.key = key;
      this.hash = hash;
      this.value = value;
      this.next = next;
    }
  }
}