// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * Copyright (C) 1997-2015, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* * * File DECIMFMT.CPP * * Modification History: * * Date Name Description * 02/19/97 aliu Converted from java. * 03/20/97 clhuang Implemented with new APIs. * 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it. * 04/3/97 aliu Rewrote parsing and formatting completely, and * cleaned up and debugged. Actually works now. * Implemented NAN and INF handling, for both parsing * and formatting. Extensive testing & debugging. * 04/10/97 aliu Modified to compile on AIX. * 04/16/97 aliu Rewrote to use DigitList, which has been resurrected. * Changed DigitCount to int per code review. * 07/09/97 helena Made ParsePosition into a class. * 08/26/97 aliu Extensive changes to applyPattern; completely * rewritten from the Java. * 09/09/97 aliu Ported over support for exponential formats. * 07/20/98 stephen JDK 1.2 sync up. * Various instances of '0' replaced with 'NULL' * Check for grouping size in subFormat() * Brought subParse() in line with Java 1.2 * Added method appendAffix() * 08/24/1998 srl Removed Mutex calls. This is not a thread safe class! * 02/22/99 stephen Removed character literals for EBCDIC safety * 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes * 06/28/99 stephen Fixed bugs in toPattern(). * 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad, * fPadPosition ******************************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "unicode/uniset.h" #include "unicode/currpinf.h" #include "unicode/plurrule.h" #include "unicode/utf16.h" #include "unicode/numsys.h" #include "unicode/localpointer.h" #include "unicode/ustring.h" #include "uresimp.h" #include "ucurrimp.h" #include "charstr.h" #include "patternprops.h" #include "cstring.h" #include "uassert.h" #include "hash.h" #include "decfmtst.h" #include "plurrule_impl.h" #include "decimalformatpattern.h" #include "fmtableimp.h" #include "decimfmtimpl.h" #include "visibledigits.h" /* * On certain platforms, round is a macro defined in math.h * This undefine is to avoid conflict between the macro and * the function defined below. */ #ifdef round #undef round #endif U_NAMESPACE_BEGIN #ifdef FMT_DEBUG #include static void _debugout(const char *f, int l, const UnicodeString& s) { char buf[2000]; s.extract((int32_t) 0, s.length(), buf, "utf-8"); printf("%s:%d: %s\n", f,l, buf); } #define debugout(x) _debugout(__FILE__,__LINE__,x) #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x); static const UnicodeString dbg_null("",""); #define DEREFSTR(x) ((x!=NULL)?(*x):(dbg_null)) #else #define debugout(x) #define debug(x) #endif /* For currency parsing purose, * Need to remember all prefix patterns and suffix patterns of * every currency format pattern, * including the pattern of default currecny style * and plural currency style. And the patterns are set through applyPattern. */ struct AffixPatternsForCurrency : public UMemory { // negative prefix pattern UnicodeString negPrefixPatternForCurrency; // negative suffix pattern UnicodeString negSuffixPatternForCurrency; // positive prefix pattern UnicodeString posPrefixPatternForCurrency; // positive suffix pattern UnicodeString posSuffixPatternForCurrency; int8_t patternType; AffixPatternsForCurrency(const UnicodeString& negPrefix, const UnicodeString& negSuffix, const UnicodeString& posPrefix, const UnicodeString& posSuffix, int8_t type) { negPrefixPatternForCurrency = negPrefix; negSuffixPatternForCurrency = negSuffix; posPrefixPatternForCurrency = posPrefix; posSuffixPatternForCurrency = posSuffix; patternType = type; } #ifdef FMT_DEBUG void dump() const { debugout( UnicodeString("AffixPatternsForCurrency( -=\"") + negPrefixPatternForCurrency + (UnicodeString)"\"/\"" + negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" + posPrefixPatternForCurrency + (UnicodeString)"\"/\"" + posSuffixPatternForCurrency + (UnicodeString)"\" )"); } #endif }; /* affix for currency formatting when the currency sign in the pattern * equals to 3, such as the pattern contains 3 currency sign or * the formatter style is currency plural format style. */ struct AffixesForCurrency : public UMemory { // negative prefix UnicodeString negPrefixForCurrency; // negative suffix UnicodeString negSuffixForCurrency; // positive prefix UnicodeString posPrefixForCurrency; // positive suffix UnicodeString posSuffixForCurrency; int32_t formatWidth; AffixesForCurrency(const UnicodeString& negPrefix, const UnicodeString& negSuffix, const UnicodeString& posPrefix, const UnicodeString& posSuffix) { negPrefixForCurrency = negPrefix; negSuffixForCurrency = negSuffix; posPrefixForCurrency = posPrefix; posSuffixForCurrency = posSuffix; } #ifdef FMT_DEBUG void dump() const { debugout( UnicodeString("AffixesForCurrency( -=\"") + negPrefixForCurrency + (UnicodeString)"\"/\"" + negSuffixForCurrency + (UnicodeString)"\" +=\"" + posPrefixForCurrency + (UnicodeString)"\"/\"" + posSuffixForCurrency + (UnicodeString)"\" )"); } #endif }; U_CDECL_BEGIN /** * @internal ICU 4.2 */ static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2); static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) { const AffixPatternsForCurrency* affix_1 = (AffixPatternsForCurrency*)val1.pointer; const AffixPatternsForCurrency* affix_2 = (AffixPatternsForCurrency*)val2.pointer; return affix_1->negPrefixPatternForCurrency == affix_2->negPrefixPatternForCurrency && affix_1->negSuffixPatternForCurrency == affix_2->negSuffixPatternForCurrency && affix_1->posPrefixPatternForCurrency == affix_2->posPrefixPatternForCurrency && affix_1->posSuffixPatternForCurrency == affix_2->posSuffixPatternForCurrency && affix_1->patternType == affix_2->patternType; } U_CDECL_END // ***************************************************************************** // class DecimalFormat // ***************************************************************************** UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat) // Constants for characters used in programmatic (unlocalized) patterns. #define kPatternZeroDigit ((UChar)0x0030) /*'0'*/ #define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/ #define kPatternGroupingSeparator ((UChar)0x002C) /*','*/ #define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/ #define kPatternPerMill ((UChar)0x2030) #define kPatternPercent ((UChar)0x0025) /*'%'*/ #define kPatternDigit ((UChar)0x0023) /*'#'*/ #define kPatternSeparator ((UChar)0x003B) /*';'*/ #define kPatternExponent ((UChar)0x0045) /*'E'*/ #define kPatternPlus ((UChar)0x002B) /*'+'*/ #define kPatternMinus ((UChar)0x002D) /*'-'*/ #define kPatternPadEscape ((UChar)0x002A) /*'*'*/ #define kQuote ((UChar)0x0027) /*'\''*/ /** * The CURRENCY_SIGN is the standard Unicode symbol for currency. It * is used in patterns and substitued with either the currency symbol, * or if it is doubled, with the international currency symbol. If the * CURRENCY_SIGN is seen in a pattern, then the decimal separator is * replaced with the monetary decimal separator. */ #define kCurrencySign ((UChar)0x00A4) #define kDefaultPad ((UChar)0x0020) /* */ const int32_t DecimalFormat::kDoubleIntegerDigits = 309; const int32_t DecimalFormat::kDoubleFractionDigits = 340; const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8; /** * These are the tags we expect to see in normal resource bundle files associated * with a locale. */ const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used static const char fgNumberElements[]="NumberElements"; static const char fgLatn[]="latn"; static const char fgPatterns[]="patterns"; static const char fgDecimalFormat[]="decimalFormat"; static const char fgCurrencyFormat[]="currencyFormat"; inline int32_t _min(int32_t a, int32_t b) { return (a adoptedSymbols(symbolsToAdopt); if (U_FAILURE(status)) return; if (adoptedSymbols.isNull()) { adoptedSymbols.adoptInstead( new DecimalFormatSymbols(Locale::getDefault(), status)); if (adoptedSymbols.isNull() && U_SUCCESS(status)) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_FAILURE(status)) { return; } } fStaticSets = DecimalFormatStaticSets::getStaticSets(status); if (U_FAILURE(status)) { return; } UnicodeString str; // Uses the default locale's number format pattern if there isn't // one specified. if (pattern == NULL) { UErrorCode nsStatus = U_ZERO_ERROR; LocalPointer ns( NumberingSystem::createInstance(nsStatus)); if (U_FAILURE(nsStatus)) { status = nsStatus; return; } int32_t len = 0; UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status); UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status); resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status); resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status); const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status); if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) { status = U_ZERO_ERROR; resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status); resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status); resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status); resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status); } str.setTo(TRUE, resStr, len); pattern = &str; ures_close(resource); ures_close(top); } fImpl = new DecimalFormatImpl(this, *pattern, adoptedSymbols.getAlias(), parseErr, status); if (fImpl) { adoptedSymbols.orphan(); } else if (U_SUCCESS(status)) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_FAILURE(status)) { return; } if (U_FAILURE(status)) { return; } const UnicodeString* patternUsed; UnicodeString currencyPluralPatternForOther; // apply pattern if (fStyle == UNUM_CURRENCY_PLURAL) { fCurrencyPluralInfo = new CurrencyPluralInfo(fImpl->fSymbols->getLocale(), status); if (U_FAILURE(status)) { return; } // the pattern used in format is not fixed until formatting, // in which, the number is known and // will be used to pick the right pattern based on plural count. // Here, set the pattern as the pattern of plural count == "other". // For most locale, the patterns are probably the same for all // plural count. If not, the right pattern need to be re-applied // during format. fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther); // TODO(refactor): Revisit, we are setting the pattern twice. fImpl->applyPatternFavorCurrencyPrecision( currencyPluralPatternForOther, status); patternUsed = ¤cyPluralPatternForOther; } else { patternUsed = pattern; } if (patternUsed->indexOf(kCurrencySign) != -1) { // initialize for currency, not only for plural format, // but also for mix parsing handleCurrencySignInPattern(status); } } void DecimalFormat::handleCurrencySignInPattern(UErrorCode& status) { // initialize for currency, not only for plural format, // but also for mix parsing if (U_FAILURE(status)) { return; } if (fCurrencyPluralInfo == NULL) { fCurrencyPluralInfo = new CurrencyPluralInfo(fImpl->fSymbols->getLocale(), status); if (U_FAILURE(status)) { return; } } // need it for mix parsing if (fAffixPatternsForCurrency == NULL) { setupCurrencyAffixPatterns(status); } } static void applyPatternWithNoSideEffects( const UnicodeString& pattern, UParseError& parseError, UnicodeString &negPrefix, UnicodeString &negSuffix, UnicodeString &posPrefix, UnicodeString &posSuffix, UErrorCode& status) { if (U_FAILURE(status)) { return; } DecimalFormatPatternParser patternParser; DecimalFormatPattern out; patternParser.applyPatternWithoutExpandAffix( pattern, out, parseError, status); if (U_FAILURE(status)) { return; } negPrefix = out.fNegPrefixPattern; negSuffix = out.fNegSuffixPattern; posPrefix = out.fPosPrefixPattern; posSuffix = out.fPosSuffixPattern; } void DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) { if (U_FAILURE(status)) { return; } UParseError parseErr; fAffixPatternsForCurrency = initHashForAffixPattern(status); if (U_FAILURE(status)) { return; } NumberingSystem *ns = NumberingSystem::createInstance(fImpl->fSymbols->getLocale(),status); if (U_FAILURE(status)) { return; } // Save the default currency patterns of this locale. // Here, chose onlyApplyPatternWithoutExpandAffix without // expanding the affix patterns into affixes. UnicodeString currencyPattern; UErrorCode error = U_ZERO_ERROR; UResourceBundle *resource = ures_open(NULL, fImpl->fSymbols->getLocale().getName(), &error); UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error); resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error); resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error); int32_t patLen = 0; const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error); if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) { error = U_ZERO_ERROR; resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error); resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error); patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error); } ures_close(numElements); ures_close(resource); delete ns; if (U_SUCCESS(error)) { UnicodeString negPrefix; UnicodeString negSuffix; UnicodeString posPrefix; UnicodeString posSuffix; applyPatternWithNoSideEffects(UnicodeString(patResStr, patLen), parseErr, negPrefix, negSuffix, posPrefix, posSuffix, status); AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency( negPrefix, negSuffix, posPrefix, posSuffix, UCURR_SYMBOL_NAME); fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status); } // save the unique currency plural patterns of this locale. Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern; const UHashElement* element = NULL; int32_t pos = UHASH_FIRST; Hashtable pluralPatternSet; while ((element = pluralPtn->nextElement(pos)) != NULL) { const UHashTok valueTok = element->value; const UnicodeString* value = (UnicodeString*)valueTok.pointer; const UHashTok keyTok = element->key; const UnicodeString* key = (UnicodeString*)keyTok.pointer; if (pluralPatternSet.geti(*value) != 1) { UnicodeString negPrefix; UnicodeString negSuffix; UnicodeString posPrefix; UnicodeString posSuffix; pluralPatternSet.puti(*value, 1, status); applyPatternWithNoSideEffects( *value, parseErr, negPrefix, negSuffix, posPrefix, posSuffix, status); AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency( negPrefix, negSuffix, posPrefix, posSuffix, UCURR_LONG_NAME); fAffixPatternsForCurrency->put(*key, affixPtn, status); } } } //------------------------------------------------------------------------------ DecimalFormat::~DecimalFormat() { deleteHashForAffixPattern(); delete fCurrencyPluralInfo; delete fImpl; } //------------------------------------------------------------------------------ // copy constructor DecimalFormat::DecimalFormat(const DecimalFormat &source) : NumberFormat(source) { init(); *this = source; } //------------------------------------------------------------------------------ // assignment operator template static void _clone_ptr(T** pdest, const T* source) { delete *pdest; if (source == NULL) { *pdest = NULL; } else { *pdest = static_cast(source->clone()); } } DecimalFormat& DecimalFormat::operator=(const DecimalFormat& rhs) { if(this != &rhs) { UErrorCode status = U_ZERO_ERROR; NumberFormat::operator=(rhs); if (fImpl == NULL) { fImpl = new DecimalFormatImpl(this, *rhs.fImpl, status); } else { fImpl->assign(*rhs.fImpl, status); } fStaticSets = DecimalFormatStaticSets::getStaticSets(status); fStyle = rhs.fStyle; _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo); deleteHashForAffixPattern(); if (rhs.fAffixPatternsForCurrency) { UErrorCode status = U_ZERO_ERROR; fAffixPatternsForCurrency = initHashForAffixPattern(status); copyHashForAffixPattern(rhs.fAffixPatternsForCurrency, fAffixPatternsForCurrency, status); } } return *this; } //------------------------------------------------------------------------------ UBool DecimalFormat::operator==(const Format& that) const { if (this == &that) return TRUE; // NumberFormat::operator== guarantees this cast is safe const DecimalFormat* other = (DecimalFormat*)&that; return ( NumberFormat::operator==(that) && fBoolFlags.getAll() == other->fBoolFlags.getAll() && *fImpl == *other->fImpl); } //------------------------------------------------------------------------------ Format* DecimalFormat::clone() const { return new DecimalFormat(*this); } FixedDecimal DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const { VisibleDigitsWithExponent digits; initVisibleDigitsWithExponent(number, digits, status); if (U_FAILURE(status)) { return FixedDecimal(); } return FixedDecimal(digits.getMantissa()); } VisibleDigitsWithExponent & DecimalFormat::initVisibleDigitsWithExponent( double number, VisibleDigitsWithExponent &digits, UErrorCode &status) const { return fImpl->initVisibleDigitsWithExponent(number, digits, status); } FixedDecimal DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const { VisibleDigitsWithExponent digits; initVisibleDigitsWithExponent(number, digits, status); if (U_FAILURE(status)) { return FixedDecimal(); } return FixedDecimal(digits.getMantissa()); } VisibleDigitsWithExponent & DecimalFormat::initVisibleDigitsWithExponent( const Formattable &number, VisibleDigitsWithExponent &digits, UErrorCode &status) const { if (U_FAILURE(status)) { return digits; } if (!number.isNumeric()) { status = U_ILLEGAL_ARGUMENT_ERROR; return digits; } DigitList *dl = number.getDigitList(); if (dl != NULL) { DigitList dlCopy(*dl); return fImpl->initVisibleDigitsWithExponent( dlCopy, digits, status); } Formattable::Type type = number.getType(); if (type == Formattable::kDouble || type == Formattable::kLong) { return fImpl->initVisibleDigitsWithExponent( number.getDouble(status), digits, status); } return fImpl->initVisibleDigitsWithExponent( number.getInt64(), digits, status); } // Create a fixed decimal from a DigitList. // The digit list may be modified. // Internal function only. FixedDecimal DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const { VisibleDigitsWithExponent digits; initVisibleDigitsWithExponent(number, digits, status); if (U_FAILURE(status)) { return FixedDecimal(); } return FixedDecimal(digits.getMantissa()); } VisibleDigitsWithExponent & DecimalFormat::initVisibleDigitsWithExponent( DigitList &number, VisibleDigitsWithExponent &digits, UErrorCode &status) const { return fImpl->initVisibleDigitsWithExponent( number, digits, status); } //------------------------------------------------------------------------------ UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPosition& fieldPosition) const { UErrorCode status = U_ZERO_ERROR; return fImpl->format(number, appendTo, fieldPosition, status); } UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPosition& fieldPosition, UErrorCode& status) const { return fImpl->format(number, appendTo, fieldPosition, status); } UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { return fImpl->format(number, appendTo, posIter, status); } //------------------------------------------------------------------------------ UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPosition& fieldPosition) const { UErrorCode status = U_ZERO_ERROR; /* ignored */ return fImpl->format(number, appendTo, fieldPosition, status); } UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPosition& fieldPosition, UErrorCode& status) const { return fImpl->format(number, appendTo, fieldPosition, status); } UnicodeString& DecimalFormat::format(int64_t number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { return fImpl->format(number, appendTo, posIter, status); } //------------------------------------------------------------------------------ UnicodeString& DecimalFormat::format( double number, UnicodeString& appendTo, FieldPosition& fieldPosition) const { UErrorCode status = U_ZERO_ERROR; /* ignored */ return fImpl->format(number, appendTo, fieldPosition, status); } UnicodeString& DecimalFormat::format( double number, UnicodeString& appendTo, FieldPosition& fieldPosition, UErrorCode& status) const { return fImpl->format(number, appendTo, fieldPosition, status); } UnicodeString& DecimalFormat::format( double number, UnicodeString& appendTo, FieldPositionIterator* posIter, UErrorCode& status) const { return fImpl->format(number, appendTo, posIter, status); } //------------------------------------------------------------------------------ UnicodeString& DecimalFormat::format(StringPiece number, UnicodeString &toAppendTo, FieldPositionIterator *posIter, UErrorCode &status) const { return fImpl->format(number, toAppendTo, posIter, status); } UnicodeString& DecimalFormat::format(const DigitList &number, UnicodeString &appendTo, FieldPositionIterator *posIter, UErrorCode &status) const { return fImpl->format(number, appendTo, posIter, status); } UnicodeString& DecimalFormat::format(const DigitList &number, UnicodeString& appendTo, FieldPosition& pos, UErrorCode &status) const { return fImpl->format(number, appendTo, pos, status); } UnicodeString& DecimalFormat::format(const VisibleDigitsWithExponent &number, UnicodeString &appendTo, FieldPositionIterator *posIter, UErrorCode &status) const { return fImpl->format(number, appendTo, posIter, status); } UnicodeString& DecimalFormat::format(const VisibleDigitsWithExponent &number, UnicodeString& appendTo, FieldPosition& pos, UErrorCode &status) const { return fImpl->format(number, appendTo, pos, status); } DigitList& DecimalFormat::_round(const DigitList& number, DigitList& adjustedNum, UBool& isNegative, UErrorCode& status) const { adjustedNum = number; fImpl->round(adjustedNum, status); isNegative = !adjustedNum.isPositive(); return adjustedNum; } void DecimalFormat::parse(const UnicodeString& text, Formattable& result, ParsePosition& parsePosition) const { parse(text, result, parsePosition, NULL); } CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text, ParsePosition& pos) const { Formattable parseResult; int32_t start = pos.getIndex(); UChar curbuf[4] = {}; parse(text, parseResult, pos, curbuf); if (pos.getIndex() != start) { UErrorCode ec = U_ZERO_ERROR; LocalPointer currAmt(new CurrencyAmount(parseResult, curbuf, ec), ec); if (U_FAILURE(ec)) { pos.setIndex(start); // indicate failure } else { return currAmt.orphan(); } } return NULL; } /** * Parses the given text as a number, optionally providing a currency amount. * @param text the string to parse * @param result output parameter for the numeric result. * @param parsePosition input-output position; on input, the * position within text to match; must have 0 <= pos.getIndex() < * text.length(); on output, the position after the last matched * character. If the parse fails, the position in unchanged upon * output. * @param currency if non-NULL, it should point to a 4-UChar buffer. * In this case the text is parsed as a currency format, and the * ISO 4217 code for the parsed currency is put into the buffer. * Otherwise the text is parsed as a non-currency format. */ void DecimalFormat::parse(const UnicodeString& text, Formattable& result, ParsePosition& parsePosition, UChar* currency) const { int32_t startIdx, backup; int32_t i = startIdx = backup = parsePosition.getIndex(); // clear any old contents in the result. In particular, clears any DigitList // that it may be holding. result.setLong(0); if (currency != NULL) { for (int32_t ci=0; ci<4; ci++) { currency[ci] = 0; } } // Handle NaN as a special case: int32_t formatWidth = fImpl->getOldFormatWidth(); // Skip padding characters, if around prefix if (formatWidth > 0 && ( fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforePrefix || fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterPrefix)) { i = skipPadding(text, i); } if (isLenient()) { // skip any leading whitespace i = backup = skipUWhiteSpace(text, i); } // If the text is composed of the representation of NaN, returns NaN.length const UnicodeString *nan = &fImpl->getConstSymbol(DecimalFormatSymbols::kNaNSymbol); int32_t nanLen = (text.compare(i, nan->length(), *nan) ? 0 : nan->length()); if (nanLen) { i += nanLen; if (formatWidth > 0 && (fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforeSuffix || fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterSuffix)) { i = skipPadding(text, i); } parsePosition.setIndex(i); result.setDouble(uprv_getNaN()); return; } // NaN parse failed; start over i = backup; parsePosition.setIndex(i); // status is used to record whether a number is infinite. UBool status[fgStatusLength]; DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer if (digits == NULL) { return; // no way to report error from here. } if (fImpl->fMonetary) { if (!parseForCurrency(text, parsePosition, *digits, status, currency)) { return; } } else { if (!subparse(text, &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(), &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(), &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(), &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(), FALSE, UCURR_SYMBOL_NAME, parsePosition, *digits, status, currency)) { debug("!subparse(...) - rewind"); parsePosition.setIndex(startIdx); return; } } // Handle infinity if (status[fgStatusInfinite]) { double inf = uprv_getInfinity(); result.setDouble(digits->isPositive() ? inf : -inf); // TODO: set the dl to infinity, and let it fall into the code below. } else { if (!fImpl->fMultiplier.isZero()) { UErrorCode ec = U_ZERO_ERROR; digits->div(fImpl->fMultiplier, ec); } if (fImpl->fScale != 0) { DigitList ten; ten.set((int32_t)10); if (fImpl->fScale > 0) { for (int32_t i = fImpl->fScale; i > 0; i--) { UErrorCode ec = U_ZERO_ERROR; digits->div(ten,ec); } } else { for (int32_t i = fImpl->fScale; i < 0; i++) { UErrorCode ec = U_ZERO_ERROR; digits->mult(ten,ec); } } } // Negative zero special case: // if parsing integerOnly, change to +0, which goes into an int32 in a Formattable. // if not parsing integerOnly, leave as -0, which a double can represent. if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) { digits->setPositive(TRUE); } result.adoptDigitList(digits); } } UBool DecimalFormat::parseForCurrency(const UnicodeString& text, ParsePosition& parsePosition, DigitList& digits, UBool* status, UChar* currency) const { UnicodeString positivePrefix; UnicodeString positiveSuffix; UnicodeString negativePrefix; UnicodeString negativeSuffix; fImpl->fPositivePrefixPattern.toString(positivePrefix); fImpl->fPositiveSuffixPattern.toString(positiveSuffix); fImpl->fNegativePrefixPattern.toString(negativePrefix); fImpl->fNegativeSuffixPattern.toString(negativeSuffix); int origPos = parsePosition.getIndex(); int maxPosIndex = origPos; int maxErrorPos = -1; // First, parse against current pattern. // Since current pattern could be set by applyPattern(), // it could be an arbitrary pattern, and it may not be the one // defined in current locale. UBool tmpStatus[fgStatusLength]; ParsePosition tmpPos(origPos); DigitList tmpDigitList; UBool found; if (fStyle == UNUM_CURRENCY_PLURAL) { found = subparse(text, &negativePrefix, &negativeSuffix, &positivePrefix, &positiveSuffix, TRUE, UCURR_LONG_NAME, tmpPos, tmpDigitList, tmpStatus, currency); } else { found = subparse(text, &negativePrefix, &negativeSuffix, &positivePrefix, &positiveSuffix, TRUE, UCURR_SYMBOL_NAME, tmpPos, tmpDigitList, tmpStatus, currency); } if (found) { if (tmpPos.getIndex() > maxPosIndex) { maxPosIndex = tmpPos.getIndex(); for (int32_t i = 0; i < fgStatusLength; ++i) { status[i] = tmpStatus[i]; } digits = tmpDigitList; } } else { maxErrorPos = tmpPos.getErrorIndex(); } // Then, parse against affix patterns. // Those are currency patterns and currency plural patterns. int32_t pos = UHASH_FIRST; const UHashElement* element = NULL; while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) { const UHashTok valueTok = element->value; const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer; UBool tmpStatus[fgStatusLength]; ParsePosition tmpPos(origPos); DigitList tmpDigitList; #ifdef FMT_DEBUG debug("trying affix for currency.."); affixPtn->dump(); #endif UBool result = subparse(text, &affixPtn->negPrefixPatternForCurrency, &affixPtn->negSuffixPatternForCurrency, &affixPtn->posPrefixPatternForCurrency, &affixPtn->posSuffixPatternForCurrency, TRUE, affixPtn->patternType, tmpPos, tmpDigitList, tmpStatus, currency); if (result) { found = true; if (tmpPos.getIndex() > maxPosIndex) { maxPosIndex = tmpPos.getIndex(); for (int32_t i = 0; i < fgStatusLength; ++i) { status[i] = tmpStatus[i]; } digits = tmpDigitList; } } else { maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ? tmpPos.getErrorIndex() : maxErrorPos; } } // Finally, parse against simple affix to find the match. // For example, in TestMonster suite, // if the to-be-parsed text is "-\u00A40,00". // complexAffixCompare will not find match, // since there is no ISO code matches "\u00A4", // and the parse stops at "\u00A4". // We will just use simple affix comparison (look for exact match) // to pass it. // // TODO: We should parse against simple affix first when // output currency is not requested. After the complex currency // parsing implementation was introduced, the default currency // instance parsing slowed down because of the new code flow. // I filed #10312 - Yoshito UBool tmpStatus_2[fgStatusLength]; ParsePosition tmpPos_2(origPos); DigitList tmpDigitList_2; // Disable complex currency parsing and try it again. UBool result = subparse(text, &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(), &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(), &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(), &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(), FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME, tmpPos_2, tmpDigitList_2, tmpStatus_2, currency); if (result) { if (tmpPos_2.getIndex() > maxPosIndex) { maxPosIndex = tmpPos_2.getIndex(); for (int32_t i = 0; i < fgStatusLength; ++i) { status[i] = tmpStatus_2[i]; } digits = tmpDigitList_2; } found = true; } else { maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ? tmpPos_2.getErrorIndex() : maxErrorPos; } if (!found) { //parsePosition.setIndex(origPos); parsePosition.setErrorIndex(maxErrorPos); } else { parsePosition.setIndex(maxPosIndex); parsePosition.setErrorIndex(-1); } return found; } /** * Parse the given text into a number. The text is parsed beginning at * parsePosition, until an unparseable character is seen. * @param text the string to parse. * @param negPrefix negative prefix. * @param negSuffix negative suffix. * @param posPrefix positive prefix. * @param posSuffix positive suffix. * @param complexCurrencyParsing whether it is complex currency parsing or not. * @param type the currency type to parse against, LONG_NAME only or not. * @param parsePosition The position at which to being parsing. Upon * return, the first unparsed character. * @param digits the DigitList to set to the parsed value. * @param status output param containing boolean status flags indicating * whether the value was infinite and whether it was positive. * @param currency return value for parsed currency, for generic * currency parsing mode, or NULL for normal parsing. In generic * currency parsing mode, any currency is parsed, not just the * currency that this formatter is set to. */ UBool DecimalFormat::subparse(const UnicodeString& text, const UnicodeString* negPrefix, const UnicodeString* negSuffix, const UnicodeString* posPrefix, const UnicodeString* posSuffix, UBool complexCurrencyParsing, int8_t type, ParsePosition& parsePosition, DigitList& digits, UBool* status, UChar* currency) const { // The parsing process builds up the number as char string, in the neutral format that // will be acceptable to the decNumber library, then at the end passes that string // off for conversion to a decNumber. UErrorCode err = U_ZERO_ERROR; CharString parsedNum; digits.setToZero(); int32_t position = parsePosition.getIndex(); int32_t oldStart = position; int32_t textLength = text.length(); // One less pointer to follow UBool strictParse = !isLenient(); UChar32 zero = fImpl->getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0); const UnicodeString *groupingString = &fImpl->getConstSymbol( !fImpl->fMonetary ? DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol); UChar32 groupingChar = groupingString->char32At(0); int32_t groupingStringLength = groupingString->length(); int32_t groupingCharLength = U16_LENGTH(groupingChar); UBool groupingUsed = isGroupingUsed(); #ifdef FMT_DEBUG UChar dbgbuf[300]; UnicodeString s(dbgbuf,0,300);; s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " ); #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "=")); if(x->isEmpty()) { s.append(UnicodeString("")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); } DBGAPPD(negPrefix); DBGAPPD(negSuffix); DBGAPPD(posPrefix); DBGAPPD(posSuffix); debugout(s); #endif UBool fastParseOk = false; /* TRUE iff fast parse is OK */ // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */ if((fImpl->isParseFastpath()) && !fImpl->fMonetary && text.length()>0 && text.length()<32 && (posPrefix==NULL||posPrefix->isEmpty()) && (posSuffix==NULL||posSuffix->isEmpty()) && // (negPrefix==NULL||negPrefix->isEmpty()) && // (negSuffix==NULL||(negSuffix->isEmpty()) ) && TRUE) { // optimized path int j=position; int l=text.length(); int digitCount=0; UChar32 ch = text.char32At(j); const UnicodeString *decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol); UChar32 decimalChar = 0; UBool intOnly = FALSE; UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0; int32_t decimalCount = decimalString->countChar32(0,3); if(isParseIntegerOnly()) { decimalChar = 0; // not allowed intOnly = TRUE; // Don't look for decimals. } else if(decimalCount==1) { decimalChar = decimalString->char32At(0); // Look for this decimal } else if(decimalCount==0) { decimalChar=0; // NO decimal set } else { j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation. } #ifdef FMT_DEBUG printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n", decimalChar, groupingChar, ch, (intOnly)?'y':'n', (strictParse)?'y':'n'); #endif if(ch==0x002D) { // '-' j=l+1;//=break - negative number. /* parsedNum.append('-',err); j+=U16_LENGTH(ch); if(j=0 && digit <= 9) { parsedNum.append((char)(digit + '0'), err); if((digitCount>0) || digit!=0 || j==(l-1)) { digitCount++; } } else if(ch == 0) { // break out digitCount=-1; break; } else if(ch == decimalChar) { parsedNum.append((char)('.'), err); decimalChar=0; // no more decimals. // fastParseHadDecimal=TRUE; } else if(ch == lookForGroup) { // ignore grouping char. No decimals, so it has to be an ignorable grouping sep } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) { // parsing integer only and can fall through } else { digitCount=-1; // fail - fall through to slow parse break; } j+=U16_LENGTH(ch); ch = text.char32At(j); // for next } if( ((j==l)||intOnly) // end OR only parsing integer && (digitCount>0)) { // and have at least one digit fastParseOk=true; // Fast parse OK! #ifdef SKIP_OPT debug("SKIP_OPT"); /* for testing, try it the slow way. also */ fastParseOk=false; parsedNum.clear(); #else parsePosition.setIndex(position=j); status[fgStatusInfinite]=false; #endif } else { // was not OK. reset, retry #ifdef FMT_DEBUG printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount); #endif parsedNum.clear(); } } else { #ifdef FMT_DEBUG printf("Could not fastpath parse. "); printf("text.length()=%d ", text.length()); printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix); printf("\n"); #endif } UnicodeString formatPattern; toPattern(formatPattern); if(!fastParseOk #if UCONFIG_HAVE_PARSEALLINPUT && fParseAllInput!=UNUM_YES #endif ) { int32_t formatWidth = fImpl->getOldFormatWidth(); // Match padding before prefix if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforePrefix) { position = skipPadding(text, position); } // Match positive and negative prefixes; prefer longest match. int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency); int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix, complexCurrencyParsing, type, currency); if (posMatch >= 0 && negMatch >= 0) { if (posMatch > negMatch) { negMatch = -1; } else if (negMatch > posMatch) { posMatch = -1; } } if (posMatch >= 0) { position += posMatch; parsedNum.append('+', err); } else if (negMatch >= 0) { position += negMatch; parsedNum.append('-', err); } else if (strictParse){ parsePosition.setErrorIndex(position); return FALSE; } else { // Temporary set positive. This might be changed after checking suffix parsedNum.append('+', err); } // Match padding before prefix if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterPrefix) { position = skipPadding(text, position); } if (! strictParse) { position = skipUWhiteSpace(text, position); } // process digits or Inf, find decimal position const UnicodeString *inf = &fImpl->getConstSymbol(DecimalFormatSymbols::kInfinitySymbol); int32_t infLen = (text.compare(position, inf->length(), *inf) ? 0 : inf->length()); position += infLen; // infLen is non-zero when it does equal to infinity status[fgStatusInfinite] = infLen != 0; if (infLen != 0) { parsedNum.append("Infinity", err); } else { // We now have a string of digits, possibly with grouping symbols, // and decimal points. We want to process these into a DigitList. // We don't want to put a bunch of leading zeros into the DigitList // though, so we keep track of the location of the decimal point, // put only significant digits into the DigitList, and adjust the // exponent as needed. UBool strictFail = FALSE; // did we exit with a strict parse failure? int32_t lastGroup = -1; // after which digit index did we last see a grouping separator? int32_t currGroup = -1; // for temporary storage the digit index of the current grouping separator int32_t gs2 = fImpl->fEffGrouping.fGrouping2 == 0 ? fImpl->fEffGrouping.fGrouping : fImpl->fEffGrouping.fGrouping2; const UnicodeString *decimalString; if (fImpl->fMonetary) { decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol); } else { decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol); } UChar32 decimalChar = decimalString->char32At(0); int32_t decimalStringLength = decimalString->length(); int32_t decimalCharLength = U16_LENGTH(decimalChar); UBool sawDecimal = FALSE; UChar32 sawDecimalChar = 0xFFFF; UBool sawGrouping = FALSE; UChar32 sawGroupingChar = 0xFFFF; UBool sawDigit = FALSE; int32_t backup = -1; int32_t digit; // equivalent grouping and decimal support const UnicodeSet *decimalSet = NULL; const UnicodeSet *groupingSet = NULL; if (decimalCharLength == decimalStringLength) { decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse); } if (groupingCharLength == groupingStringLength) { if (strictParse) { groupingSet = fStaticSets->fStrictDefaultGroupingSeparators; } else { groupingSet = fStaticSets->fDefaultGroupingSeparators; } } // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized. // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet // If a character matches decimalSet, don't consider it to be a member of the groupingSet. // We have to track digitCount ourselves, because digits.fCount will // pin when the maximum allowable digits is reached. int32_t digitCount = 0; int32_t integerDigitCount = 0; for (; position < textLength; ) { UChar32 ch = text.char32At(position); /* We recognize all digit ranges, not only the Latin digit range * '0'..'9'. We do so by using the Character.digit() method, * which converts a valid Unicode digit to the range 0..9. * * The character 'ch' may be a digit. If so, place its value * from 0 to 9 in 'digit'. First try using the locale digit, * which may or MAY NOT be a standard Unicode digit range. If * this fails, try using the standard Unicode digit ranges by * calling Character.digit(). If this also fails, digit will * have a value outside the range 0..9. */ digit = ch - zero; if (digit < 0 || digit > 9) { digit = u_charDigitValue(ch); } // As a last resort, look through the localized digits if the zero digit // is not a "standard" Unicode digit. if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) { digit = 0; if ( fImpl->getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) { break; } for (digit = 1 ; digit < 10 ; digit++ ) { if ( fImpl->getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) { break; } } } if (digit >= 0 && digit <= 9) { if (strictParse && backup != -1) { // comma followed by digit, so group before comma is a // secondary group. If there was a group separator // before that, the group must == the secondary group // length, else it can be <= the the secondary group // length. if ((lastGroup != -1 && currGroup - lastGroup != gs2) || (lastGroup == -1 && digitCount - 1 > gs2)) { strictFail = TRUE; break; } lastGroup = currGroup; } // Cancel out backup setting (see grouping handler below) currGroup = -1; backup = -1; sawDigit = TRUE; // Note: this will append leading zeros parsedNum.append((char)(digit + '0'), err); // count any digit that's not a leading zero if (digit > 0 || digitCount > 0 || sawDecimal) { digitCount += 1; // count any integer digit that's not a leading zero if (! sawDecimal) { integerDigitCount += 1; } } position += U16_LENGTH(ch); } else if (groupingStringLength > 0 && matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet, decimalChar, decimalSet, ch) && groupingUsed) { if (sawDecimal) { break; } if (strictParse) { if ((!sawDigit || backup != -1)) { // leading group, or two group separators in a row strictFail = TRUE; break; } } // Ignore grouping characters, if we are using them, but require // that they be followed by a digit. Otherwise we backup and // reprocess them. currGroup = digitCount; backup = position; position += groupingStringLength; sawGrouping=TRUE; // Once we see a grouping character, we only accept that grouping character from then on. sawGroupingChar=ch; } else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch)) { if (strictParse) { if (backup != -1 || (lastGroup != -1 && digitCount - lastGroup != fImpl->fEffGrouping.fGrouping)) { strictFail = TRUE; break; } } // If we're only parsing integers, or if we ALREADY saw the // decimal, then don't parse this one. if (isParseIntegerOnly() || sawDecimal) { break; } parsedNum.append('.', err); position += decimalStringLength; sawDecimal = TRUE; // Once we see a decimal character, we only accept that decimal character from then on. sawDecimalChar=ch; // decimalSet is considered to consist of (ch,ch) } else { if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless.. isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways const UnicodeString *tmp; tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kExponentialSymbol); // TODO: CASE if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit { // Parse sign, if present int32_t pos = position + tmp->length(); char exponentSign = '+'; if (pos < textLength) { tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); if (!text.compare(pos, tmp->length(), *tmp)) { pos += tmp->length(); } else { tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); if (!text.compare(pos, tmp->length(), *tmp)) { exponentSign = '-'; pos += tmp->length(); } } } UBool sawExponentDigit = FALSE; while (pos < textLength) { ch = text.char32At(pos); digit = ch - zero; if (digit < 0 || digit > 9) { digit = u_charDigitValue(ch); } if (0 <= digit && digit <= 9) { if (!sawExponentDigit) { parsedNum.append('E', err); parsedNum.append(exponentSign, err); sawExponentDigit = TRUE; } pos += U16_LENGTH(ch); parsedNum.append((char)(digit + '0'), err); } else { break; } } if (sawExponentDigit) { position = pos; // Advance past the exponent } break; // Whether we fail or succeed, we exit this loop } else { break; } } else { // not parsing exponent break; } } } // if we didn't see a decimal and it is required, check to see if the pattern had one if(!sawDecimal && isDecimalPatternMatchRequired()) { if(formatPattern.indexOf(kPatternDecimalSeparator) != -1) { parsePosition.setIndex(oldStart); parsePosition.setErrorIndex(position); debug("decimal point match required fail!"); return FALSE; } } if (backup != -1) { position = backup; } if (strictParse && !sawDecimal) { if (lastGroup != -1 && digitCount - lastGroup != fImpl->fEffGrouping.fGrouping) { strictFail = TRUE; } } if (strictFail) { // only set with strictParse and a grouping separator error parsePosition.setIndex(oldStart); parsePosition.setErrorIndex(position); debug("strictFail!"); return FALSE; } // If there was no decimal point we have an integer // If none of the text string was recognized. For example, parse // "x" with pattern "#0.00" (return index and error index both 0) // parse "$" with pattern "$#0.00". (return index 0 and error index // 1). if (!sawDigit && digitCount == 0) { #ifdef FMT_DEBUG debug("none of text rec"); printf("position=%d\n",position); #endif parsePosition.setIndex(oldStart); parsePosition.setErrorIndex(oldStart); return FALSE; } } // Match padding before suffix if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforeSuffix) { position = skipPadding(text, position); } int32_t posSuffixMatch = -1, negSuffixMatch = -1; // Match positive and negative suffixes; prefer longest match. if (posMatch >= 0 || (!strictParse && negMatch < 0)) { posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency); } if (negMatch >= 0) { negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency); } if (posSuffixMatch >= 0 && negSuffixMatch >= 0) { if (posSuffixMatch > negSuffixMatch) { negSuffixMatch = -1; } else if (negSuffixMatch > posSuffixMatch) { posSuffixMatch = -1; } } // Fail if neither or both if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) { parsePosition.setErrorIndex(position); debug("neither or both"); return FALSE; } position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0)); // Match padding before suffix if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterSuffix) { position = skipPadding(text, position); } parsePosition.setIndex(position); parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-'; #ifdef FMT_DEBUG printf("PP -> %d, SLOW = [%s]! pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err)); #endif } /* end SLOW parse */ if(parsePosition.getIndex() == oldStart) { #ifdef FMT_DEBUG printf(" PP didnt move, err\n"); #endif parsePosition.setErrorIndex(position); return FALSE; } #if UCONFIG_HAVE_PARSEALLINPUT else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength) { #ifdef FMT_DEBUG printf(" PP didnt consume all (UNUM_YES), err\n"); #endif parsePosition.setErrorIndex(position); return FALSE; } #endif // uint32_t bits = (fastParseOk?kFastpathOk:0) | // (fastParseHadDecimal?0:kNoDecimal); //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits); digits.set(parsedNum.toStringPiece(), err, 0//bits ); if (U_FAILURE(err)) { #ifdef FMT_DEBUG printf(" err setting %s\n", u_errorName(err)); #endif parsePosition.setErrorIndex(position); return FALSE; } // check if we missed a required decimal point if(fastParseOk && isDecimalPatternMatchRequired()) { if(formatPattern.indexOf(kPatternDecimalSeparator) != -1) { parsePosition.setIndex(oldStart); parsePosition.setErrorIndex(position); debug("decimal point match required fail!"); return FALSE; } } return TRUE; } /** * Starting at position, advance past a run of pad characters, if any. * Return the index of the first character after position that is not a pad * character. Result is >= position. */ int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const { int32_t padLen = U16_LENGTH(fImpl->fAffixes.fPadChar); while (position < text.length() && text.char32At(position) == fImpl->fAffixes.fPadChar) { position += padLen; } return position; } /** * Return the length matched by the given affix, or -1 if none. * Runs of white space in the affix, match runs of white space in * the input. Pattern white space and input white space are * determined differently; see code. * @param text input text * @param pos offset into input at which to begin matching * @param isNegative * @param isPrefix * @param affixPat affix pattern used for currency affix comparison. * @param complexCurrencyParsing whether it is currency parsing or not * @param type the currency type to parse against, LONG_NAME only or not. * @param currency return value for parsed currency, for generic * currency parsing mode, or null for normal parsing. In generic * currency parsing mode, any currency is parsed, not just the * currency that this formatter is set to. * @return length of input that matches, or -1 if match failure */ int32_t DecimalFormat::compareAffix(const UnicodeString& text, int32_t pos, UBool isNegative, UBool isPrefix, const UnicodeString* affixPat, UBool complexCurrencyParsing, int8_t type, UChar* currency) const { const UnicodeString *patternToCompare; if (currency != NULL || (fImpl->fMonetary && complexCurrencyParsing)) { if (affixPat != NULL) { return compareComplexAffix(*affixPat, text, pos, type, currency); } } if (isNegative) { if (isPrefix) { patternToCompare = &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(); } else { patternToCompare = &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(); } } else { if (isPrefix) { patternToCompare = &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(); } else { patternToCompare = &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(); } } return compareSimpleAffix(*patternToCompare, text, pos, isLenient()); } UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const { if (lhs == rhs) { return TRUE; } U_ASSERT(fStaticSets != NULL); // should already be loaded const UnicodeSet *minusSigns = fStaticSets->fMinusSigns; const UnicodeSet *plusSigns = fStaticSets->fPlusSigns; return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) || (plusSigns->contains(lhs) && plusSigns->contains(rhs)); } // check for LRM 0x200E, RLM 0x200F, ALM 0x061C #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C) #define TRIM_BUFLEN 32 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) { UChar trimBuf[TRIM_BUFLEN]; int32_t affixLen = affix.length(); int32_t affixPos, trimLen = 0; for (affixPos = 0; affixPos < affixLen; affixPos++) { UChar c = affix.charAt(affixPos); if (!IS_BIDI_MARK(c)) { if (trimLen < TRIM_BUFLEN) { trimBuf[trimLen++] = c; } else { trimLen = 0; break; } } } return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix); } /** * Return the length matched by the given affix, or -1 if none. * Runs of white space in the affix, match runs of white space in * the input. Pattern white space and input white space are * determined differently; see code. * @param affix pattern string, taken as a literal * @param input input text * @param pos offset into input at which to begin matching * @return length of input that matches, or -1 if match failure */ int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix, const UnicodeString& input, int32_t pos, UBool lenient) const { int32_t start = pos; UnicodeString trimmedAffix; // For more efficiency we should keep lazily-created trimmed affixes around in // instance variables instead of trimming each time they are used (the next step) trimMarksFromAffix(affix, trimmedAffix); UChar32 affixChar = trimmedAffix.char32At(0); int32_t affixLength = trimmedAffix.length(); int32_t inputLength = input.length(); int32_t affixCharLength = U16_LENGTH(affixChar); UnicodeSet *affixSet; UErrorCode status = U_ZERO_ERROR; U_ASSERT(fStaticSets != NULL); // should already be loaded if (U_FAILURE(status)) { return -1; } if (!lenient) { affixSet = fStaticSets->fStrictDashEquivalents; // If the trimmedAffix is exactly one character long and that character // is in the dash set and the very next input character is also // in the dash set, return a match. if (affixCharLength == affixLength && affixSet->contains(affixChar)) { UChar32 ic = input.char32At(pos); if (affixSet->contains(ic)) { pos += U16_LENGTH(ic); pos = skipBidiMarks(input, pos); // skip any trailing bidi marks return pos - start; } } for (int32_t i = 0; i < affixLength; ) { UChar32 c = trimmedAffix.char32At(i); int32_t len = U16_LENGTH(c); if (PatternProps::isWhiteSpace(c)) { // We may have a pattern like: \u200F \u0020 // and input text like: \u200F \u0020 // Note that U+200F and U+0020 are Pattern_White_Space but only // U+0020 is UWhiteSpace. So we have to first do a direct // match of the run of Pattern_White_Space in the pattern, // then match any extra characters. UBool literalMatch = FALSE; while (pos < inputLength) { UChar32 ic = input.char32At(pos); if (ic == c) { literalMatch = TRUE; i += len; pos += len; if (i == affixLength) { break; } c = trimmedAffix.char32At(i); len = U16_LENGTH(c); if (!PatternProps::isWhiteSpace(c)) { break; } } else if (IS_BIDI_MARK(ic)) { pos ++; // just skip over this input text } else { break; } } // Advance over run in pattern i = skipPatternWhiteSpace(trimmedAffix, i); // Advance over run in input text // Must see at least one white space char in input, // unless we've already matched some characters literally. int32_t s = pos; pos = skipUWhiteSpace(input, pos); if (pos == s && !literalMatch) { return -1; } // If we skip UWhiteSpace in the input text, we need to skip it in the pattern. // Otherwise, the previous lines may have skipped over text (such as U+00A0) that // is also in the trimmedAffix. i = skipUWhiteSpace(trimmedAffix, i); } else { UBool match = FALSE; while (pos < inputLength) { UChar32 ic = input.char32At(pos); if (!match && ic == c) { i += len; pos += len; match = TRUE; } else if (IS_BIDI_MARK(ic)) { pos++; // just skip over this input text } else { break; } } if (!match) { return -1; } } } } else { UBool match = FALSE; affixSet = fStaticSets->fDashEquivalents; if (affixCharLength == affixLength && affixSet->contains(affixChar)) { pos = skipUWhiteSpaceAndMarks(input, pos); UChar32 ic = input.char32At(pos); if (affixSet->contains(ic)) { pos += U16_LENGTH(ic); pos = skipBidiMarks(input, pos); return pos - start; } } for (int32_t i = 0; i < affixLength; ) { //i = skipRuleWhiteSpace(trimmedAffix, i); i = skipUWhiteSpace(trimmedAffix, i); pos = skipUWhiteSpaceAndMarks(input, pos); if (i >= affixLength || pos >= inputLength) { break; } UChar32 c = trimmedAffix.char32At(i); UChar32 ic = input.char32At(pos); if (!equalWithSignCompatibility(ic, c)) { return -1; } match = TRUE; i += U16_LENGTH(c); pos += U16_LENGTH(ic); pos = skipBidiMarks(input, pos); } if (affixLength > 0 && ! match) { return -1; } } return pos - start; } /** * Skip over a run of zero or more Pattern_White_Space characters at * pos in text. */ int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) { const UChar* s = text.getBuffer(); return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s); } /** * Skip over a run of zero or more isUWhiteSpace() characters at pos * in text. */ int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) { while (pos < text.length()) { UChar32 c = text.char32At(pos); if (!u_isUWhiteSpace(c)) { break; } pos += U16_LENGTH(c); } return pos; } /** * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos * in text. */ int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) { while (pos < text.length()) { UChar32 c = text.char32At(pos); if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM break; } pos += U16_LENGTH(c); } return pos; } /** * Skip over a run of zero or more bidi marks at pos in text. */ int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) { while (pos < text.length()) { UChar c = text.charAt(pos); if (!IS_BIDI_MARK(c)) { break; } pos++; } return pos; } /** * Return the length matched by the given affix, or -1 if none. * @param affixPat pattern string * @param input input text * @param pos offset into input at which to begin matching * @param type the currency type to parse against, LONG_NAME only or not. * @param currency return value for parsed currency, for generic * currency parsing mode, or null for normal parsing. In generic * currency parsing mode, any currency is parsed, not just the * currency that this formatter is set to. * @return length of input that matches, or -1 if match failure */ int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat, const UnicodeString& text, int32_t pos, int8_t type, UChar* currency) const { int32_t start = pos; U_ASSERT(currency != NULL || fImpl->fMonetary); for (int32_t i=0; i= 0; ) { UChar32 c = affixPat.char32At(i); i += U16_LENGTH(c); if (c == kQuote) { U_ASSERT(i <= affixPat.length()); c = affixPat.char32At(i); i += U16_LENGTH(c); const UnicodeString* affix = NULL; switch (c) { case kCurrencySign: { // since the currency names in choice format is saved // the same way as other currency names, // do not need to do currency choice parsing here. // the general currency parsing parse against all names, // including names in choice format. UBool intl = igetLocale().getName(); ParsePosition ppos(pos); UChar curr[4]; UErrorCode ec = U_ZERO_ERROR; // Delegate parse of display name => ISO code to Currency uprv_parseCurrency(loc, text, ppos, type, curr, ec); // If parse succeeds, populate currency[0] if (U_SUCCESS(ec) && ppos.getIndex() != pos) { if (currency) { u_strcpy(currency, curr); } else { // The formatter is currency-style but the client has not requested // the value of the parsed currency. In this case, if that value does // not match the formatter's current value, then the parse fails. UChar effectiveCurr[4]; getEffectiveCurrency(effectiveCurr, ec); if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) { pos = -1; continue; } } pos = ppos.getIndex(); } else if (!isLenient()){ pos = -1; } continue; } case kPatternPercent: affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPercentSymbol); break; case kPatternPerMill: affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPerMillSymbol); break; case kPatternPlus: affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); break; case kPatternMinus: affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); break; default: // fall through to affix!=0 test, which will fail break; } if (affix != NULL) { pos = match(text, pos, *affix); continue; } } pos = match(text, pos, c); if (PatternProps::isWhiteSpace(c)) { i = skipPatternWhiteSpace(affixPat, i); } } return pos - start; } /** * Match a single character at text[pos] and return the index of the * next character upon success. Return -1 on failure. If * ch is a Pattern_White_Space then match a run of white space in text. */ int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) { if (PatternProps::isWhiteSpace(ch)) { // Advance over run of white space in input text // Must see at least one white space char in input int32_t s = pos; pos = skipPatternWhiteSpace(text, pos); if (pos == s) { return -1; } return pos; } return (pos >= 0 && text.char32At(pos) == ch) ? (pos + U16_LENGTH(ch)) : -1; } /** * Match a string at text[pos] and return the index of the next * character upon success. Return -1 on failure. Match a run of * white space in str with a run of white space in text. */ int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) { for (int32_t i=0; i= 0; ) { UChar32 ch = str.char32At(i); i += U16_LENGTH(ch); if (PatternProps::isWhiteSpace(ch)) { i = skipPatternWhiteSpace(str, i); } pos = match(text, pos, ch); } return pos; } UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol, UnicodeSet *sset, UChar32 schar) { if (sset != NULL) { return sset->contains(schar); } return text.compare(position, length, symbol) == 0; } UBool DecimalFormat::matchDecimal(UChar32 symbolChar, UBool sawDecimal, UChar32 sawDecimalChar, const UnicodeSet *sset, UChar32 schar) { if(sawDecimal) { return schar==sawDecimalChar; } else if(schar==symbolChar) { return TRUE; } else if(sset!=NULL) { return sset->contains(schar); } else { return FALSE; } } UBool DecimalFormat::matchGrouping(UChar32 groupingChar, UBool sawGrouping, UChar32 sawGroupingChar, const UnicodeSet *sset, UChar32 /*decimalChar*/, const UnicodeSet *decimalSet, UChar32 schar) { if(sawGrouping) { return schar==sawGroupingChar; // previously found } else if(schar==groupingChar) { return TRUE; // char from symbols } else if(sset!=NULL) { return sset->contains(schar) && // in groupingSet but... ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet } else { return FALSE; } } //------------------------------------------------------------------------------ // Gets the pointer to the localized decimal format symbols const DecimalFormatSymbols* DecimalFormat::getDecimalFormatSymbols() const { return &fImpl->getDecimalFormatSymbols(); } //------------------------------------------------------------------------------ // De-owning the current localized symbols and adopt the new symbols. void DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt) { if (symbolsToAdopt == NULL) { return; // do not allow caller to set fSymbols to NULL } fImpl->adoptDecimalFormatSymbols(symbolsToAdopt); } //------------------------------------------------------------------------------ // Setting the symbols is equlivalent to adopting a newly created localized // symbols. void DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols) { adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols)); } const CurrencyPluralInfo* DecimalFormat::getCurrencyPluralInfo(void) const { return fCurrencyPluralInfo; } void DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt) { if (toAdopt != NULL) { delete fCurrencyPluralInfo; fCurrencyPluralInfo = toAdopt; // re-set currency affix patterns and currency affixes. if (fImpl->fMonetary) { UErrorCode status = U_ZERO_ERROR; if (fAffixPatternsForCurrency) { deleteHashForAffixPattern(); } setupCurrencyAffixPatterns(status); } } } void DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info) { adoptCurrencyPluralInfo(info.clone()); } //------------------------------------------------------------------------------ // Gets the positive prefix of the number pattern. UnicodeString& DecimalFormat::getPositivePrefix(UnicodeString& result) const { return fImpl->getPositivePrefix(result); } //------------------------------------------------------------------------------ // Sets the positive prefix of the number pattern. void DecimalFormat::setPositivePrefix(const UnicodeString& newValue) { fImpl->setPositivePrefix(newValue); } //------------------------------------------------------------------------------ // Gets the negative prefix of the number pattern. UnicodeString& DecimalFormat::getNegativePrefix(UnicodeString& result) const { return fImpl->getNegativePrefix(result); } //------------------------------------------------------------------------------ // Gets the negative prefix of the number pattern. void DecimalFormat::setNegativePrefix(const UnicodeString& newValue) { fImpl->setNegativePrefix(newValue); } //------------------------------------------------------------------------------ // Gets the positive suffix of the number pattern. UnicodeString& DecimalFormat::getPositiveSuffix(UnicodeString& result) const { return fImpl->getPositiveSuffix(result); } //------------------------------------------------------------------------------ // Sets the positive suffix of the number pattern. void DecimalFormat::setPositiveSuffix(const UnicodeString& newValue) { fImpl->setPositiveSuffix(newValue); } //------------------------------------------------------------------------------ // Gets the negative suffix of the number pattern. UnicodeString& DecimalFormat::getNegativeSuffix(UnicodeString& result) const { return fImpl->getNegativeSuffix(result); } //------------------------------------------------------------------------------ // Sets the negative suffix of the number pattern. void DecimalFormat::setNegativeSuffix(const UnicodeString& newValue) { fImpl->setNegativeSuffix(newValue); } //------------------------------------------------------------------------------ // Gets the multiplier of the number pattern. // Multipliers are stored as decimal numbers (DigitLists) because that // is the most convenient for muliplying or dividing the numbers to be formatted. // A NULL multiplier implies one, and the scaling operations are skipped. int32_t DecimalFormat::getMultiplier() const { return fImpl->getMultiplier(); } //------------------------------------------------------------------------------ // Sets the multiplier of the number pattern. void DecimalFormat::setMultiplier(int32_t newValue) { fImpl->setMultiplier(newValue); } /** * Get the rounding increment. * @return A positive rounding increment, or 0.0 if rounding * is not in effect. * @see #setRoundingIncrement * @see #getRoundingMode * @see #setRoundingMode */ double DecimalFormat::getRoundingIncrement() const { return fImpl->getRoundingIncrement(); } /** * Set the rounding increment. This method also controls whether * rounding is enabled. * @param newValue A positive rounding increment, or 0.0 to disable rounding. * Negative increments are equivalent to 0.0. * @see #getRoundingIncrement * @see #getRoundingMode * @see #setRoundingMode */ void DecimalFormat::setRoundingIncrement(double newValue) { fImpl->setRoundingIncrement(newValue); } /** * Get the rounding mode. * @return A rounding mode * @see #setRoundingIncrement * @see #getRoundingIncrement * @see #setRoundingMode */ DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const { return fImpl->getRoundingMode(); } /** * Set the rounding mode. This has no effect unless the rounding * increment is greater than zero. * @param roundingMode A rounding mode * @see #setRoundingIncrement * @see #getRoundingIncrement * @see #getRoundingMode */ void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) { fImpl->setRoundingMode(roundingMode); } /** * Get the width to which the output of format() is padded. * @return the format width, or zero if no padding is in effect * @see #setFormatWidth * @see #getPadCharacter * @see #setPadCharacter * @see #getPadPosition * @see #setPadPosition */ int32_t DecimalFormat::getFormatWidth() const { return fImpl->getFormatWidth(); } /** * Set the width to which the output of format() is padded. * This method also controls whether padding is enabled. * @param width the width to which to pad the result of * format(), or zero to disable padding. A negative * width is equivalent to 0. * @see #getFormatWidth * @see #getPadCharacter * @see #setPadCharacter * @see #getPadPosition * @see #setPadPosition */ void DecimalFormat::setFormatWidth(int32_t width) { int32_t formatWidth = (width > 0) ? width : 0; fImpl->setFormatWidth(formatWidth); } UnicodeString DecimalFormat::getPadCharacterString() const { return UnicodeString(fImpl->getPadCharacter()); } void DecimalFormat::setPadCharacter(const UnicodeString &padChar) { UChar32 pad; if (padChar.length() > 0) { pad = padChar.char32At(0); } else { pad = kDefaultPad; } fImpl->setPadCharacter(pad); } static DecimalFormat::EPadPosition fromPadPosition(DigitAffixesAndPadding::EPadPosition padPos) { switch (padPos) { case DigitAffixesAndPadding::kPadBeforePrefix: return DecimalFormat::kPadBeforePrefix; case DigitAffixesAndPadding::kPadAfterPrefix: return DecimalFormat::kPadAfterPrefix; case DigitAffixesAndPadding::kPadBeforeSuffix: return DecimalFormat::kPadBeforeSuffix; case DigitAffixesAndPadding::kPadAfterSuffix: return DecimalFormat::kPadAfterSuffix; default: U_ASSERT(FALSE); break; } return DecimalFormat::kPadBeforePrefix; } /** * Get the position at which padding will take place. This is the location * at which padding will be inserted if the result of format() * is shorter than the format width. * @return the pad position, one of kPadBeforePrefix, * kPadAfterPrefix, kPadBeforeSuffix, or * kPadAfterSuffix. * @see #setFormatWidth * @see #getFormatWidth * @see #setPadCharacter * @see #getPadCharacter * @see #setPadPosition * @see #kPadBeforePrefix * @see #kPadAfterPrefix * @see #kPadBeforeSuffix * @see #kPadAfterSuffix */ DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const { return fromPadPosition(fImpl->getPadPosition()); } static DigitAffixesAndPadding::EPadPosition toPadPosition(DecimalFormat::EPadPosition padPos) { switch (padPos) { case DecimalFormat::kPadBeforePrefix: return DigitAffixesAndPadding::kPadBeforePrefix; case DecimalFormat::kPadAfterPrefix: return DigitAffixesAndPadding::kPadAfterPrefix; case DecimalFormat::kPadBeforeSuffix: return DigitAffixesAndPadding::kPadBeforeSuffix; case DecimalFormat::kPadAfterSuffix: return DigitAffixesAndPadding::kPadAfterSuffix; default: U_ASSERT(FALSE); break; } return DigitAffixesAndPadding::kPadBeforePrefix; } /** * NEW * Set the position at which padding will take place. This is the location * at which padding will be inserted if the result of format() * is shorter than the format width. This has no effect unless padding is * enabled. * @param padPos the pad position, one of kPadBeforePrefix, * kPadAfterPrefix, kPadBeforeSuffix, or * kPadAfterSuffix. * @see #setFormatWidth * @see #getFormatWidth * @see #setPadCharacter * @see #getPadCharacter * @see #getPadPosition * @see #kPadBeforePrefix * @see #kPadAfterPrefix * @see #kPadBeforeSuffix * @see #kPadAfterSuffix */ void DecimalFormat::setPadPosition(EPadPosition padPos) { fImpl->setPadPosition(toPadPosition(padPos)); } /** * Return whether or not scientific notation is used. * @return TRUE if this object formats and parses scientific notation * @see #setScientificNotation * @see #getMinimumExponentDigits * @see #setMinimumExponentDigits * @see #isExponentSignAlwaysShown * @see #setExponentSignAlwaysShown */ UBool DecimalFormat::isScientificNotation() const { return fImpl->isScientificNotation(); } /** * Set whether or not scientific notation is used. * @param useScientific TRUE if this object formats and parses scientific * notation * @see #isScientificNotation * @see #getMinimumExponentDigits * @see #setMinimumExponentDigits * @see #isExponentSignAlwaysShown * @see #setExponentSignAlwaysShown */ void DecimalFormat::setScientificNotation(UBool useScientific) { fImpl->setScientificNotation(useScientific); } /** * Return the minimum exponent digits that will be shown. * @return the minimum exponent digits that will be shown * @see #setScientificNotation * @see #isScientificNotation * @see #setMinimumExponentDigits * @see #isExponentSignAlwaysShown * @see #setExponentSignAlwaysShown */ int8_t DecimalFormat::getMinimumExponentDigits() const { return fImpl->getMinimumExponentDigits(); } /** * Set the minimum exponent digits that will be shown. This has no * effect unless scientific notation is in use. * @param minExpDig a value >= 1 indicating the fewest exponent digits * that will be shown. Values less than 1 will be treated as 1. * @see #setScientificNotation * @see #isScientificNotation * @see #getMinimumExponentDigits * @see #isExponentSignAlwaysShown * @see #setExponentSignAlwaysShown */ void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) { int32_t minExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1); fImpl->setMinimumExponentDigits(minExponentDigits); } /** * Return whether the exponent sign is always shown. * @return TRUE if the exponent is always prefixed with either the * localized minus sign or the localized plus sign, false if only negative * exponents are prefixed with the localized minus sign. * @see #setScientificNotation * @see #isScientificNotation * @see #setMinimumExponentDigits * @see #getMinimumExponentDigits * @see #setExponentSignAlwaysShown */ UBool DecimalFormat::isExponentSignAlwaysShown() const { return fImpl->isExponentSignAlwaysShown(); } /** * Set whether the exponent sign is always shown. This has no effect * unless scientific notation is in use. * @param expSignAlways TRUE if the exponent is always prefixed with either * the localized minus sign or the localized plus sign, false if only * negative exponents are prefixed with the localized minus sign. * @see #setScientificNotation * @see #isScientificNotation * @see #setMinimumExponentDigits * @see #getMinimumExponentDigits * @see #isExponentSignAlwaysShown */ void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) { fImpl->setExponentSignAlwaysShown(expSignAlways); } //------------------------------------------------------------------------------ // Gets the grouping size of the number pattern. For example, thousand or 10 // thousand groupings. int32_t DecimalFormat::getGroupingSize() const { return fImpl->getGroupingSize(); } //------------------------------------------------------------------------------ // Gets the grouping size of the number pattern. void DecimalFormat::setGroupingSize(int32_t newValue) { fImpl->setGroupingSize(newValue); } //------------------------------------------------------------------------------ int32_t DecimalFormat::getSecondaryGroupingSize() const { return fImpl->getSecondaryGroupingSize(); } //------------------------------------------------------------------------------ void DecimalFormat::setSecondaryGroupingSize(int32_t newValue) { fImpl->setSecondaryGroupingSize(newValue); } //------------------------------------------------------------------------------ int32_t DecimalFormat::getMinimumGroupingDigits() const { return fImpl->getMinimumGroupingDigits(); } //------------------------------------------------------------------------------ void DecimalFormat::setMinimumGroupingDigits(int32_t newValue) { fImpl->setMinimumGroupingDigits(newValue); } //------------------------------------------------------------------------------ // Checks if to show the decimal separator. UBool DecimalFormat::isDecimalSeparatorAlwaysShown() const { return fImpl->isDecimalSeparatorAlwaysShown(); } //------------------------------------------------------------------------------ // Sets to always show the decimal separator. void DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue) { fImpl->setDecimalSeparatorAlwaysShown(newValue); } //------------------------------------------------------------------------------ // Checks if decimal point pattern match is required UBool DecimalFormat::isDecimalPatternMatchRequired(void) const { return static_cast(fBoolFlags.contains(UNUM_PARSE_DECIMAL_MARK_REQUIRED)); } //------------------------------------------------------------------------------ // Checks if decimal point pattern match is required void DecimalFormat::setDecimalPatternMatchRequired(UBool newValue) { fBoolFlags.set(UNUM_PARSE_DECIMAL_MARK_REQUIRED, newValue); } //------------------------------------------------------------------------------ // Emits the pattern of this DecimalFormat instance. UnicodeString& DecimalFormat::toPattern(UnicodeString& result) const { return fImpl->toPattern(result); } //------------------------------------------------------------------------------ // Emits the localized pattern this DecimalFormat instance. UnicodeString& DecimalFormat::toLocalizedPattern(UnicodeString& result) const { // toLocalizedPattern is deprecated, so we just make it the same as // toPattern. return fImpl->toPattern(result); } //------------------------------------------------------------------------------ void DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status) { if (pattern.indexOf(kCurrencySign) != -1) { handleCurrencySignInPattern(status); } fImpl->applyPattern(pattern, status); } //------------------------------------------------------------------------------ void DecimalFormat::applyPattern(const UnicodeString& pattern, UParseError& parseError, UErrorCode& status) { if (pattern.indexOf(kCurrencySign) != -1) { handleCurrencySignInPattern(status); } fImpl->applyPattern(pattern, parseError, status); } //------------------------------------------------------------------------------ void DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status) { if (pattern.indexOf(kCurrencySign) != -1) { handleCurrencySignInPattern(status); } fImpl->applyLocalizedPattern(pattern, status); } //------------------------------------------------------------------------------ void DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UParseError& parseError, UErrorCode& status) { if (pattern.indexOf(kCurrencySign) != -1) { handleCurrencySignInPattern(status); } fImpl->applyLocalizedPattern(pattern, parseError, status); } //------------------------------------------------------------------------------ /** * Sets the maximum number of digits allowed in the integer portion of a * number. * @see NumberFormat#setMaximumIntegerDigits */ void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) { newValue = _min(newValue, gDefaultMaxIntegerDigits); NumberFormat::setMaximumIntegerDigits(newValue); fImpl->updatePrecision(); } /** * Sets the minimum number of digits allowed in the integer portion of a * number. This override limits the integer digit count to 309. * @see NumberFormat#setMinimumIntegerDigits */ void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) { newValue = _min(newValue, kDoubleIntegerDigits); NumberFormat::setMinimumIntegerDigits(newValue); fImpl->updatePrecision(); } /** * Sets the maximum number of digits allowed in the fraction portion of a * number. This override limits the fraction digit count to 340. * @see NumberFormat#setMaximumFractionDigits */ void DecimalFormat::setMaximumFractionDigits(int32_t newValue) { newValue = _min(newValue, kDoubleFractionDigits); NumberFormat::setMaximumFractionDigits(newValue); fImpl->updatePrecision(); } /** * Sets the minimum number of digits allowed in the fraction portion of a * number. This override limits the fraction digit count to 340. * @see NumberFormat#setMinimumFractionDigits */ void DecimalFormat::setMinimumFractionDigits(int32_t newValue) { newValue = _min(newValue, kDoubleFractionDigits); NumberFormat::setMinimumFractionDigits(newValue); fImpl->updatePrecision(); } int32_t DecimalFormat::getMinimumSignificantDigits() const { return fImpl->getMinimumSignificantDigits(); } int32_t DecimalFormat::getMaximumSignificantDigits() const { return fImpl->getMaximumSignificantDigits(); } void DecimalFormat::setMinimumSignificantDigits(int32_t min) { if (min < 1) { min = 1; } // pin max sig dig to >= min int32_t max = _max(fImpl->fMaxSigDigits, min); fImpl->setMinMaxSignificantDigits(min, max); } void DecimalFormat::setMaximumSignificantDigits(int32_t max) { if (max < 1) { max = 1; } // pin min sig dig to 1..max U_ASSERT(fImpl->fMinSigDigits >= 1); int32_t min = _min(fImpl->fMinSigDigits, max); fImpl->setMinMaxSignificantDigits(min, max); } UBool DecimalFormat::areSignificantDigitsUsed() const { return fImpl->areSignificantDigitsUsed(); } void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) { fImpl->setSignificantDigitsUsed(useSignificantDigits); } void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) { // set the currency before compute affixes to get the right currency names NumberFormat::setCurrency(theCurrency, ec); fImpl->updateCurrency(ec); } void DecimalFormat::setCurrencyUsage(UCurrencyUsage newContext, UErrorCode* ec){ fImpl->setCurrencyUsage(newContext, *ec); } UCurrencyUsage DecimalFormat::getCurrencyUsage() const { return fImpl->getCurrencyUsage(); } // Deprecated variant with no UErrorCode parameter void DecimalFormat::setCurrency(const UChar* theCurrency) { UErrorCode ec = U_ZERO_ERROR; setCurrency(theCurrency, ec); } void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const { if (fImpl->fSymbols == NULL) { ec = U_MEMORY_ALLOCATION_ERROR; return; } ec = U_ZERO_ERROR; const UChar* c = getCurrency(); if (*c == 0) { const UnicodeString &intl = fImpl->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol); c = intl.getBuffer(); // ok for intl to go out of scope } u_strncpy(result, c, 3); result[3] = 0; } Hashtable* DecimalFormat::initHashForAffixPattern(UErrorCode& status) { if ( U_FAILURE(status) ) { return NULL; } Hashtable* hTable; if ( (hTable = new Hashtable(TRUE, status)) == NULL ) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } if ( U_FAILURE(status) ) { delete hTable; return NULL; } hTable->setValueComparator(decimfmtAffixPatternValueComparator); return hTable; } void DecimalFormat::deleteHashForAffixPattern() { if ( fAffixPatternsForCurrency == NULL ) { return; } int32_t pos = UHASH_FIRST; const UHashElement* element = NULL; while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) { const UHashTok valueTok = element->value; const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer; delete value; } delete fAffixPatternsForCurrency; fAffixPatternsForCurrency = NULL; } void DecimalFormat::copyHashForAffixPattern(const Hashtable* source, Hashtable* target, UErrorCode& status) { if ( U_FAILURE(status) ) { return; } int32_t pos = UHASH_FIRST; const UHashElement* element = NULL; if ( source ) { while ( (element = source->nextElement(pos)) != NULL ) { const UHashTok keyTok = element->key; const UnicodeString* key = (UnicodeString*)keyTok.pointer; const UHashTok valueTok = element->value; const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer; AffixPatternsForCurrency* copy = new AffixPatternsForCurrency( value->negPrefixPatternForCurrency, value->negSuffixPatternForCurrency, value->posPrefixPatternForCurrency, value->posSuffixPatternForCurrency, value->patternType); target->put(UnicodeString(*key), copy, status); if ( U_FAILURE(status) ) { return; } } } } void DecimalFormat::setGroupingUsed(UBool newValue) { NumberFormat::setGroupingUsed(newValue); fImpl->updateGrouping(); } void DecimalFormat::setParseIntegerOnly(UBool newValue) { NumberFormat::setParseIntegerOnly(newValue); } void DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) { NumberFormat::setContext(value, status); } DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr, int32_t newValue, UErrorCode &status) { if(U_FAILURE(status)) return *this; switch(attr) { case UNUM_LENIENT_PARSE: setLenient(newValue!=0); break; case UNUM_PARSE_INT_ONLY: setParseIntegerOnly(newValue!=0); break; case UNUM_GROUPING_USED: setGroupingUsed(newValue!=0); break; case UNUM_DECIMAL_ALWAYS_SHOWN: setDecimalSeparatorAlwaysShown(newValue!=0); break; case UNUM_MAX_INTEGER_DIGITS: setMaximumIntegerDigits(newValue); break; case UNUM_MIN_INTEGER_DIGITS: setMinimumIntegerDigits(newValue); break; case UNUM_INTEGER_DIGITS: setMinimumIntegerDigits(newValue); setMaximumIntegerDigits(newValue); break; case UNUM_MAX_FRACTION_DIGITS: setMaximumFractionDigits(newValue); break; case UNUM_MIN_FRACTION_DIGITS: setMinimumFractionDigits(newValue); break; case UNUM_FRACTION_DIGITS: setMinimumFractionDigits(newValue); setMaximumFractionDigits(newValue); break; case UNUM_SIGNIFICANT_DIGITS_USED: setSignificantDigitsUsed(newValue!=0); break; case UNUM_MAX_SIGNIFICANT_DIGITS: setMaximumSignificantDigits(newValue); break; case UNUM_MIN_SIGNIFICANT_DIGITS: setMinimumSignificantDigits(newValue); break; case UNUM_MULTIPLIER: setMultiplier(newValue); break; case UNUM_GROUPING_SIZE: setGroupingSize(newValue); break; case UNUM_ROUNDING_MODE: setRoundingMode((DecimalFormat::ERoundingMode)newValue); break; case UNUM_FORMAT_WIDTH: setFormatWidth(newValue); break; case UNUM_PADDING_POSITION: /** The position at which padding will take place. */ setPadPosition((DecimalFormat::EPadPosition)newValue); break; case UNUM_SECONDARY_GROUPING_SIZE: setSecondaryGroupingSize(newValue); break; #if UCONFIG_HAVE_PARSEALLINPUT case UNUM_PARSE_ALL_INPUT: setParseAllInput((UNumberFormatAttributeValue)newValue); break; #endif /* These are stored in fBoolFlags */ case UNUM_PARSE_NO_EXPONENT: case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS: case UNUM_PARSE_DECIMAL_MARK_REQUIRED: if(!fBoolFlags.isValidValue(newValue)) { status = U_ILLEGAL_ARGUMENT_ERROR; } else { if (attr == UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS) { fImpl->setFailIfMoreThanMaxDigits((UBool) newValue); } fBoolFlags.set(attr, newValue); } break; case UNUM_SCALE: fImpl->setScale(newValue); break; case UNUM_CURRENCY_USAGE: setCurrencyUsage((UCurrencyUsage)newValue, &status); break; case UNUM_MINIMUM_GROUPING_DIGITS: setMinimumGroupingDigits(newValue); break; default: status = U_UNSUPPORTED_ERROR; break; } return *this; } int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr, UErrorCode &status ) const { if(U_FAILURE(status)) return -1; switch(attr) { case UNUM_LENIENT_PARSE: return isLenient(); case UNUM_PARSE_INT_ONLY: return isParseIntegerOnly(); case UNUM_GROUPING_USED: return isGroupingUsed(); case UNUM_DECIMAL_ALWAYS_SHOWN: return isDecimalSeparatorAlwaysShown(); case UNUM_MAX_INTEGER_DIGITS: return getMaximumIntegerDigits(); case UNUM_MIN_INTEGER_DIGITS: return getMinimumIntegerDigits(); case UNUM_INTEGER_DIGITS: // TBD: what should this return? return getMinimumIntegerDigits(); case UNUM_MAX_FRACTION_DIGITS: return getMaximumFractionDigits(); case UNUM_MIN_FRACTION_DIGITS: return getMinimumFractionDigits(); case UNUM_FRACTION_DIGITS: // TBD: what should this return? return getMinimumFractionDigits(); case UNUM_SIGNIFICANT_DIGITS_USED: return areSignificantDigitsUsed(); case UNUM_MAX_SIGNIFICANT_DIGITS: return getMaximumSignificantDigits(); case UNUM_MIN_SIGNIFICANT_DIGITS: return getMinimumSignificantDigits(); case UNUM_MULTIPLIER: return getMultiplier(); case UNUM_GROUPING_SIZE: return getGroupingSize(); case UNUM_ROUNDING_MODE: return getRoundingMode(); case UNUM_FORMAT_WIDTH: return getFormatWidth(); case UNUM_PADDING_POSITION: return getPadPosition(); case UNUM_SECONDARY_GROUPING_SIZE: return getSecondaryGroupingSize(); /* These are stored in fBoolFlags */ case UNUM_PARSE_NO_EXPONENT: case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS: case UNUM_PARSE_DECIMAL_MARK_REQUIRED: return fBoolFlags.get(attr); case UNUM_SCALE: return fImpl->fScale; case UNUM_CURRENCY_USAGE: return fImpl->getCurrencyUsage(); case UNUM_MINIMUM_GROUPING_DIGITS: return getMinimumGroupingDigits(); default: status = U_UNSUPPORTED_ERROR; break; } return -1; /* undefined */ } #if UCONFIG_HAVE_PARSEALLINPUT void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) { fParseAllInput = value; } #endif U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof