summaryrefslogtreecommitdiff
path: root/android_icu4j/src/main/java/android/icu/math/BigDecimal.java
blob: aae640aba1382f5681834b508764495ddb62f717 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
/* GENERATED SOURCE. DO NOT MODIFY. */
/* Generated from 'BigDecimal.nrx' 8 Sep 2000 11:10:50 [v2.00] */
/* Options: Binary Comments Crossref Format Java Logo Strictargs Strictcase Trace2 Verbose3 */
package android.icu.math;

import java.math.BigInteger;

import android.icu.lang.UCharacter;

/* ------------------------------------------------------------------ */
/* BigDecimal -- Decimal arithmetic for Java                          */
/* ------------------------------------------------------------------ */
/* Copyright IBM Corporation, 1996-2011.  All Rights Reserved.       */
/*                                                                    */
/* The BigDecimal class provides immutable arbitrary-precision        */
/* floating point (including integer) decimal numbers.                */
/*                                                                    */
/* As the numbers are decimal, there is an exact correspondence       */
/* between an instance of a BigDecimal object and its String          */
/* representation; the BigDecimal class provides direct conversions   */
/* to and from String and character array objects, and well as        */
/* conversions to and from the Java primitive types (which may not    */
/* be exact).                                                         */
/* ------------------------------------------------------------------ */
/* Notes:                                                             */
/*                                                                    */
/* 1. A BigDecimal object is never changed in value once constructed; */
/*    this avoids the need for locking.  Note in particular that the  */
/*    mantissa array may be shared between many BigDecimal objects,   */
/*    so that once exposed it must not be altered.                    */
/*                                                                    */
/* 2. This class looks at MathContext class fields directly (for      */
/*    performance).  It must not and does not change them.            */
/*                                                                    */
/* 3. Exponent checking is delayed until finish(), as we know         */
/*    intermediate calculations cannot cause 31-bit overflow.         */
/*    [This assertion depends on MAX_DIGITS in MathContext.]          */
/*                                                                    */
/* 4. Comments for the public API now follow the javadoc conventions. */
/*    The NetRexx -comments option is used to pass these comments     */
/*    through to the generated Java code (with -format, if desired).  */
/*                                                                    */
/* 5. System.arraycopy is faster than explicit loop as follows        */
/*      Mean length 4:  equal                                         */
/*      Mean length 8:  x2                                            */
/*      Mean length 16: x3                                            */
/*      Mean length 24: x4                                            */
/*    From prior experience, we expect mean length a little below 8,  */
/*    but arraycopy is still the one to use, in general, until later  */
/*    measurements suggest otherwise.                                 */
/*                                                                    */
/* 6. 'DMSRCN' referred to below is the original (1981) IBM S/370     */
/*    assembler code implementation of the algorithms below; it is    */
/*    now called IXXRCN and is available with the OS/390 and VM/ESA   */
/*    operating systems.                                              */
/* ------------------------------------------------------------------ */
/* Change History:                                                    */
/* 1997.09.02 Initial version (derived from netrexx.lang classes)     */
/* 1997.09.12 Add lostDigits checking                                 */
/* 1997.10.06 Change mantissa to a byte array                         */
/* 1997.11.22 Rework power [did not prepare arguments, etc.]          */
/* 1997.12.13 multiply did not prepare arguments                      */
/* 1997.12.14 add did not prepare and align arguments correctly       */
/* 1998.05.02 0.07 packaging changes suggested by Sun and Oracle      */
/* 1998.05.21 adjust remainder operator finalization                  */
/* 1998.06.04 rework to pass MathContext to finish() and round()      */
/* 1998.06.06 change format to use round(); support rounding modes    */
/* 1998.06.25 rename to BigDecimal and begin merge                    */
/*            zero can now have trailing zeros (i.e., exp\=0)         */
/* 1998.06.28 new methods: movePointXxxx, scale, toBigInteger         */
/*                         unscaledValue, valueof                     */
/* 1998.07.01 improve byteaddsub to allow array reuse, etc.           */
/* 1998.07.01 make null testing explicit to avoid JIT bug [Win32]     */
/* 1998.07.07 scaled division  [divide(BigDecimal, int, int)]         */
/* 1998.07.08 setScale, faster equals                                 */
/* 1998.07.11 allow 1E6 (no sign) <sigh>; new double/float conversion */
/* 1998.10.12 change package to android.icu.math                          */
/* 1998.12.14 power operator no longer rounds RHS [to match ANSI]     */
/*            add toBigDecimal() and BigDecimal(java.math.BigDecimal) */
/* 1998.12.29 improve byteaddsub by using table lookup                */
/* 1999.02.04 lostdigits=0 behaviour rounds instead of digits+1 guard */
/* 1999.02.05 cleaner code for BigDecimal(char[])                     */
/* 1999.02.06 add javadoc comments                                    */
/* 1999.02.11 format() changed from 7 to 2 method form                */
/* 1999.03.05 null pointer checking is no longer explicit             */
/* 1999.03.05 simplify; changes from discussion with J. Bloch:        */
/*            null no longer permitted for MathContext; drop boolean, */
/*            byte, char, float, short constructor, deprecate double  */
/*            constructor, no blanks in string constructor, add       */
/*            offset and length version of char[] constructor;        */
/*            add valueOf(double); drop booleanValue, charValue;      */
/*            add ...Exact versions of remaining convertors           */
/* 1999.03.13 add toBigIntegerExact                                   */
/* 1999.03.13 1.00 release to IBM Centre for Java Technology          */
/* 1999.05.27 1.01 correct 0-0.2 bug under scaled arithmetic          */
/* 1999.06.29 1.02 constructors should not allow exponent > 9 digits  */
/* 1999.07.03 1.03 lost digits should not be checked if digits=0      */
/* 1999.07.06      lost digits Exception message changed              */
/* 1999.07.10 1.04 more work on 0-0.2 (scaled arithmetic)             */
/* 1999.07.17      improve messages from pow method                   */
/* 1999.08.08      performance tweaks                                 */
/* 1999.08.15      fastpath in multiply                               */
/* 1999.11.05 1.05 fix problem in intValueExact [e.g., 5555555555]    */
/* 1999.12.22 1.06 remove multiply fastpath, and improve performance  */
/* 2000.01.01      copyright update [Y2K has arrived]                 */
/* 2000.06.18 1.08 no longer deprecate BigDecimal(double)             */
/* ------------------------------------------------------------------ */

/**
 * The <code>BigDecimal</code> class implements immutable arbitrary-precision decimal numbers. The methods of the
 * <code>BigDecimal</code> class provide operations for fixed and floating point arithmetic, comparison, format
 * conversions, and hashing.
 * <p>
 * As the numbers are decimal, there is an exact correspondence between an instance of a <code>BigDecimal</code> object
 * and its <code>String</code> representation; the <code>BigDecimal</code> class provides direct conversions to and from
 * <code>String</code> and character array (<code>char[]</code>) objects, as well as conversions to and from the Java
 * primitive types (which may not be exact) and <code>BigInteger</code>.
 * <p>
 * In the descriptions of constructors and methods in this documentation, the value of a <code>BigDecimal</code> number
 * object is shown as the result of invoking the <code>toString()</code> method on the object. The internal
 * representation of a decimal number is neither defined nor exposed, and is not permitted to affect the result of any
 * operation.
 * <p>
 * The floating point arithmetic provided by this class is defined by the ANSI X3.274-1996 standard, and is also
 * documented at <code>http://www2.hursley.ibm.com/decimal</code> <br>
 * <i>[This URL will change.]</i>
 * 
 * <h3>Operator methods</h3>
 * <p>
 * Operations on <code>BigDecimal</code> numbers are controlled by a {@link MathContext} object, which provides the
 * context (precision and other information) for the operation. Methods that can take a <code>MathContext</code>
 * parameter implement the standard arithmetic operators for <code>BigDecimal</code> objects and are known as
 * <i>operator methods</i>. The default settings provided by the constant {@link MathContext#DEFAULT} (<code>digits=9,
 * form=SCIENTIFIC, lostDigits=false, roundingMode=ROUND_HALF_UP</code>) perform general-purpose floating point
 * arithmetic to nine digits of precision. The <code>MathContext</code> parameter must not be <code>null</code>.
 * <p>
 * Each operator method also has a version provided which does not take a <code>MathContext</code> parameter. For this
 * version of each method, the context settings used are <code>digits=0,
 * form=PLAIN, lostDigits=false, roundingMode=ROUND_HALF_UP</code>; these settings perform fixed point arithmetic with
 * unlimited precision, as defined for the original BigDecimal class in Java 1.1 and Java 1.2.
 * <p>
 * For monadic operators, only the optional <code>MathContext</code> parameter is present; the operation acts upon the
 * current object.
 * <p>
 * For dyadic operators, a <code>BigDecimal</code> parameter is always present; it must not be <code>null</code>. The
 * operation acts with the current object being the left-hand operand and the <code>BigDecimal</code> parameter being
 * the right-hand operand.
 * <p>
 * For example, adding two <code>BigDecimal</code> objects referred to by the names <code>award</code> and
 * <code>extra</code> could be written as any of:
 * <p>
 * <code>
 *     award.add(extra)
 * <br>award.add(extra, MathContext.DEFAULT)
 * <br>award.add(extra, acontext)
 * </code>
 * <p>
 * (where <code>acontext</code> is a <code>MathContext</code> object), which would return a <code>BigDecimal</code>
 * object whose value is the result of adding <code>award</code> and <code>extra</code> under the appropriate context
 * settings.
 * <p>
 * When a <code>BigDecimal</code> operator method is used, a set of rules define what the result will be (and, by
 * implication, how the result would be represented as a character string). These rules are defined in the BigDecimal
 * arithmetic documentation (see the URL above), but in summary:
 * <ul>
 * <li>Results are normally calculated with up to some maximum number of significant digits. For example, if the
 * <code>MathContext</code> parameter for an operation were <code>MathContext.DEFAULT</code> then the result would be
 * rounded to 9 digits; the division of 2 by 3 would then result in 0.666666667. <br>
 * You can change the default of 9 significant digits by providing the method with a suitable <code>MathContext</code>
 * object. This lets you calculate using as many digits as you need -- thousands, if necessary. Fixed point (scaled)
 * arithmetic is indicated by using a <code>digits</code> setting of 0 (or omitting the <code>MathContext</code>
 * parameter). <br>
 * Similarly, you can change the algorithm used for rounding from the default "classic" algorithm.
 * <li>
 * In standard arithmetic (that is, when the <code>form</code> setting is not <code>PLAIN</code>), a zero result is
 * always expressed as the single digit <code>'0'</code> (that is, with no sign, decimal point, or exponent part).
 * <li>
 * Except for the division and power operators in standard arithmetic, trailing zeros are preserved (this is in contrast
 * to binary floating point operations and most electronic calculators, which lose the information about trailing zeros
 * in the fractional part of results). <br>
 * So, for example:
 * <p>
 * <code>
 *     new BigDecimal("2.40").add(     new BigDecimal("2"))      =&gt; "4.40"
 * <br>new BigDecimal("2.40").subtract(new BigDecimal("2"))      =&gt; "0.40"
 * <br>new BigDecimal("2.40").multiply(new BigDecimal("2"))      =&gt; "4.80"
 * <br>new BigDecimal("2.40").divide(  new BigDecimal("2"), def) =&gt; "1.2"
 * </code>
 * <p>
 * where the value on the right of the <code>=&gt;</code> would be the result of the operation, expressed as a
 * <code>String</code>, and <code>def</code> (in this and following examples) refers to <code>MathContext.DEFAULT</code>
 * ). This preservation of trailing zeros is desirable for most calculations (including financial calculations). If
 * necessary, trailing zeros may be easily removed using division by 1.
 * <li>
 * In standard arithmetic, exponential form is used for a result depending on its value and the current setting of
 * <code>digits</code> (the default is 9 digits). If the number of places needed before the decimal point exceeds the
 * <code>digits</code> setting, or the absolute value of the number is less than <code>0.000001</code>, then the number
 * will be expressed in exponential notation; thus
 * <p>
 * <code>
 *   new BigDecimal("1e+6").multiply(new BigDecimal("1e+6"), def)
 * </code>
 * <p>
 * results in <code>1E+12</code> instead of <code>1000000000000</code>, and
 * <p>
 * <code>
 *   new BigDecimal("1").divide(new BigDecimal("3E+10"), def)
 * </code>
 * <p>
 * results in <code>3.33333333E-11</code> instead of <code>0.0000000000333333333</code>.
 * <p>
 * The form of the exponential notation (scientific or engineering) is determined by the <code>form</code> setting.
 * <eul>
 * <p>
 * The names of methods in this class follow the conventions established by <code>java.lang.Number</code>,
 * <code>java.math.BigInteger</code>, and <code>java.math.BigDecimal</code> in Java 1.1 and Java 1.2.
 * 
 * @see MathContext
 * @author Mike Cowlishaw
 */

public class BigDecimal extends java.lang.Number implements java.io.Serializable, java.lang.Comparable<BigDecimal> {
    // private static final java.lang.String $0="BigDecimal.nrx";

    /* ----- Constants ----- */
    /* properties constant public */// useful to others
    /**
     * The <code>BigDecimal</code> constant "0".
     * 
     * @see #ONE
     * @see #TEN
     */
    public static final android.icu.math.BigDecimal ZERO = new android.icu.math.BigDecimal((long) 0); // use long as we
                                                                                                      // want the int
                                                                                                      // constructor
    // .. to be able to use this, for speed

    /**
     * The <code>BigDecimal</code> constant "1".
     * 
     * @see #TEN
     * @see #ZERO
     */
    public static final android.icu.math.BigDecimal ONE = new android.icu.math.BigDecimal((long) 1); // use long as we
                                                                                                     // want the int
                                                                                                     // constructor
    // .. to be able to use this, for speed

    /**
     * The <code>BigDecimal</code> constant "10".
     * 
     * @see #ONE
     * @see #ZERO
     */
    public static final android.icu.math.BigDecimal TEN = new android.icu.math.BigDecimal(10);

    // the rounding modes (copied here for upwards compatibility)
    /**
     * Rounding mode to round to a more positive number.
     * 
     * @see MathContext#ROUND_CEILING
     */
    public static final int ROUND_CEILING = android.icu.math.MathContext.ROUND_CEILING;

    /**
     * Rounding mode to round towards zero.
     * 
     * @see MathContext#ROUND_DOWN
     */
    public static final int ROUND_DOWN = android.icu.math.MathContext.ROUND_DOWN;

    /**
     * Rounding mode to round to a more negative number.
     * 
     * @see MathContext#ROUND_FLOOR
     */
    public static final int ROUND_FLOOR = android.icu.math.MathContext.ROUND_FLOOR;

    /**
     * Rounding mode to round to nearest neighbor, where an equidistant value is rounded down.
     * 
     * @see MathContext#ROUND_HALF_DOWN
     */
    public static final int ROUND_HALF_DOWN = android.icu.math.MathContext.ROUND_HALF_DOWN;

    /**
     * Rounding mode to round to nearest neighbor, where an equidistant value is rounded to the nearest even neighbor.
     * 
     * @see MathContext#ROUND_HALF_EVEN
     */
    public static final int ROUND_HALF_EVEN = android.icu.math.MathContext.ROUND_HALF_EVEN;

    /**
     * Rounding mode to round to nearest neighbor, where an equidistant value is rounded up.
     * 
     * @see MathContext#ROUND_HALF_UP
     */
    public static final int ROUND_HALF_UP = android.icu.math.MathContext.ROUND_HALF_UP;

    /**
     * Rounding mode to assert that no rounding is necessary.
     * 
     * @see MathContext#ROUND_UNNECESSARY
     */
    public static final int ROUND_UNNECESSARY = android.icu.math.MathContext.ROUND_UNNECESSARY;

    /**
     * Rounding mode to round away from zero.
     * 
     * @see MathContext#ROUND_UP
     */
    public static final int ROUND_UP = android.icu.math.MathContext.ROUND_UP;

    /* properties constant private */// locals
    private static final byte ispos = 1; // ind: indicates positive (must be 1)
    private static final byte iszero = 0; // ind: indicates zero (must be 0)
    private static final byte isneg = -1; // ind: indicates negative (must be -1)
    // [later could add NaN, +/- infinity, here]

    private static final int MinExp = -999999999; // minimum exponent allowed
    private static final int MaxExp = 999999999; // maximum exponent allowed
    private static final int MinArg = -999999999; // minimum argument integer
    private static final int MaxArg = 999999999; // maximum argument integer

    private static final android.icu.math.MathContext plainMC = new android.icu.math.MathContext(0,
            android.icu.math.MathContext.PLAIN); // context for plain unlimited math

    /* properties constant private unused */// present but not referenced
    // Serialization version
    private static final long serialVersionUID = 8245355804974198832L;

    // private static final java.lang.String
    // copyright=" Copyright (c) IBM Corporation 1996, 2000.  All rights reserved. ";

    /* properties static private */
    // Precalculated constant arrays (used by byteaddsub)
    private static byte bytecar[] = new byte[(90 + 99) + 1]; // carry/borrow array
    private static byte bytedig[] = diginit(); // next digit array

    /* ----- Instance properties [all private and immutable] ----- */
    /* properties private */

    /**
     * The indicator. This may take the values:
     * <ul>
     * <li>ispos -- the number is positive <li>iszero -- the number is zero <li>isneg -- the number is negative
     * </ul>
     * 
     * @serial
     */
    private byte ind; // assumed undefined
    // Note: some code below assumes IND = Sign [-1, 0, 1], at present.
    // We only need two bits for this, but use a byte [also permits
    // smooth future extension].

    /**
     * The formatting style. This may take the values:
     * <ul>
     * <li>MathContext.PLAIN -- no exponent needed <li>MathContext.SCIENTIFIC -- scientific notation required <li>
     * MathContext.ENGINEERING -- engineering notation required
     * </ul>
     * <p>
     * This property is an optimization; it allows us to defer number layout until it is actually needed as a string,
     * hence avoiding unnecessary formatting.
     * 
     * @serial
     */
    private byte form = (byte) android.icu.math.MathContext.PLAIN; // assumed PLAIN
    // We only need two bits for this, at present, but use a byte
    // [again, to allow for smooth future extension]

    /**
     * The value of the mantissa.
     * <p>
     * Once constructed, this may become shared between several BigDecimal objects, so must not be altered.
     * <p>
     * For efficiency (speed), this is a byte array, with each byte taking a value of 0 -> 9.
     * <p>
     * If the first byte is 0 then the value of the number is zero (and mant.length=1, except when constructed from a
     * plain number, for example, 0.000).
     * 
     * @serial
     */
    private byte mant[]; // assumed null

    /**
     * The exponent.
     * <p>
     * For fixed point arithmetic, scale is <code>-exp</code>, and can apply to zero.
     * 
     * Note that this property can have a value less than MinExp when the mantissa has more than one digit.
     * 
     * @serial
     */
    private int exp;

    // assumed 0

    /* ---------------------------------------------------------------- */
    /* Constructors */
    /* ---------------------------------------------------------------- */

    /**
     * Constructs a <code>BigDecimal</code> object from a <code>java.math.BigDecimal</code>.
     * <p>
     * Constructs a <code>BigDecimal</code> as though the parameter had been represented as a <code>String</code> (using
     * its <code>toString</code> method) and the {@link #BigDecimal(java.lang.String)} constructor had then been used.
     * The parameter must not be <code>null</code>.
     * <p>
     * <i>(Note: this constructor is provided only in the <code>android.icu.math</code> version of the BigDecimal class.
     * It would not be present in a <code>java.math</code> version.)</i>
     * 
     * @param bd The <code>BigDecimal</code> to be translated.
     */

    public BigDecimal(java.math.BigDecimal bd) {
        this(bd.toString());
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object from a <code>BigInteger</code>, with scale 0.
     * <p>
     * Constructs a <code>BigDecimal</code> which is the exact decimal representation of the <code>BigInteger</code>,
     * with a scale of zero. The value of the <code>BigDecimal</code> is identical to the value of the <code>BigInteger
     * </code>. The parameter must not be <code>null</code>.
     * <p>
     * The <code>BigDecimal</code> will contain only decimal digits, prefixed with a leading minus sign (hyphen) if the
     * <code>BigInteger</code> is negative. A leading zero will be present only if the <code>BigInteger</code> is zero.
     * 
     * @param bi The <code>BigInteger</code> to be converted.
     */

    public BigDecimal(java.math.BigInteger bi) {
        this(bi.toString(10));
        return;
    }

    // exp remains 0

    /**
     * Constructs a <code>BigDecimal</code> object from a <code>BigInteger</code> and a scale.
     * <p>
     * Constructs a <code>BigDecimal</code> which is the exact decimal representation of the <code>BigInteger</code>,
     * scaled by the second parameter, which may not be negative. The value of the <code>BigDecimal</code> is the <code>
     * BigInteger</code> divided by ten to the power of the scale. The <code>BigInteger</code> parameter must not be
     * <code>null</code>.
     * <p>
     * The <code>BigDecimal</code> will contain only decimal digits, (with an embedded decimal point followed by <code>
     * scale</code> decimal digits if the scale is positive), prefixed with a leading minus sign (hyphen) if the <code>
     * BigInteger</code> is negative. A leading zero will be present only if the <code>BigInteger</code> is zero.
     * 
     * @param bi The <code>BigInteger</code> to be converted.
     * @param scale The <code>int</code> specifying the scale.
     * @throws NumberFormatException If the scale is negative.
     */

    public BigDecimal(java.math.BigInteger bi, int scale) {
        this(bi.toString(10));
        if (scale < 0)
            throw new java.lang.NumberFormatException("Negative scale:" + " " + scale);
        exp = -scale; // exponent is -scale
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object from an array of characters.
     * <p>
     * Constructs a <code>BigDecimal</code> as though a <code>String</code> had been constructed from the character
     * array and the {@link #BigDecimal(java.lang.String)} constructor had then been used. The parameter must not be
     * <code>null</code>.
     * <p>
     * Using this constructor is faster than using the <code>BigDecimal(String)</code> constructor if the string is
     * already available in character array form.
     * 
     * @param inchars The <code>char[]</code> array containing the number to be converted.
     * @throws NumberFormatException If the parameter is not a valid number.
     */

    public BigDecimal(char inchars[]) {
        this(inchars, 0, inchars.length);
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object from an array of characters.
     * <p>
     * Constructs a <code>BigDecimal</code> as though a <code>String</code> had been constructed from the character
     * array (or a subarray of that array) and the {@link #BigDecimal(java.lang.String)} constructor had then been used.
     * The first parameter must not be <code>null</code>, and the subarray must be wholly contained within it.
     * <p>
     * Using this constructor is faster than using the <code>BigDecimal(String)</code> constructor if the string is
     * already available within a character array.
     * 
     * @param inchars The <code>char[]</code> array containing the number to be converted.
     * @param offset The <code>int</code> offset into the array of the start of the number to be converted.
     * @param length The <code>int</code> length of the number.
     * @throws NumberFormatException If the parameter is not a valid number for any reason.
     */

    public BigDecimal(char inchars[], int offset, int length) {
        super();
        boolean exotic;
        boolean hadexp;
        int d;
        int dotoff;
        int last;
        int i = 0;
        char si = 0;
        boolean eneg = false;
        int k = 0;
        int elen = 0;
        int j = 0;
        char sj = 0;
        int dvalue = 0;
        int mag = 0;
        // This is the primary constructor; all incoming strings end up
        // here; it uses explicit (inline) parsing for speed and to avoid
        // generating intermediate (temporary) objects of any kind.
        // 1998.06.25: exponent form built only if E/e in string
        // 1998.06.25: trailing zeros not removed for zero
        // 1999.03.06: no embedded blanks; allow offset and length
        if (length <= 0)
            bad(inchars); // bad conversion (empty string)
        // [bad offset will raise array bounds exception]

        /* Handle and step past sign */
        ind = ispos; // assume positive
        if (inchars[offset] == ('-')) {
            length--;
            if (length == 0)
                bad(inchars); // nothing after sign
            ind = isneg;
            offset++;
        } else if (inchars[offset] == ('+')) {
            length--;
            if (length == 0)
                bad(inchars); // nothing after sign
            offset++;
        }

        /* We're at the start of the number */
        exotic = false; // have extra digits
        hadexp = false; // had explicit exponent
        d = 0; // count of digits found
        dotoff = -1; // offset where dot was found
        last = -1; // last character of mantissa
        {
            int $1 = length;
            i = offset;
            i: for (; $1 > 0; $1--, i++) {
                si = inchars[i];
                if (si >= '0') // test for Arabic digit
                    if (si <= '9') {
                        last = i;
                        d++; // still in mantissa
                        continue i;
                    }
                if (si == '.') { // record and ignore
                    if (dotoff >= 0)
                        bad(inchars); // two dots
                    dotoff = i - offset; // offset into mantissa
                    continue i;
                }
                if (si != 'e')
                    if (si != 'E') { // expect an extra digit
                        if ((!(UCharacter.isDigit(si))))
                            bad(inchars); // not a number
                        // defer the base 10 check until later to avoid extra method call
                        exotic = true; // will need conversion later
                        last = i;
                        d++; // still in mantissa
                        continue i;
                    }
                /* Found 'e' or 'E' -- now process explicit exponent */
                // 1998.07.11: sign no longer required
                if ((i - offset) > (length - 2))
                    bad(inchars); // no room for even one digit
                eneg = false;
                if ((inchars[i + 1]) == ('-')) {
                    eneg = true;
                    k = i + 2;
                } else if ((inchars[i + 1]) == ('+'))
                    k = i + 2;
                else
                    k = i + 1;
                // k is offset of first expected digit
                elen = length - ((k - offset)); // possible number of digits
                if ((elen == 0) | (elen > 9))
                    bad(inchars); // 0 or more than 9 digits
                {
                    int $2 = elen;
                    j = k;
                    for (; $2 > 0; $2--, j++) {
                        sj = inchars[j];
                        if (sj < '0')
                            bad(inchars); // always bad
                        if (sj > '9') { // maybe an exotic digit
                            if ((!(UCharacter.isDigit(sj))))
                                bad(inchars); // not a number
                            dvalue = UCharacter.digit(sj, 10); // check base
                            if (dvalue < 0)
                                bad(inchars); // not base 10
                        } else
                            dvalue = ((int) (sj)) - ((int) ('0'));
                        exp = (exp * 10) + dvalue;
                    }
                }/* j */
                if (eneg)
                    exp = -exp; // was negative
                hadexp = true; // remember we had one
                break i; // we are done
            }
        }/* i */

        /* Here when all inspected */
        if (d == 0)
            bad(inchars); // no mantissa digits
        if (dotoff >= 0)
            exp = (exp + dotoff) - d; // adjust exponent if had dot

        /* strip leading zeros/dot (leave final if all 0's) */
        {
            int $3 = last - 1;
            i = offset;
            i: for (; i <= $3; i++) {
                si = inchars[i];
                if (si == '0') {
                    offset++;
                    dotoff--;
                    d--;
                } else if (si == '.') {
                    offset++; // step past dot
                    dotoff--;
                } else if (si <= '9')
                    break i;/* non-0 */
                else {/* exotic */
                    if ((UCharacter.digit(si, 10)) != 0)
                        break i; // non-0 or bad
                    // is 0 .. strip like '0'
                    offset++;
                    dotoff--;
                    d--;
                }
            }
        }/* i */

        /* Create the mantissa array */
        mant = new byte[d]; // we know the length
        j = offset; // input offset
        if (exotic) {
            do { // slow: check for exotica
                {
                    int $4 = d;
                    i = 0;
                    for (; $4 > 0; $4--, i++) {
                        if (i == dotoff)
                            j++; // at dot
                        sj = inchars[j];
                        if (sj <= '9')
                            mant[i] = (byte) (((int) (sj)) - ((int) ('0')));/* easy */
                        else {
                            dvalue = UCharacter.digit(sj, 10);
                            if (dvalue < 0)
                                bad(inchars); // not a number after all
                            mant[i] = (byte) dvalue;
                        }
                        j++;
                    }
                }/* i */
            } while (false);
        }/* exotica */
        else {
            do {
                {
                    int $5 = d;
                    i = 0;
                    for (; $5 > 0; $5--, i++) {
                        if (i == dotoff)
                            j++;
                        mant[i] = (byte) (((int) (inchars[j])) - ((int) ('0')));
                        j++;
                    }
                }/* i */
            } while (false);
        }/* simple */

        /* Looks good. Set the sign indicator and form, as needed. */
        // Trailing zeros are preserved
        // The rule here for form is:
        // If no E-notation, then request plain notation
        // Otherwise act as though add(0,DEFAULT) and request scientific notation
        // [form is already PLAIN]
        if (mant[0] == 0) {
            ind = iszero; // force to show zero
            // negative exponent is significant (e.g., -3 for 0.000) if plain
            if (exp > 0)
                exp = 0; // positive exponent can be ignored
            if (hadexp) { // zero becomes single digit from add
                mant = ZERO.mant;
                exp = 0;
            }
        } else { // non-zero
            // [ind was set earlier]
            // now determine form
            if (hadexp) {
                form = (byte) android.icu.math.MathContext.SCIENTIFIC;
                // 1999.06.29 check for overflow
                mag = (exp + mant.length) - 1; // true exponent in scientific notation
                if ((mag < MinExp) | (mag > MaxExp))
                    bad(inchars);
            }
        }
        // say 'BD(c[]): mant[0] mantlen exp ind form:' mant[0] mant.length exp ind form
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object directly from a <code>double</code>.
     * <p>
     * Constructs a <code>BigDecimal</code> which is the exact decimal representation of the 64-bit signed binary
     * floating point parameter.
     * <p>
     * Note that this constructor it an exact conversion; it does not give the same result as converting <code>num
     * </code> to a <code>String</code> using the <code>Double.toString()</code> method and then using the
     * {@link #BigDecimal(java.lang.String)} constructor. To get that result, use the static {@link #valueOf(double)}
     * method to construct a <code>BigDecimal</code> from a <code>double</code>.
     * 
     * @param num The <code>double</code> to be converted.
     * @throws NumberFormatException If the parameter is infinite or not a number.
     */

    public BigDecimal(double num) {
        // 1999.03.06: use exactly the old algorithm
        // 2000.01.01: note that this constructor does give an exact result,
        // so perhaps it should not be deprecated
        // 2000.06.18: no longer deprecated
        this((new java.math.BigDecimal(num)).toString());
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object directly from a <code>int</code>.
     * <p>
     * Constructs a <code>BigDecimal</code> which is the exact decimal representation of the 32-bit signed binary
     * integer parameter. The <code>BigDecimal</code> will contain only decimal digits, prefixed with a leading minus
     * sign (hyphen) if the parameter is negative. A leading zero will be present only if the parameter is zero.
     * 
     * @param num The <code>int</code> to be converted.
     */

    public BigDecimal(int num) {
        super();
        int mun;
        int i = 0;
        // We fastpath commoners
        if (num <= 9)
            if (num >= (-9)) {
                do {
                    // very common single digit case
                    {/* select */
                        if (num == 0) {
                            mant = ZERO.mant;
                            ind = iszero;
                        } else if (num == 1) {
                            mant = ONE.mant;
                            ind = ispos;
                        } else if (num == (-1)) {
                            mant = ONE.mant;
                            ind = isneg;
                        } else {
                            {
                                mant = new byte[1];
                                if (num > 0) {
                                    mant[0] = (byte) num;
                                    ind = ispos;
                                } else { // num<-1
                                    mant[0] = (byte) -num;
                                    ind = isneg;
                                }
                            }
                        }
                    }
                    return;
                } while (false);
            }/* singledigit */

        /* We work on negative numbers so we handle the most negative number */
        if (num > 0) {
            ind = ispos;
            num = -num;
        } else
            ind = isneg;/* negative */// [0 case already handled]
        // [it is quicker, here, to pre-calculate the length with
        // one loop, then allocate exactly the right length of byte array,
        // then re-fill it with another loop]
        mun = num; // working copy
        {
            i = 9;
            i: for (;; i--) {
                mun = mun / 10;
                if (mun == 0)
                    break i;
            }
        }/* i */
        // i is the position of the leftmost digit placed
        mant = new byte[10 - i];
        {
            i = (10 - i) - 1;
            i: for (;; i--) {
                mant[i] = (byte) -(((byte) (num % 10)));
                num = num / 10;
                if (num == 0)
                    break i;
            }
        }/* i */
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object directly from a <code>long</code>.
     * <p>
     * Constructs a <code>BigDecimal</code> which is the exact decimal representation of the 64-bit signed binary
     * integer parameter. The <code>BigDecimal</code> will contain only decimal digits, prefixed with a leading minus
     * sign (hyphen) if the parameter is negative. A leading zero will be present only if the parameter is zero.
     * 
     * @param num The <code>long</code> to be converted.
     */

    public BigDecimal(long num) {
        super();
        long mun;
        int i = 0;
        // Not really worth fastpathing commoners in this constructor [also,
        // we use this to construct the static constants].
        // This is much faster than: this(String.valueOf(num).toCharArray())
        /* We work on negative num so we handle the most negative number */
        if (num > 0) {
            ind = ispos;
            num = -num;
        } else if (num == 0)
            ind = iszero;
        else
            ind = isneg;/* negative */
        mun = num;
        {
            i = 18;
            i: for (;; i--) {
                mun = mun / 10;
                if (mun == 0)
                    break i;
            }
        }/* i */
        // i is the position of the leftmost digit placed
        mant = new byte[19 - i];
        {
            i = (19 - i) - 1;
            i: for (;; i--) {
                mant[i] = (byte) -(((byte) (num % 10)));
                num = num / 10;
                if (num == 0)
                    break i;
            }
        }/* i */
        return;
    }

    /**
     * Constructs a <code>BigDecimal</code> object from a <code>String</code>.
     * <p>
     * Constructs a <code>BigDecimal</code> from the parameter, which must not be <code>null</code> and must represent a
     * valid <i>number</i>, as described formally in the documentation referred to {@link BigDecimal above}.
     * <p>
     * In summary, numbers in <code>String</code> form must have at least one digit, may have a leading sign, may have a
     * decimal point, and exponential notation may be used. They follow conventional syntax, and may not contain blanks.
     * <p>
     * Some valid strings from which a <code>BigDecimal</code> might be constructed are:
     * 
     * <pre>
     * 
     * "0" -- Zero "12" -- A whole number "-76" -- A signed whole number "12.70" -- Some decimal places "+0.003" -- Plus
     * sign is allowed "17." -- The same as 17 ".5" -- The same as 0.5 "4E+9" -- Exponential notation "0.73e-7" --
     * Exponential notation
     * 
     * </pre>
     * <p>
     * (Exponential notation means that the number includes an optional sign and a power of ten following an
     * '</code>E</code>' that indicates how the decimal point will be shifted. Thus the <code>"4E+9"</code> above is
     * just a short way of writing <code>4000000000</code>, and the <code>"0.73e-7"</code> is short for <code>
     * 0.000000073</code>.)
     * <p>
     * The <code>BigDecimal</code> constructed from the String is in a standard form, with no blanks, as though the
     * {@link #add(BigDecimal)} method had been used to add zero to the number with unlimited precision. If the string
     * uses exponential notation (that is, includes an <code>e</code> or an <code>E</code>), then the <code>BigDecimal
     * </code> number will be expressed in scientific notation (where the power of ten is adjusted so there is a single
     * non-zero digit to the left of the decimal point); in this case if the number is zero then it will be expressed as
     * the single digit 0, and if non-zero it will have an exponent unless that exponent would be 0. The exponent must
     * fit in nine digits both before and after it is expressed in scientific notation.
     * <p>
     * Any digits in the parameter must be decimal; that is, <code>Character.digit(c, 10)</code> (where </code>c</code>
     * is the character in question) would not return -1.
     * 
     * @param string The <code>String</code> to be converted.
     * @throws NumberFormatException If the parameter is not a valid number.
     */

    public BigDecimal(java.lang.String string) {
        this(string.toCharArray(), 0, string.length());
        return;
    }

    /* <sgml> Make a default BigDecimal object for local use. </sgml> */

    private BigDecimal() {
        super();
        return;
    }

    /* ---------------------------------------------------------------- */
    /* Operator methods [methods which take a context parameter] */
    /* ---------------------------------------------------------------- */

    /**
     * Returns a plain <code>BigDecimal</code> whose value is the absolute value of this <code>BigDecimal</code>.
     * <p>
     * The same as {@link #abs(MathContext)}, where the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will be <code>this.scale()</code>
     * 
     * @return A <code>BigDecimal</code> whose value is the absolute value of this <code>BigDecimal</code>.
     */

    public android.icu.math.BigDecimal abs() {
        return this.abs(plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is the absolute value of this <code>BigDecimal</code>.
     * <p>
     * If the current object is zero or positive, then the same result as invoking the {@link #plus(MathContext)} method
     * with the same parameter is returned. Otherwise, the same result as invoking the {@link #negate(MathContext)}
     * method with the same parameter is returned.
     * 
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is the absolute value of this <code>BigDecimal</code>.
     */

    public android.icu.math.BigDecimal abs(android.icu.math.MathContext set) {
        if (this.ind == isneg)
            return this.negate(set);
        return this.plus(set);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this+rhs</code>, using fixed point arithmetic.
     * <p>
     * The same as {@link #add(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will be the maximum of the scales of the two operands.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the addition.
     * @return A <code>BigDecimal</code> whose value is <code>this+rhs</code>, using fixed point arithmetic.
     */

    public android.icu.math.BigDecimal add(android.icu.math.BigDecimal rhs) {
        return this.add(rhs, plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>this+rhs</code>.
     * <p>
     * Implements the addition (<b><code>+</code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the addition.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>this+rhs</code>.
     */

    public android.icu.math.BigDecimal add(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        android.icu.math.BigDecimal lhs;
        int reqdig;
        android.icu.math.BigDecimal res;
        byte usel[];
        int usellen;
        byte user[];
        int userlen;
        int newlen = 0;
        int tlen = 0;
        int mult = 0;
        byte t[] = null;
        int ia = 0;
        int ib = 0;
        int ea = 0;
        int eb = 0;
        byte ca = 0;
        byte cb = 0;
        /* determine requested digits and form */
        if (set.lostDigits)
            checkdigits(rhs, set.digits);
        lhs = this; // name for clarity and proxy

        /* Quick exit for add floating 0 */
        // plus() will optimize to return same object if possible
        if (lhs.ind == 0)
            if (set.form != android.icu.math.MathContext.PLAIN)
                return rhs.plus(set);
        if (rhs.ind == 0)
            if (set.form != android.icu.math.MathContext.PLAIN)
                return lhs.plus(set);

        /* Prepare numbers (round, unless unlimited precision) */
        reqdig = set.digits; // local copy (heavily used)
        if (reqdig > 0) {
            if (lhs.mant.length > reqdig)
                lhs = clone(lhs).round(set);
            if (rhs.mant.length > reqdig)
                rhs = clone(rhs).round(set);
            // [we could reuse the new LHS for result in this case]
        }

        res = new android.icu.math.BigDecimal(); // build result here

        /*
         * Now see how much we have to pad or truncate lhs or rhs in order to align the numbers. If one number is much
         * larger than the other, then the smaller cannot affect the answer [but we may still need to pad with up to
         * DIGITS trailing zeros].
         */
        // Note sign may be 0 if digits (reqdig) is 0
        // usel and user will be the byte arrays passed to the adder; we'll
        // use them on all paths except quick exits
        usel = lhs.mant;
        usellen = lhs.mant.length;
        user = rhs.mant;
        userlen = rhs.mant.length;
        {
            do {/* select */
                if (lhs.exp == rhs.exp) {/* no padding needed */
                    // This is the most common, and fastest, path
                    res.exp = lhs.exp;
                } else if (lhs.exp > rhs.exp) { // need to pad lhs and/or truncate rhs
                    newlen = (usellen + lhs.exp) - rhs.exp;
                    /*
                     * If, after pad, lhs would be longer than rhs by digits+1 or more (and digits>0) then rhs cannot
                     * affect answer, so we only need to pad up to a length of DIGITS+1.
                     */
                    if (newlen >= ((userlen + reqdig) + 1))
                        if (reqdig > 0) {
                            // LHS is sufficient
                            res.mant = usel;
                            res.exp = lhs.exp;
                            res.ind = lhs.ind;
                            if (usellen < reqdig) { // need 0 padding
                                res.mant = extend(lhs.mant, reqdig);
                                res.exp = res.exp - ((reqdig - usellen));
                            }
                            return res.finish(set, false);
                        }
                    // RHS may affect result
                    res.exp = rhs.exp; // expected final exponent
                    if (newlen > (reqdig + 1))
                        if (reqdig > 0) {
                            // LHS will be max; RHS truncated
                            tlen = (newlen - reqdig) - 1; // truncation length
                            userlen = userlen - tlen;
                            res.exp = res.exp + tlen;
                            newlen = reqdig + 1;
                        }
                    if (newlen > usellen)
                        usellen = newlen; // need to pad LHS
                } else { // need to pad rhs and/or truncate lhs
                    newlen = (userlen + rhs.exp) - lhs.exp;
                    if (newlen >= ((usellen + reqdig) + 1))
                        if (reqdig > 0) {
                            // RHS is sufficient
                            res.mant = user;
                            res.exp = rhs.exp;
                            res.ind = rhs.ind;
                            if (userlen < reqdig) { // need 0 padding
                                res.mant = extend(rhs.mant, reqdig);
                                res.exp = res.exp - ((reqdig - userlen));
                            }
                            return res.finish(set, false);
                        }
                    // LHS may affect result
                    res.exp = lhs.exp; // expected final exponent
                    if (newlen > (reqdig + 1))
                        if (reqdig > 0) {
                            // RHS will be max; LHS truncated
                            tlen = (newlen - reqdig) - 1; // truncation length
                            usellen = usellen - tlen;
                            res.exp = res.exp + tlen;
                            newlen = reqdig + 1;
                        }
                    if (newlen > userlen)
                        userlen = newlen; // need to pad RHS
                }
            } while (false);
        }/* padder */

        /* OK, we have aligned mantissas. Now add or subtract. */
        // 1998.06.27 Sign may now be 0 [e.g., 0.000] .. treat as positive
        // 1999.05.27 Allow for 00 on lhs [is not larger than 2 on rhs]
        // 1999.07.10 Allow for 00 on rhs [is not larger than 2 on rhs]
        if (lhs.ind == iszero)
            res.ind = ispos;
        else
            res.ind = lhs.ind; // likely sign, all paths
        if (((lhs.ind == isneg) ? 1 : 0) == ((rhs.ind == isneg) ? 1 : 0)) // same sign, 0 non-negative
            mult = 1;
        else {
            do { // different signs, so subtraction is needed
                mult = -1; // will cause subtract
                /*
                 * Before we can subtract we must determine which is the larger, as our add/subtract routine only
                 * handles non-negative results so we may need to swap the operands.
                 */
                {
                    do {/* select */
                        if (rhs.ind == iszero) {
                            // original A bigger
                        } else if ((usellen < userlen) | (lhs.ind == iszero)) { // original B bigger
                            t = usel;
                            usel = user;
                            user = t; // swap
                            tlen = usellen;
                            usellen = userlen;
                            userlen = tlen; // ..
                            res.ind = (byte) -res.ind; // and set sign
                        } else if (usellen > userlen) {
                            // original A bigger
                        } else {
                            {/* logical lengths the same */// need compare
                                /* may still need to swap: compare the strings */
                                ia = 0;
                                ib = 0;
                                ea = usel.length - 1;
                                eb = user.length - 1;
                                {
                                    compare: for (;;) {
                                        if (ia <= ea)
                                            ca = usel[ia];
                                        else {
                                            if (ib > eb) {/* identical */
                                                if (set.form != android.icu.math.MathContext.PLAIN)
                                                    return ZERO;
                                                // [if PLAIN we must do the subtract, in case of 0.000 results]
                                                break compare;
                                            }
                                            ca = (byte) 0;
                                        }
                                        if (ib <= eb)
                                            cb = user[ib];
                                        else
                                            cb = (byte) 0;
                                        if (ca != cb) {
                                            if (ca < cb) {/* swap needed */
                                                t = usel;
                                                usel = user;
                                                user = t; // swap
                                                tlen = usellen;
                                                usellen = userlen;
                                                userlen = tlen; // ..
                                                res.ind = (byte) -res.ind;
                                            }
                                            break compare;
                                        }
                                        /* mantissas the same, so far */
                                        ia++;
                                        ib++;
                                    }
                                }/* compare */
                            } // lengths the same
                        }
                    } while (false);
                }/* swaptest */
            } while (false);
        }/* signdiff */

        /* here, A is > B if subtracting */
        // add [A+B*1] or subtract [A+(B*-1)]
        res.mant = byteaddsub(usel, usellen, user, userlen, mult, false);
        // [reuse possible only after chop; accounting makes not worthwhile]

        // Finish() rounds before stripping leading 0's, then sets form, etc.
        return res.finish(set, false);
    }

    /**
     * Compares this <code>BigDecimal</code> to another, using unlimited precision.
     * <p>
     * The same as {@link #compareTo(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>,
     * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the comparison.
     * @return An <code>int</code> whose value is -1, 0, or 1 as <code>this</code> is numerically less than, equal to,
     *         or greater than <code>rhs</code>.
     */

    public int compareTo(android.icu.math.BigDecimal rhs) {
        return this.compareTo(rhs, plainMC);
    }

    /**
     * Compares this <code>BigDecimal</code> to another.
     * <p>
     * Implements numeric comparison, (as defined in the decimal documentation, see {@link BigDecimal class header}),
     * and returns a result of type <code>int</code>.
     * <p>
     * The result will be:
     * <table cellpadding=2>
     * <tr>
     * <td align=right><b>-1</b></td> <td>if the current object is less than the first parameter</td>
     * </tr>
     * <tr>
     * <td align=right><b>0</b></td> <td>if the current object is equal to the first parameter</td>
     * </tr>
     * <tr>
     * <td align=right><b>1</b></td> <td>if the current object is greater than the first parameter.</td>
     * </tr>
     * </table>
     * <p>
     * A {@link #compareTo(BigDecimal)} method is also provided.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the comparison.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return An <code>int</code> whose value is -1, 0, or 1 as <code>this</code> is numerically less than, equal to,
     *         or greater than <code>rhs</code>.
     */

    public int compareTo(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        int thislength = 0;
        int i = 0;
        android.icu.math.BigDecimal newrhs;
        // rhs=null will raise NullPointerException, as per Comparable interface
        if (set.lostDigits)
            checkdigits(rhs, set.digits);
        // [add will recheck in slowpath cases .. but would report -rhs]
        if ((this.ind == rhs.ind) & (this.exp == rhs.exp)) {
            /* sign & exponent the same [very common] */
            thislength = this.mant.length;
            if (thislength < rhs.mant.length)
                return (byte) -this.ind;
            if (thislength > rhs.mant.length)
                return this.ind;
            /*
             * lengths are the same; we can do a straight mantissa compare unless maybe rounding [rounding is very
             * unusual]
             */
            if ((thislength <= set.digits) | (set.digits == 0)) {
                {
                    int $6 = thislength;
                    i = 0;
                    for (; $6 > 0; $6--, i++) {
                        if (this.mant[i] < rhs.mant[i])
                            return (byte) -this.ind;
                        if (this.mant[i] > rhs.mant[i])
                            return this.ind;
                    }
                }/* i */
                return 0; // identical
            }
            /* drop through for full comparison */
        } else {
            /* More fastpaths possible */
            if (this.ind < rhs.ind)
                return -1;
            if (this.ind > rhs.ind)
                return 1;
        }
        /* carry out a subtract to make the comparison */
        newrhs = clone(rhs); // safe copy
        newrhs.ind = (byte) -newrhs.ind; // prepare to subtract
        return this.add(newrhs, set).ind; // add, and return sign of result
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this/rhs</code>, using fixed point arithmetic.
     * <p>
     * The same as {@link #divide(BigDecimal, int)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * rounding mode is {@link MathContext#ROUND_HALF_UP}.
     * 
     * The length of the decimal part (the scale) of the result will be the same as the scale of the current object, if
     * the latter were formatted without exponential notation.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the division.
     * @return A plain <code>BigDecimal</code> whose value is <code>this/rhs</code>, using fixed point arithmetic.
     * @throws ArithmeticException If <code>rhs</code> is zero.
     */

    public android.icu.math.BigDecimal divide(android.icu.math.BigDecimal rhs) {
        return this.dodivide('D', rhs, plainMC, -1);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this/rhs</code>, using fixed point arithmetic and a
     * rounding mode.
     * <p>
     * The same as {@link #divide(BigDecimal, int, int)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * second parameter is <code>this.scale()</code>, and the third is <code>round</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will therefore be the same as the scale of the current
     * object, if the latter were formatted without exponential notation.
     * <p>
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the division.
     * @param round The <code>int</code> rounding mode to be used for the division (see the {@link MathContext} class).
     * @return A plain <code>BigDecimal</code> whose value is <code>this/rhs</code>, using fixed point arithmetic and
     *         the specified rounding mode.
     * @throws IllegalArgumentException if <code>round</code> is not a valid rounding mode.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     * @throws ArithmeticException if <code>round</code> is {@link MathContext#ROUND_UNNECESSARY} and <code>this.scale()</code> is insufficient to represent the result exactly.
     */

    public android.icu.math.BigDecimal divide(android.icu.math.BigDecimal rhs, int round) {
        android.icu.math.MathContext set;
        set = new android.icu.math.MathContext(0, android.icu.math.MathContext.PLAIN, false, round); // [checks round,
                                                                                                     // too]
        return this.dodivide('D', rhs, set, -1); // take scale from LHS
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this/rhs</code>, using fixed point arithmetic and a
     * given scale and rounding mode.
     * <p>
     * The same as {@link #divide(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>,
     * <code>new MathContext(0, MathContext.PLAIN, false, round)</code>, except that the length of the decimal part (the
     * scale) to be used for the result is explicit rather than being taken from <code>this</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will be the same as the scale of the current object, if
     * the latter were formatted without exponential notation.
     * <p>
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the division.
     * @param scale The <code>int</code> scale to be used for the result.
     * @param round The <code>int</code> rounding mode to be used for the division (see the {@link MathContext} class).
     * @return A plain <code>BigDecimal</code> whose value is <code>this/rhs</code>, using fixed point arithmetic and
     *         the specified rounding mode.
     * @throws IllegalArgumentException if <code>round</code> is not a valid rounding mode.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     * @throws ArithmeticException if <code>scale</code> is negative.
     * @throws ArithmeticException if <code>round</code> is {@link MathContext#ROUND_UNNECESSARY} and <code>scale</code> is insufficient
     *             to represent the result exactly.
     */

    public android.icu.math.BigDecimal divide(android.icu.math.BigDecimal rhs, int scale, int round) {
        android.icu.math.MathContext set;
        if (scale < 0)
            throw new java.lang.ArithmeticException("Negative scale:" + " " + scale);
        set = new android.icu.math.MathContext(0, android.icu.math.MathContext.PLAIN, false, round); // [checks round]
        return this.dodivide('D', rhs, set, scale);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>this/rhs</code>.
     * <p>
     * Implements the division (<b><code>/</code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the division.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>this/rhs</code>.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     */

    public android.icu.math.BigDecimal divide(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        return this.dodivide('D', rhs, set, -1);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is the integer part of <code>this/rhs</code>.
     * <p>
     * The same as {@link #divideInteger(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs
     * </code>, and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the integer division.
     * @return A <code>BigDecimal</code> whose value is the integer part of <code>this/rhs</code>.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     */

    public android.icu.math.BigDecimal divideInteger(android.icu.math.BigDecimal rhs) {
        // scale 0 to drop .000 when plain
        return this.dodivide('I', rhs, plainMC, 0);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is the integer part of <code>this/rhs</code>.
     * <p>
     * Implements the integer division operator (as defined in the decimal documentation, see {@link BigDecimal class
     * header}), and returns the result as a <code>BigDecimal</code> object.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the integer division.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is the integer part of <code>this/rhs</code>.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     * @throws ArithmeticException if the result will not fit in the number of digits specified for the context.
     */

    public android.icu.math.BigDecimal divideInteger(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        // scale 0 to drop .000 when plain
        return this.dodivide('I', rhs, set, 0);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is the maximum of <code>this</code> and <code>rhs</code>.
     * <p>
     * The same as {@link #max(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the comparison.
     * @return A <code>BigDecimal</code> whose value is the maximum of <code>this</code> and <code>rhs</code>.
     */

    public android.icu.math.BigDecimal max(android.icu.math.BigDecimal rhs) {
        return this.max(rhs, plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is the maximum of <code>this</code> and <code>rhs</code>.
     * <p>
     * Returns the larger of the current object and the first parameter.
     * <p>
     * If calling the {@link #compareTo(BigDecimal, MathContext)} method with the same parameters would return <code>1
     * </code> or <code>0</code>, then the result of calling the {@link #plus(MathContext)} method on the current object
     * (using the same <code>MathContext</code> parameter) is returned. Otherwise, the result of calling the
     * {@link #plus(MathContext)} method on the first parameter object (using the same <code>MathContext</code>
     * parameter) is returned.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the comparison.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is the maximum of <code>this</code> and <code>rhs</code>.
     */

    public android.icu.math.BigDecimal max(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        if ((this.compareTo(rhs, set)) >= 0)
            return this.plus(set);
        else
            return rhs.plus(set);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is the minimum of <code>this</code> and <code>rhs</code>.
     * <p>
     * The same as {@link #min(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the comparison.
     * @return A <code>BigDecimal</code> whose value is the minimum of <code>this</code> and <code>rhs</code>.
     */

    public android.icu.math.BigDecimal min(android.icu.math.BigDecimal rhs) {
        return this.min(rhs, plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is the minimum of <code>this</code> and <code>rhs</code>.
     * <p>
     * Returns the smaller of the current object and the first parameter.
     * <p>
     * If calling the {@link #compareTo(BigDecimal, MathContext)} method with the same parameters would return <code>-1
     * </code> or <code>0</code>, then the result of calling the {@link #plus(MathContext)} method on the current object
     * (using the same <code>MathContext</code> parameter) is returned. Otherwise, the result of calling the
     * {@link #plus(MathContext)} method on the first parameter object (using the same <code>MathContext</code>
     * parameter) is returned.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the comparison.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is the minimum of <code>this</code> and <code>rhs</code>.
     */

    public android.icu.math.BigDecimal min(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        if ((this.compareTo(rhs, set)) <= 0)
            return this.plus(set);
        else
            return rhs.plus(set);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this*rhs</code>, using fixed point arithmetic.
     * <p>
     * The same as {@link #add(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will be the sum of the scales of the operands, if they
     * were formatted without exponential notation.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the multiplication.
     * @return A <code>BigDecimal</code> whose value is <code>this*rhs</code>, using fixed point arithmetic.
     */

    public android.icu.math.BigDecimal multiply(android.icu.math.BigDecimal rhs) {
        return this.multiply(rhs, plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>this*rhs</code>.
     * <p>
     * Implements the multiplication (<b><code> </code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the multiplication.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>this*rhs</code>.
     */

    public android.icu.math.BigDecimal multiply(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        android.icu.math.BigDecimal lhs;
        int padding;
        int reqdig;
        byte multer[] = null;
        byte multand[] = null;
        int multandlen;
        int acclen = 0;
        android.icu.math.BigDecimal res;
        byte acc[];
        int n = 0;
        byte mult = 0;
        if (set.lostDigits)
            checkdigits(rhs, set.digits);
        lhs = this; // name for clarity and proxy

        /* Prepare numbers (truncate, unless unlimited precision) */
        padding = 0; // trailing 0's to add
        reqdig = set.digits; // local copy
        if (reqdig > 0) {
            if (lhs.mant.length > reqdig)
                lhs = clone(lhs).round(set);
            if (rhs.mant.length > reqdig)
                rhs = clone(rhs).round(set);
            // [we could reuse the new LHS for result in this case]
        } else {/* unlimited */
            // fixed point arithmetic will want every trailing 0; we add these
            // after the calculation rather than before, for speed.
            if (lhs.exp > 0)
                padding = padding + lhs.exp;
            if (rhs.exp > 0)
                padding = padding + rhs.exp;
        }

        // For best speed, as in DMSRCN, we use the shorter number as the
        // multiplier and the longer as the multiplicand.
        // 1999.12.22: We used to special case when the result would fit in
        // a long, but with Java 1.3 this gave no advantage.
        if (lhs.mant.length < rhs.mant.length) {
            multer = lhs.mant;
            multand = rhs.mant;
        } else {
            multer = rhs.mant;
            multand = lhs.mant;
        }

        /* Calculate how long result byte array will be */
        multandlen = (multer.length + multand.length) - 1; // effective length
        // optimize for 75% of the cases where a carry is expected...
        if ((multer[0] * multand[0]) > 9)
            acclen = multandlen + 1;
        else
            acclen = multandlen;

        /* Now the main long multiplication loop */
        res = new android.icu.math.BigDecimal(); // where we'll build result
        acc = new byte[acclen]; // accumulator, all zeros
        // 1998.07.01: calculate from left to right so that accumulator goes
        // to likely final length on first addition; this avoids a one-digit
        // extension (and object allocation) each time around the loop.
        // Initial number therefore has virtual zeros added to right.
        {
            int $7 = multer.length;
            n = 0;
            for (; $7 > 0; $7--, n++) {
                mult = multer[n];
                if (mult != 0) { // [optimization]
                    // accumulate [accumulator is reusable array]
                    acc = byteaddsub(acc, acc.length, multand, multandlen, mult, true);
                }
                // divide multiplicand by 10 for next digit to right
                multandlen--; // 'virtual length'
            }
        }/* n */

        res.ind = (byte) (lhs.ind * rhs.ind); // final sign
        res.exp = (lhs.exp + rhs.exp) - padding; // final exponent
        // [overflow is checked by finish]

        /* add trailing zeros to the result, if necessary */
        if (padding == 0)
            res.mant = acc;
        else
            res.mant = extend(acc, acc.length + padding); // add trailing 0s
        return res.finish(set, false);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>-this</code>.
     * <p>
     * The same as {@link #negate(MathContext)}, where the context is <code>new MathContext(0, MathContext.PLAIN)</code>
     * .
     * <p>
     * The length of the decimal part (the scale) of the result will be be <code>this.scale()</code>
     * 
     * 
     * @return A <code>BigDecimal</code> whose value is <code>-this</code>.
     */

    public android.icu.math.BigDecimal negate() {
        return this.negate(plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>-this</code>.
     * <p>
     * Implements the negation (Prefix <b><code>-</code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * 
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>-this</code>.
     */

    public android.icu.math.BigDecimal negate(android.icu.math.MathContext set) {
        android.icu.math.BigDecimal res;
        // Originally called minus(), changed to matched Java precedents
        // This simply clones, flips the sign, and possibly rounds
        if (set.lostDigits)
            checkdigits((android.icu.math.BigDecimal) null, set.digits);
        res = clone(this); // safe copy
        res.ind = (byte) -res.ind;
        return res.finish(set, false);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>+this</code>. Note that <code>this</code> is not
     * necessarily a plain <code>BigDecimal</code>, but the result will always be.
     * <p>
     * The same as {@link #plus(MathContext)}, where the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will be be <code>this.scale()</code>
     * 
     * @return A <code>BigDecimal</code> whose value is <code>+this</code>.
     */

    public android.icu.math.BigDecimal plus() {
        return this.plus(plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>+this</code>.
     * <p>
     * Implements the plus (Prefix <b><code>+</code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * <p>
     * This method is useful for rounding or otherwise applying a context to a decimal value.
     * 
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>+this</code>.
     */

    public android.icu.math.BigDecimal plus(android.icu.math.MathContext set) {
        // This clones and forces the result to the new settings
        // May return same object
        if (set.lostDigits)
            checkdigits((android.icu.math.BigDecimal) null, set.digits);
        // Optimization: returns same object for some common cases
        if (set.form == android.icu.math.MathContext.PLAIN)
            if (this.form == android.icu.math.MathContext.PLAIN) {
                if (this.mant.length <= set.digits)
                    return this;
                if (set.digits == 0)
                    return this;
            }
        return clone(this).finish(set, false);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this**rhs</code>, using fixed point arithmetic.
     * <p>
     * The same as {@link #pow(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>, and the
     * context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * The parameter is the power to which the <code>this</code> will be raised; it must be in the range 0 through
     * 999999999, and must have a decimal part of zero. Note that these restrictions may be removed in the future, so
     * they should not be used as a test for a whole number.
     * <p>
     * In addition, the power must not be negative, as no <code>MathContext</code> is used and so the result would then
     * always be 0.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the operation (the power).
     * @return A <code>BigDecimal</code> whose value is <code>this**rhs</code>, using fixed point arithmetic.
     * @throws ArithmeticException if <code>rhs</code> is out of range or is not a whole number.
     */

    public android.icu.math.BigDecimal pow(android.icu.math.BigDecimal rhs) {
        return this.pow(rhs, plainMC);
    }

    // The name for this method is inherited from the precedent set by the
    // BigInteger and Math classes.

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>this**rhs</code>.
     * <p>
     * Implements the power (<b><code> </code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * <p>
     * The first parameter is the power to which the <code>this</code> will be raised; it must be in the range
     * -999999999 through 999999999, and must have a decimal part of zero. Note that these restrictions may be removed
     * in the future, so they should not be used as a test for a whole number.
     * <p>
     * If the <code>digits</code> setting of the <code>MathContext</code> parameter is 0, the power must be zero or
     * positive.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the operation (the power).
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>this**rhs</code>.
     * @throws ArithmeticException if <code>rhs</code> is out of range or is not a whole number.
     */

    public android.icu.math.BigDecimal pow(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        int n;
        android.icu.math.BigDecimal lhs;
        int reqdig;
        int workdigits = 0;
        int L = 0;
        android.icu.math.MathContext workset;
        android.icu.math.BigDecimal res;
        boolean seenbit;
        int i = 0;
        if (set.lostDigits)
            checkdigits(rhs, set.digits);
        n = rhs.intcheck(MinArg, MaxArg); // check RHS by the rules
        lhs = this; // clarified name

        reqdig = set.digits; // local copy (heavily used)
        if (reqdig == 0) {
            if (rhs.ind == isneg)
                throw new java.lang.ArithmeticException("Negative power:" + " " + rhs.toString());
            workdigits = 0;
        } else {/* non-0 digits */
            if ((rhs.mant.length + rhs.exp) > reqdig)
                throw new java.lang.ArithmeticException("Too many digits:" + " " + rhs.toString());

            /* Round the lhs to DIGITS if need be */
            if (lhs.mant.length > reqdig)
                lhs = clone(lhs).round(set);

            /* L for precision calculation [see ANSI X3.274-1996] */
            L = rhs.mant.length + rhs.exp; // length without decimal zeros/exp
            workdigits = (reqdig + L) + 1; // calculate the working DIGITS
        }

        /* Create a copy of set for working settings */
        // Note: no need to check for lostDigits again.
        // 1999.07.17 Note: this construction must follow RHS check
        workset = new android.icu.math.MathContext(workdigits, set.form, false, set.roundingMode);

        res = ONE; // accumulator
        if (n == 0)
            return res; // x**0 == 1
        if (n < 0)
            n = -n; // [rhs.ind records the sign]
        seenbit = false; // set once we've seen a 1-bit
        {
            i = 1;
            i: for (;; i++) { // for each bit [top bit ignored]
                n = n + n; // shift left 1 bit
                if (n < 0) { // top bit is set
                    seenbit = true; // OK, we're off
                    res = res.multiply(lhs, workset); // acc=acc*x
                }
                if (i == 31)
                    break i; // that was the last bit
                if ((!seenbit))
                    continue i; // we don't have to square 1
                res = res.multiply(res, workset); // acc=acc*acc [square]
            }
        }/* i */// 32 bits
        if (rhs.ind < 0) // was a **-n [hence digits>0]
            res = ONE.divide(res, workset); // .. so acc=1/acc
        return res.finish(set, true); // round and strip [original digits]
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is the remainder of <code>this/rhs</code>, using fixed point
     * arithmetic.
     * <p>
     * The same as {@link #remainder(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>,
     * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * This is not the modulo operator -- the result may be negative.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the remainder operation.
     * @return A <code>BigDecimal</code> whose value is the remainder of <code>this/rhs</code>, using fixed point
     *         arithmetic.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     */

    public android.icu.math.BigDecimal remainder(android.icu.math.BigDecimal rhs) {
        return this.dodivide('R', rhs, plainMC, -1);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is the remainder of <code>this/rhs</code>.
     * <p>
     * Implements the remainder operator (as defined in the decimal documentation, see {@link BigDecimal class header}),
     * and returns the result as a <code>BigDecimal</code> object.
     * <p>
     * This is not the modulo operator -- the result may be negative.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the remainder operation.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is the remainder of <code>this+rhs</code>.
     * @throws ArithmeticException if <code>rhs</code> is zero.
     * @throws ArithmeticException  if the integer part of the result will not fit in the number of digits specified for the context.
     */

    public android.icu.math.BigDecimal remainder(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        return this.dodivide('R', rhs, set, -1);
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose value is <code>this-rhs</code>, using fixed point arithmetic.
     * <p>
     * The same as {@link #subtract(BigDecimal, MathContext)}, where the <code>BigDecimal</code> is <code>rhs</code>,
     * and the context is <code>new MathContext(0, MathContext.PLAIN)</code>.
     * <p>
     * The length of the decimal part (the scale) of the result will be the maximum of the scales of the two operands.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the subtraction.
     * @return A <code>BigDecimal</code> whose value is <code>this-rhs</code>, using fixed point arithmetic.
     */

    public android.icu.math.BigDecimal subtract(android.icu.math.BigDecimal rhs) {
        return this.subtract(rhs, plainMC);
    }

    /**
     * Returns a <code>BigDecimal</code> whose value is <code>this-rhs</code>.
     * <p>
     * Implements the subtraction (<b><code>-</code></b>) operator (as defined in the decimal documentation, see
     * {@link BigDecimal class header}), and returns the result as a <code>BigDecimal</code> object.
     * 
     * @param rhs The <code>BigDecimal</code> for the right hand side of the subtraction.
     * @param set The <code>MathContext</code> arithmetic settings.
     * @return A <code>BigDecimal</code> whose value is <code>this-rhs</code>.
     */

    public android.icu.math.BigDecimal subtract(android.icu.math.BigDecimal rhs, android.icu.math.MathContext set) {
        android.icu.math.BigDecimal newrhs;
        if (set.lostDigits)
            checkdigits(rhs, set.digits);
        // [add will recheck .. but would report -rhs]
        /* carry out the subtraction */
        // we could fastpath -0, but it is too rare.
        newrhs = clone(rhs); // safe copy
        newrhs.ind = (byte) -newrhs.ind; // prepare to subtract
        return this.add(newrhs, set); // arithmetic
    }

    /* ---------------------------------------------------------------- */
    /* Other methods */
    /* ---------------------------------------------------------------- */

    /**
     * Converts this <code>BigDecimal</code> to a <code>byte</code>. If the <code>BigDecimal</code> has a non-zero
     * decimal part or is out of the possible range for a <code>byte</code> (8-bit signed integer) result then an <code>
     * ArithmeticException</code> is thrown.
     * 
     * @return A <code>byte</code> equal in value to <code>this</code>.
     * @throws ArithmeticException if <code>this</code> has a non-zero decimal part, or will not fit in a <code>byte</code>.
     */

    public byte byteValueExact() {
        int num;
        num = this.intValueExact(); // will check decimal part too
        if ((num > 127) | (num < (-128)))
            throw new java.lang.ArithmeticException("Conversion overflow:" + " " + this.toString());
        return (byte) num;
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>double</code>. If the <code>BigDecimal</code> is out of the
     * possible range for a <code>double</code> (64-bit signed floating point) result then an <code>ArithmeticException
     * </code> is thrown.
     * <p>
     * The double produced is identical to result of expressing the <code>BigDecimal</code> as a <code>String</code> and
     * then converting it using the <code>Double(String)</code> constructor; this can result in values of <code>
     * Double.NEGATIVE_INFINITY</code> or <code>Double.POSITIVE_INFINITY</code>.
     * 
     * @return A <code>double</code> corresponding to <code>this</code>.
     */

    public double doubleValue() {
        // We go via a String [as does BigDecimal in JDK 1.2]
        // Next line could possibly raise NumberFormatException
        return java.lang.Double.valueOf(this.toString()).doubleValue();
    }

    /**
     * Compares this <code>BigDecimal</code> with <code>rhs</code> for equality.
     * <p>
     * If the parameter is <code>null</code>, or is not an instance of the BigDecimal type, or is not exactly equal to
     * the current <code>BigDecimal</code> object, then <i>false</i> is returned. Otherwise, <i>true</i> is returned.
     * <p>
     * "Exactly equal", here, means that the <code>String</code> representations of the <code>BigDecimal</code> numbers
     * are identical (they have the same characters in the same sequence).
     * <p>
     * The {@link #compareTo(BigDecimal, MathContext)} method should be used for more general comparisons.
     * 
     * @param obj The <code>Object</code> for the right hand side of the comparison.
     * @return A <code>boolean</code> whose value <i>true</i> if and only if the operands have identical string
     *         representations.
     * @throws ClassCastException if <code>rhs</code> cannot be cast to a <code>BigDecimal</code> object.
     * @see #compareTo(BigDecimal)
     * @see #compareTo(BigDecimal, MathContext)
     */

    public boolean equals(java.lang.Object obj) {
        android.icu.math.BigDecimal rhs;
        int i = 0;
        char lca[] = null;
        char rca[] = null;
        // We are equal iff toString of both are exactly the same
        if (obj == null)
            return false; // not equal
        if ((!(((obj instanceof android.icu.math.BigDecimal)))))
            return false; // not a decimal
        rhs = (android.icu.math.BigDecimal) obj; // cast; we know it will work
        if (this.ind != rhs.ind)
            return false; // different signs never match
        if (((this.mant.length == rhs.mant.length) & (this.exp == rhs.exp)) & (this.form == rhs.form))

        { // mantissas say all
            // here with equal-length byte arrays to compare
            {
                int $8 = this.mant.length;
                i = 0;
                for (; $8 > 0; $8--, i++) {
                    if (this.mant[i] != rhs.mant[i])
                        return false;
                }
            }/* i */
        } else { // need proper layout
            lca = this.layout(); // layout to character array
            rca = rhs.layout();
            if (lca.length != rca.length)
                return false; // mismatch
            // here with equal-length character arrays to compare
            {
                int $9 = lca.length;
                i = 0;
                for (; $9 > 0; $9--, i++) {
                    if (lca[i] != rca[i])
                        return false;
                }
            }/* i */
        }
        return true; // arrays have identical content
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>float</code>. If the <code>BigDecimal</code> is out of the
     * possible range for a <code>float</code> (32-bit signed floating point) result then an <code>ArithmeticException
     * </code> is thrown.
     * <p>
     * The float produced is identical to result of expressing the <code>BigDecimal</code> as a <code>String</code> and
     * then converting it using the <code>Float(String)</code> constructor; this can result in values of <code>
     * Float.NEGATIVE_INFINITY</code> or <code>Float.POSITIVE_INFINITY</code>.
     * 
     * @return A <code>float</code> corresponding to <code>this</code>.
     */

    public float floatValue() {
        return java.lang.Float.valueOf(this.toString()).floatValue();
    }

    /**
     * Returns the <code>String</code> representation of this <code>BigDecimal</code>, modified by layout parameters.
     * <p>
     * <i>This method is provided as a primitive for use by more sophisticated classes, such as <code>DecimalFormat
     * </code>, that can apply locale-sensitive editing of the result. The level of formatting that it provides is a
     * necessary part of the BigDecimal class as it is sensitive to and must follow the calculation and rounding rules
     * for BigDecimal arithmetic. However, if the function is provided elsewhere, it may be removed from this class.
     * </i>
     * <p>
     * The parameters, for both forms of the <code>format</code> method are all of type <code>int</code>. A value of -1
     * for any parameter indicates that the default action or value for that parameter should be used.
     * <p>
     * The parameters, <code>before</code> and <code>after</code>, specify the number of characters to be used for the
     * integer part and decimal part of the result respectively. Exponential notation is not used. If either parameter
     * is -1 (which indicates the default action), the number of characters used will be exactly as many as are needed
     * for that part.
     * <p>
     * <code>before</code> must be a positive number; if it is larger than is needed to contain the integer part, that
     * part is padded on the left with blanks to the requested length. If <code>before</code> is not large enough to
     * contain the integer part of the number (including the sign, for negative numbers) an exception is thrown.
     * <p>
     * <code>after</code> must be a non-negative number; if it is not the same size as the decimal part of the number,
     * the number will be rounded (or extended with zeros) to fit. Specifying 0 for <code>after</code> will cause the
     * number to be rounded to an integer (that is, it will have no decimal part or decimal point). The rounding method
     * will be the default, <code>MathContext.ROUND_HALF_UP</code>.
     * <p>
     * Other rounding methods, and the use of exponential notation, can be selected by using
     * {@link #format(int,int,int,int,int,int)}. Using the two-parameter form of the method has exactly the same effect
     * as using the six-parameter form with the final four parameters all being -1.
     * 
     * @param before The <code>int</code> specifying the number of places before the decimal point. Use -1 for 'as many as are needed'.
     * @param after The <code>int</code> specifying the number of places after the decimal point. Use -1 for 'as many as are needed'.
     * @return A <code>String</code> representing this <code>BigDecimal</code>, laid out according to the specified parameters
     * @throws ArithmeticException if the number cannot be laid out as requested.
     * @throws IllegalArgumentException if a parameter is out of range.
     * @see #toString
     * @see #toCharArray
     */

    public java.lang.String format(int before, int after) {
        return format(before, after, -1, -1, android.icu.math.MathContext.SCIENTIFIC, ROUND_HALF_UP);
    }

    /**
     * Returns the <code>String</code> representation of this <code>BigDecimal</code>, modified by layout parameters and
     * allowing exponential notation.
     * <p>
     * <i>This method is provided as a primitive for use by more sophisticated classes, such as <code>DecimalFormat
     * </code>, that can apply locale-sensitive editing of the result. The level of formatting that it provides is a
     * necessary part of the BigDecimal class as it is sensitive to and must follow the calculation and rounding rules
     * for BigDecimal arithmetic. However, if the function is provided elsewhere, it may be removed from this class.
     * </i>
     * <p>
     * The parameters are all of type <code>int</code>. A value of -1 for any parameter indicates that the default
     * action or value for that parameter should be used.
     * <p>
     * The first two parameters (<code>before</code> and <code>after</code>) specify the number of characters to be used
     * for the integer part and decimal part of the result respectively, as defined for {@link #format(int,int)}. If
     * either of these is -1 (which indicates the default action), the number of characters used will be exactly as many
     * as are needed for that part.
     * <p>
     * The remaining parameters control the use of exponential notation and rounding. Three (<code>explaces</code>,
     * <code>exdigits</code>, and <code>exform</code>) control the exponent part of the result. As before, the default
     * action for any of these parameters may be selected by using the value -1.
     * <p>
     * <code>explaces</code> must be a positive number; it sets the number of places (digits after the sign of the
     * exponent) to be used for any exponent part, the default (when <code>explaces</code> is -1) being to use as many
     * as are needed. If <code>explaces</code> is not -1, space is always reserved for an exponent; if one is not needed
     * (for example, if the exponent will be 0) then <code>explaces</code>+2 blanks are appended to the result. <!--
     * (This preserves vertical alignment of similarly formatted numbers in a monospace font.) --> If <code>explaces
     * </code> is not -1 and is not large enough to contain the exponent, an exception is thrown.
     * <p>
     * <code>exdigits</code> sets the trigger point for use of exponential notation. If, before any rounding, the number
     * of places needed before the decimal point exceeds <code>exdigits</code>, or if the absolute value of the result
     * is less than <code>0.000001</code>, then exponential form will be used, provided that <code>exdigits</code> was
     * specified. When <code>exdigits</code> is -1, exponential notation will never be used. If 0 is specified for
     * <code>exdigits</code>, exponential notation is always used unless the exponent would be 0.
     * <p>
     * <code>exform</code> sets the form for exponential notation (if needed). It may be either
     * {@link MathContext#SCIENTIFIC} or {@link MathContext#ENGINEERING}. If the latter, engineering, form is requested,
     * up to three digits (plus sign, if negative) may be needed for the integer part of the result (<code>before</code>
     * ). Otherwise, only one digit (plus sign, if negative) is needed.
     * <p>
     * Finally, the sixth argument, <code>exround</code>, selects the rounding algorithm to be used, and must be one of
     * the values indicated by a public constant in the {@link MathContext} class whose name starts with <code>ROUND_
     * </code>. The default (<code>ROUND_HALF_UP</code>) may also be selected by using the value -1, as before.
     * <p>
     * The special value <code>MathContext.ROUND_UNNECESSARY</code> may be used to detect whether non-zero digits are
     * discarded -- if <code>exround</code> has this value than if non-zero digits would be discarded (rounded) during
     * formatting then an <code>ArithmeticException</code> is thrown.
     * 
     * @param before The <code>int</code> specifying the number of places before the decimal point. Use -1 for 'as many as
     *            are needed'.
     * @param after The <code>int</code> specifying the number of places after the decimal point. Use -1 for 'as many as
     *            are needed'.
     * @param explaces The <code>int</code> specifying the number of places to be used for any exponent. Use -1 for 'as many
     *            as are needed'.
     * @param exdigits The <code>int</code> specifying the trigger (digits before the decimal point) which if exceeded causes
     *            exponential notation to be used. Use 0 to force exponential notation. Use -1 to force plain notation
     *            (no exponential notation).
     * @param exformint The <code>int</code> specifying the form of exponential notation to be used (
     *            {@link MathContext#SCIENTIFIC} or {@link MathContext#ENGINEERING}).
     * @param exround The <code>int</code> specifying the rounding mode to use. Use -1 for the default,
     *            {@link MathContext#ROUND_HALF_UP}.
     * @return A <code>String</code> representing this <code>BigDecimal</code>, laid out according to the specified
     *         parameters
     * @throws ArithmeticException if the number cannot be laid out as requested.
     * @throws IllegalArgumentException if a parameter is out of range.
     * @see #toString
     * @see #toCharArray
     */

    public java.lang.String format(int before, int after, int explaces, int exdigits, int exformint, int exround) {
        android.icu.math.BigDecimal num;
        int mag = 0;
        int thisafter = 0;
        int lead = 0;
        byte newmant[] = null;
        int chop = 0;
        int need = 0;
        int oldexp = 0;
        char a[];
        int p = 0;
        char newa[] = null;
        int i = 0;
        int places = 0;

        /* Check arguments */
        if ((before < (-1)) | (before == 0))
            badarg("format", 1, java.lang.String.valueOf(before));
        if (after < (-1))
            badarg("format", 2, java.lang.String.valueOf(after));
        if ((explaces < (-1)) | (explaces == 0))
            badarg("format", 3, java.lang.String.valueOf(explaces));
        if (exdigits < (-1))
            badarg("format", 4, java.lang.String.valueOf(explaces));
        {/* select */
            if (exformint == android.icu.math.MathContext.SCIENTIFIC) {
            } else if (exformint == android.icu.math.MathContext.ENGINEERING) {
            } else if (exformint == (-1))
                exformint = android.icu.math.MathContext.SCIENTIFIC;
            // note PLAIN isn't allowed
            else {
                badarg("format", 5, java.lang.String.valueOf(exformint));
            }
        }
        // checking the rounding mode is done by trying to construct a
        // MathContext object with that mode; it will fail if bad
        if (exround != ROUND_HALF_UP) {
            try { // if non-default...
                if (exround == (-1))
                    exround = ROUND_HALF_UP;
                else
                    new android.icu.math.MathContext(9, android.icu.math.MathContext.SCIENTIFIC, false, exround);
            } catch (java.lang.IllegalArgumentException $10) {
                badarg("format", 6, java.lang.String.valueOf(exround));
            }
        }

        num = clone(this); // make private copy

        /*
         * Here: num is BigDecimal to format before is places before point [>0] after is places after point [>=0]
         * explaces is exponent places [>0] exdigits is exponent digits [>=0] exformint is exponent form [one of two]
         * exround is rounding mode [one of eight] 'before' through 'exdigits' are -1 if not specified
         */

        /* determine form */
        {
            do {/* select */
                if (exdigits == (-1))
                    num.form = (byte) android.icu.math.MathContext.PLAIN;
                else if (num.ind == iszero)
                    num.form = (byte) android.icu.math.MathContext.PLAIN;
                else {
                    // determine whether triggers
                    mag = num.exp + num.mant.length;
                    if (mag > exdigits)
                        num.form = (byte) exformint;
                    else if (mag < (-5))
                        num.form = (byte) exformint;
                    else
                        num.form = (byte) android.icu.math.MathContext.PLAIN;
                }
            } while (false);
        }/* setform */

        /*
         * If 'after' was specified then we may need to adjust the mantissa. This is a little tricky, as we must conform
         * to the rules of exponential layout if necessary (e.g., we cannot end up with 10.0 if scientific).
         */
        if (after >= 0) {
            setafter: for (;;) {
                // calculate the current after-length
                {/* select */
                    if (num.form == android.icu.math.MathContext.PLAIN)
                        thisafter = -num.exp; // has decimal part
                    else if (num.form == android.icu.math.MathContext.SCIENTIFIC)
                        thisafter = num.mant.length - 1;
                    else { // engineering
                        lead = (((num.exp + num.mant.length) - 1)) % 3; // exponent to use
                        if (lead < 0)
                            lead = 3 + lead; // negative exponent case
                        lead++; // number of leading digits
                        if (lead >= num.mant.length)
                            thisafter = 0;
                        else
                            thisafter = num.mant.length - lead;
                    }
                }
                if (thisafter == after)
                    break setafter; // we're in luck
                if (thisafter < after) { // need added trailing zeros
                    // [thisafter can be negative]
                    newmant = extend(num.mant, (num.mant.length + after) - thisafter);
                    num.mant = newmant;
                    num.exp = num.exp - ((after - thisafter)); // adjust exponent
                    if (num.exp < MinExp)
                        throw new java.lang.ArithmeticException("Exponent Overflow:" + " " + num.exp);
                    break setafter;
                }
                // We have too many digits after the decimal point; this could
                // cause a carry, which could change the mantissa...
                // Watch out for implied leading zeros in PLAIN case
                chop = thisafter - after; // digits to lop [is >0]
                if (chop > num.mant.length) { // all digits go, no chance of carry
                    // carry on with zero
                    num.mant = ZERO.mant;
                    num.ind = iszero;
                    num.exp = 0;
                    continue setafter; // recheck: we may need trailing zeros
                }
                // we have a digit to inspect from existing mantissa
                // round the number as required
                need = num.mant.length - chop; // digits to end up with [may be 0]
                oldexp = num.exp; // save old exponent
                num.round(need, exround);
                // if the exponent grew by more than the digits we chopped, then
                // we must have had a carry, so will need to recheck the layout
                if ((num.exp - oldexp) == chop)
                    break setafter; // number did not have carry
                // mantissa got extended .. so go around and check again
            }
        }/* setafter */

        a = num.layout(); // lay out, with exponent if required, etc.

        /* Here we have laid-out number in 'a' */
        // now apply 'before' and 'explaces' as needed
        if (before > 0) {
            // look for '.' or 'E'
            {
                int $11 = a.length;
                p = 0;
                p: for (; $11 > 0; $11--, p++) {
                    if (a[p] == '.')
                        break p;
                    if (a[p] == 'E')
                        break p;
                }
            }/* p */
            // p is now offset of '.', 'E', or character after end of array
            // that is, the current length of before part
            if (p > before)
                badarg("format", 1, java.lang.String.valueOf(before)); // won't fit
            if (p < before) { // need leading blanks
                newa = new char[(a.length + before) - p];
                {
                    int $12 = before - p;
                    i = 0;
                    for (; $12 > 0; $12--, i++) {
                        newa[i] = ' ';
                    }
                }/* i */
                java.lang.System.arraycopy((java.lang.Object) a, 0, (java.lang.Object) newa, i, a.length);
                a = newa;
            }
            // [if p=before then it's just the right length]
        }

        if (explaces > 0) {
            // look for 'E' [cannot be at offset 0]
            {
                int $13 = a.length - 1;
                p = a.length - 1;
                p: for (; $13 > 0; $13--, p--) {
                    if (a[p] == 'E')
                        break p;
                }
            }/* p */
            // p is now offset of 'E', or 0
            if (p == 0) { // no E part; add trailing blanks
                newa = new char[(a.length + explaces) + 2];
                java.lang.System.arraycopy((java.lang.Object) a, 0, (java.lang.Object) newa, 0, a.length);
                {
                    int $14 = explaces + 2;
                    i = a.length;
                    for (; $14 > 0; $14--, i++) {
                        newa[i] = ' ';
                    }
                }/* i */
                a = newa;
            } else {/* found E */// may need to insert zeros
                places = (a.length - p) - 2; // number so far
                if (places > explaces)
                    badarg("format", 3, java.lang.String.valueOf(explaces));
                if (places < explaces) { // need to insert zeros
                    newa = new char[(a.length + explaces) - places];
                    java.lang.System.arraycopy((java.lang.Object) a, 0, (java.lang.Object) newa, 0, p + 2); // through E
                                                                                                            // and sign
                    {
                        int $15 = explaces - places;
                        i = p + 2;
                        for (; $15 > 0; $15--, i++) {
                            newa[i] = '0';
                        }
                    }/* i */
                    java.lang.System.arraycopy((java.lang.Object) a, p + 2, (java.lang.Object) newa, i, places); // remainder
                                                                                                                 // of
                                                                                                                 // exponent
                    a = newa;
                }
                // [if places=explaces then it's just the right length]
            }
        }
        return new java.lang.String(a);
    }

    /**
     * Returns the hashcode for this <code>BigDecimal</code>. This hashcode is suitable for use by the <code>
     * java.util.Hashtable</code> class.
     * <p>
     * Note that two <code>BigDecimal</code> objects are only guaranteed to produce the same hashcode if they are
     * exactly equal (that is, the <code>String</code> representations of the <code>BigDecimal</code> numbers are
     * identical -- they have the same characters in the same sequence).
     * 
     * @return An <code>int</code> that is the hashcode for <code>this</code>.
     */

    public int hashCode() {
        // Maybe calculate ourselves, later. If so, note that there can be
        // more than one internal representation for a given toString() result.
        return this.toString().hashCode();
    }

    /**
     * Converts this <code>BigDecimal</code> to an <code>int</code>. If the <code>BigDecimal</code> has a non-zero
     * decimal part it is discarded. If the <code>BigDecimal</code> is out of the possible range for an <code>int</code>
     * (32-bit signed integer) result then only the low-order 32 bits are used. (That is, the number may be
     * <i>decapitated</i>.) To avoid unexpected errors when these conditions occur, use the {@link #intValueExact}
     * method.
     * 
     * @return An <code>int</code> converted from <code>this</code>, truncated and decapitated if necessary.
     */

    public int intValue() {
        return toBigInteger().intValue();
    }

    /**
     * Converts this <code>BigDecimal</code> to an <code>int</code>. If the <code>BigDecimal</code> has a non-zero
     * decimal part or is out of the possible range for an <code>int</code> (32-bit signed integer) result then an
     * <code>ArithmeticException</code> is thrown.
     * 
     * @return An <code>int</code> equal in value to <code>this</code>.
     * @throws ArithmeticException if <code>this</code> has a non-zero decimal part, or will not fit in an <code>int</code>.
     */

    public int intValueExact() {
        int lodigit;
        int useexp = 0;
        int result;
        int i = 0;
        int topdig = 0;
        // This does not use longValueExact() as the latter can be much
        // slower.
        // intcheck (from pow) relies on this to check decimal part
        if (ind == iszero)
            return 0; // easy, and quite common
        /* test and drop any trailing decimal part */
        lodigit = mant.length - 1;
        if (exp < 0) {
            lodigit = lodigit + exp; // reduces by -(-exp)
            /* all decimal places must be 0 */
            if ((!(allzero(mant, lodigit + 1))))
                throw new java.lang.ArithmeticException("Decimal part non-zero:" + " " + this.toString());
            if (lodigit < 0)
                return 0; // -1<this<1
            useexp = 0;
        } else {/* >=0 */
            if ((exp + lodigit) > 9) // early exit
                throw new java.lang.ArithmeticException("Conversion overflow:" + " " + this.toString());
            useexp = exp;
        }
        /* convert the mantissa to binary, inline for speed */
        result = 0;
        {
            int $16 = lodigit + useexp;
            i = 0;
            for (; i <= $16; i++) {
                result = result * 10;
                if (i <= lodigit)
                    result = result + mant[i];
            }
        }/* i */

        /* Now, if the risky length, check for overflow */
        if ((lodigit + useexp) == 9) {
            // note we cannot just test for -ve result, as overflow can move a
            // zero into the top bit [consider 5555555555]
            topdig = result / 1000000000; // get top digit, preserving sign
            if (topdig != mant[0]) { // digit must match and be positive
                // except in the special case ...
                if (result == java.lang.Integer.MIN_VALUE) // looks like the special
                    if (ind == isneg) // really was negative
                        if (mant[0] == 2)
                            return result; // really had top digit 2
                throw new java.lang.ArithmeticException("Conversion overflow:" + " " + this.toString());
            }
        }

        /* Looks good */
        if (ind == ispos)
            return result;
        return -result;
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>long</code>. If the <code>BigDecimal</code> has a non-zero
     * decimal part it is discarded. If the <code>BigDecimal</code> is out of the possible range for a <code>long</code>
     * (64-bit signed integer) result then only the low-order 64 bits are used. (That is, the number may be
     * <i>decapitated</i>.) To avoid unexpected errors when these conditions occur, use the {@link #longValueExact}
     * method.
     * 
     * @return A <code>long</code> converted from <code>this</code>, truncated and decapitated if necessary.
     */

    public long longValue() {
        return toBigInteger().longValue();
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>long</code>. If the <code>BigDecimal</code> has a non-zero
     * decimal part or is out of the possible range for a <code>long</code> (64-bit signed integer) result then an
     * <code>ArithmeticException</code> is thrown.
     * 
     * @return A <code>long</code> equal in value to <code>this</code>.
     * @throws ArithmeticException if <code>this</code> has a non-zero decimal part, or will not fit in a <code>long</code>.
     */

    public long longValueExact() {
        int lodigit;
        int cstart = 0;
        int useexp = 0;
        long result;
        int i = 0;
        long topdig = 0;
        // Identical to intValueExact except for result=long, and exp>=20 test
        if (ind == 0)
            return 0; // easy, and quite common
        lodigit = mant.length - 1; // last included digit
        if (exp < 0) {
            lodigit = lodigit + exp; // -(-exp)
            /* all decimal places must be 0 */
            if (lodigit < 0)
                cstart = 0;
            else
                cstart = lodigit + 1;
            if ((!(allzero(mant, cstart))))
                throw new java.lang.ArithmeticException("Decimal part non-zero:" + " " + this.toString());
            if (lodigit < 0)
                return 0; // -1<this<1
            useexp = 0;
        } else {/* >=0 */
            if ((exp + mant.length) > 18) // early exit
                throw new java.lang.ArithmeticException("Conversion overflow:" + " " + this.toString());
            useexp = exp;
        }

        /* convert the mantissa to binary, inline for speed */
        // note that we could safely use the 'test for wrap to negative'
        // algorithm here, but instead we parallel the intValueExact
        // algorithm for ease of checking and maintenance.
        result = (long) 0;
        {
            int $17 = lodigit + useexp;
            i = 0;
            for (; i <= $17; i++) {
                result = result * 10;
                if (i <= lodigit)
                    result = result + mant[i];
            }
        }/* i */

        /* Now, if the risky length, check for overflow */
        if ((lodigit + useexp) == 18) {
            topdig = result / 1000000000000000000L; // get top digit, preserving sign
            if (topdig != mant[0]) { // digit must match and be positive
                // except in the special case ...
                if (result == java.lang.Long.MIN_VALUE) // looks like the special
                    if (ind == isneg) // really was negative
                        if (mant[0] == 9)
                            return result; // really had top digit 9
                throw new java.lang.ArithmeticException("Conversion overflow:" + " " + this.toString());
            }
        }

        /* Looks good */
        if (ind == ispos)
            return result;
        return -result;
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose decimal point has been moved to the left by a specified number of
     * positions. The parameter, <code>n</code>, specifies the number of positions to move the decimal point. That is,
     * if <code>n</code> is 0 or positive, the number returned is given by:
     * <p>
     * <code> this.multiply(TEN.pow(new BigDecimal(-n))) </code>
     * <p>
     * <code>n</code> may be negative, in which case the method returns the same result as <code>movePointRight(-n)
     * </code>.
     * 
     * @param n The <code>int</code> specifying the number of places to move the decimal point leftwards.
     * @return A <code>BigDecimal</code> derived from <code>this</code>, with the decimal point moved <code>n</code>
     *         places to the left.
     */

    public android.icu.math.BigDecimal movePointLeft(int n) {
        android.icu.math.BigDecimal res;
        // very little point in optimizing for shift of 0
        res = clone(this);
        res.exp = res.exp - n;
        return res.finish(plainMC, false); // finish sets form and checks exponent
    }

    /**
     * Returns a plain <code>BigDecimal</code> whose decimal point has been moved to the right by a specified number of
     * positions. The parameter, <code>n</code>, specifies the number of positions to move the decimal point. That is,
     * if <code>n</code> is 0 or positive, the number returned is given by:
     * <p>
     * <code> this.multiply(TEN.pow(new BigDecimal(n))) </code>
     * <p>
     * <code>n</code> may be negative, in which case the method returns the same result as <code>movePointLeft(-n)
     * </code>.
     * 
     * @param n The <code>int</code> specifying the number of places to move the decimal point rightwards.
     * @return A <code>BigDecimal</code> derived from <code>this</code>, with the decimal point moved <code>n</code>
     *         places to the right.
     */

    public android.icu.math.BigDecimal movePointRight(int n) {
        android.icu.math.BigDecimal res;
        res = clone(this);
        res.exp = res.exp + n;
        return res.finish(plainMC, false);
    }

    /**
     * Returns the scale of this <code>BigDecimal</code>. Returns a non-negative <code>int</code> which is the scale of
     * the number. The scale is the number of digits in the decimal part of the number if the number were formatted
     * without exponential notation.
     * 
     * @return An <code>int</code> whose value is the scale of this <code>BigDecimal</code>.
     */

    public int scale() {
        if (exp >= 0)
            return 0; // scale can never be negative
        return -exp;
    }

    /**
     * Returns a plain <code>BigDecimal</code> with a given scale.
     * <p>
     * If the given scale (which must be zero or positive) is the same as or greater than the length of the decimal part
     * (the scale) of this <code>BigDecimal</code> then trailing zeros will be added to the decimal part as necessary.
     * <p>
     * If the given scale is less than the length of the decimal part (the scale) of this <code>BigDecimal</code> then
     * trailing digits will be removed, and in this case an <code>ArithmeticException</code> is thrown if any discarded
     * digits are non-zero.
     * <p>
     * The same as {@link #setScale(int, int)}, where the first parameter is the scale, and the second is <code>
     * MathContext.ROUND_UNNECESSARY</code>.
     * 
     * @param scale The <code>int</code> specifying the scale of the resulting <code>BigDecimal</code>.
     * @return A plain <code>BigDecimal</code> with the given scale.
     * @throws ArithmeticException if <code>scale</code> is negative.
     * @throws ArithmeticException if reducing scale would discard non-zero digits.
     */

    public android.icu.math.BigDecimal setScale(int scale) {
        return setScale(scale, ROUND_UNNECESSARY);
    }

    /**
     * Returns a plain <code>BigDecimal</code> with a given scale.
     * <p>
     * If the given scale (which must be zero or positive) is the same as or greater than the length of the decimal part
     * (the scale) of this <code>BigDecimal</code> then trailing zeros will be added to the decimal part as necessary.
     * <p>
     * If the given scale is less than the length of the decimal part (the scale) of this <code>BigDecimal</code> then
     * trailing digits will be removed, and the rounding mode given by the second parameter is used to determine if the
     * remaining digits are affected by a carry. In this case, an <code>IllegalArgumentException</code> is thrown if
     * <code>round</code> is not a valid rounding mode.
     * <p>
     * If <code>round</code> is <code>MathContext.ROUND_UNNECESSARY</code>, an <code>ArithmeticException</code> is
     * thrown if any discarded digits are non-zero.
     * 
     * @param scale The <code>int</code> specifying the scale of the resulting <code>BigDecimal</code>.
     * @param round The <code>int</code> rounding mode to be used for the division (see the {@link MathContext} class).
     * @return A plain <code>BigDecimal</code> with the given scale.
     * @throws IllegalArgumentException if <code>round</code> is not a valid rounding mode.
     * @throws ArithmeticException if <code>scale</code> is negative.
     * @throws ArithmeticException if <code>round</code> is <code>MathContext.ROUND_UNNECESSARY</code>, and reducing scale would discard
     *             non-zero digits.
     */

    public android.icu.math.BigDecimal setScale(int scale, int round) {
        int ourscale;
        android.icu.math.BigDecimal res;
        int padding = 0;
        int newlen = 0;
        // at present this naughtily only checks the round value if it is
        // needed (used), for speed
        ourscale = this.scale();
        if (ourscale == scale) // already correct scale
            if (this.form == android.icu.math.MathContext.PLAIN) // .. and form
                return this;
        res = clone(this); // need copy
        if (ourscale <= scale) { // simply zero-padding/changing form
            // if ourscale is 0 we may have lots of 0s to add
            if (ourscale == 0)
                padding = res.exp + scale;
            else
                padding = scale - ourscale;
            res.mant = extend(res.mant, res.mant.length + padding);
            res.exp = -scale; // as requested
        } else {/* ourscale>scale: shortening, probably */
            if (scale < 0)
                throw new java.lang.ArithmeticException("Negative scale:" + " " + scale);
            // [round() will raise exception if invalid round]
            newlen = res.mant.length - ((ourscale - scale)); // [<=0 is OK]
            res = res.round(newlen, round); // round to required length
            // This could have shifted left if round (say) 0.9->1[.0]
            // Repair if so by adding a zero and reducing exponent
            if (res.exp != -scale) {
                res.mant = extend(res.mant, res.mant.length + 1);
                res.exp = res.exp - 1;
            }
        }
        res.form = (byte) android.icu.math.MathContext.PLAIN; // by definition
        return res;
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>short</code>. If the <code>BigDecimal</code> has a non-zero
     * decimal part or is out of the possible range for a <code>short</code> (16-bit signed integer) result then an
     * <code>ArithmeticException</code> is thrown.
     * 
     * @return A <code>short</code> equal in value to <code>this</code>.
     * @throws ArithmeticException if <code>this</code> has a non-zero decimal part, or will not fit in a <code>short</code>.
     */

    public short shortValueExact() {
        int num;
        num = this.intValueExact(); // will check decimal part too
        if ((num > 32767) | (num < (-32768)))
            throw new java.lang.ArithmeticException("Conversion overflow:" + " " + this.toString());
        return (short) num;
    }

    /**
     * Returns the sign of this <code>BigDecimal</code>, as an <code>int</code>. This returns the <i>signum</i> function
     * value that represents the sign of this <code>BigDecimal</code>. That is, -1 if the <code>BigDecimal</code> is
     * negative, 0 if it is numerically equal to zero, or 1 if it is positive.
     * 
     * @return An <code>int</code> which is -1 if the <code>BigDecimal</code> is negative, 0 if it is numerically equal
     *         to zero, or 1 if it is positive.
     */

    public int signum() {
        return (int) this.ind; // [note this assumes values for ind.]
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>java.math.BigDecimal</code>.
     * <p>
     * This is an exact conversion; the result is the same as if the <code>BigDecimal</code> were formatted as a plain
     * number without any rounding or exponent and then the <code>java.math.BigDecimal(java.lang.String)</code>
     * constructor were used to construct the result.
     * <p>
     * <i>(Note: this method is provided only in the <code>android.icu.math</code> version of the BigDecimal class. It
     * would not be present in a <code>java.math</code> version.)</i>
     * 
     * @return The <code>java.math.BigDecimal</code> equal in value to this <code>BigDecimal</code>.
     */

    public java.math.BigDecimal toBigDecimal() {
        return new java.math.BigDecimal(this.unscaledValue(), this.scale());
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>java.math.BigInteger</code>.
     * <p>
     * Any decimal part is truncated (discarded). If an exception is desired should the decimal part be non-zero, use
     * {@link #toBigIntegerExact()}.
     * 
     * @return The <code>java.math.BigInteger</code> equal in value to the integer part of this <code>BigDecimal</code>.
     */

    public java.math.BigInteger toBigInteger() {
        android.icu.math.BigDecimal res = null;
        int newlen = 0;
        byte newmant[] = null;
        {/* select */
            if ((exp >= 0) & (form == android.icu.math.MathContext.PLAIN))
                res = this; // can layout simply
            else if (exp >= 0) {
                res = clone(this); // safe copy
                res.form = (byte) android.icu.math.MathContext.PLAIN; // .. and request PLAIN
            } else {
                { // exp<0; scale to be truncated
                    // we could use divideInteger, but we may as well be quicker
                    if (-this.exp >= this.mant.length)
                        res = ZERO; // all blows away
                    else {
                        res = clone(this); // safe copy
                        newlen = res.mant.length + res.exp;
                        newmant = new byte[newlen]; // [shorter]
                        java.lang.System.arraycopy((java.lang.Object) res.mant, 0, (java.lang.Object) newmant, 0,
                                newlen);
                        res.mant = newmant;
                        res.form = (byte) android.icu.math.MathContext.PLAIN;
                        res.exp = 0;
                    }
                }
            }
        }
        return new BigInteger(new java.lang.String(res.layout()));
    }

    /**
     * Converts this <code>BigDecimal</code> to a <code>java.math.BigInteger</code>.
     * <p>
     * An exception is thrown if the decimal part (if any) is non-zero.
     * 
     * @return The <code>java.math.BigInteger</code> equal in value to the integer part of this <code>BigDecimal</code>.
     * @throws ArithmeticException if <code>this</code> has a non-zero decimal part.
     */

    public java.math.BigInteger toBigIntegerExact() {
        /* test any trailing decimal part */
        if (exp < 0) { // possible decimal part
            /* all decimal places must be 0; note exp<0 */
            if ((!(allzero(mant, mant.length + exp))))
                throw new java.lang.ArithmeticException("Decimal part non-zero:" + " " + this.toString());
        }
        return toBigInteger();
    }

    /**
     * Returns the <code>BigDecimal</code> as a character array. The result of this method is the same as using the
     * sequence <code>toString().toCharArray()</code>, but avoids creating the intermediate <code>String</code> and
     * <code>char[]</code> objects.
     * 
     * @return The <code>char[]</code> array corresponding to this <code>BigDecimal</code>.
     */

    public char[] toCharArray() {
        return layout();
    }

    /**
     * Returns the <code>BigDecimal</code> as a <code>String</code>. This returns a <code>String</code> that exactly
     * represents this <code>BigDecimal</code>, as defined in the decimal documentation (see {@link BigDecimal class
     * header}).
     * <p>
     * By definition, using the {@link #BigDecimal(String)} constructor on the result <code>String</code> will create a
     * <code>BigDecimal</code> that is exactly equal to the original <code>BigDecimal</code>.
     * 
     * @return The <code>String</code> exactly corresponding to this <code>BigDecimal</code>.
     * @see #format(int, int)
     * @see #format(int, int, int, int, int, int)
     * @see #toCharArray()
     */

    public java.lang.String toString() {
        return new java.lang.String(layout());
    }

    /**
     * Returns the number as a <code>BigInteger</code> after removing the scale. That is, the number is expressed as a
     * plain number, any decimal point is then removed (retaining the digits of any decimal part), and the result is
     * then converted to a <code>BigInteger</code>.
     * 
     * @return The <code>java.math.BigInteger</code> equal in value to this <code>BigDecimal</code> multiplied by ten to
     *         the power of <code>this.scale()</code>.
     */

    public java.math.BigInteger unscaledValue() {
        android.icu.math.BigDecimal res = null;
        if (exp >= 0)
            res = this;
        else {
            res = clone(this); // safe copy
            res.exp = 0; // drop scale
        }
        return res.toBigInteger();
    }

    /**
     * Translates a <code>double</code> to a <code>BigDecimal</code>.
     * <p>
     * Returns a <code>BigDecimal</code> which is the decimal representation of the 64-bit signed binary floating point
     * parameter. If the parameter is infinite, or is not a number (NaN), a <code>NumberFormatException</code> is
     * thrown.
     * <p>
     * The number is constructed as though <code>num</code> had been converted to a <code>String</code> using the <code>
     * Double.toString()</code> method and the {@link #BigDecimal(java.lang.String)} constructor had then been used.
     * This is typically not an exact conversion.
     * 
     * @param dub The <code>double</code> to be translated.
     * @return The <code>BigDecimal</code> equal in value to <code>dub</code>.
     * @throws NumberFormatException if the parameter is infinite or not a number.
     */

    public static android.icu.math.BigDecimal valueOf(double dub) {
        // Reminder: a zero double returns '0.0', so we cannot fastpath to
        // use the constant ZERO. This might be important enough to justify
        // a factory approach, a cache, or a few private constants, later.
        return new android.icu.math.BigDecimal((new java.lang.Double(dub)).toString());
    }

    /**
     * Translates a <code>long</code> to a <code>BigDecimal</code>. That is, returns a plain <code>BigDecimal</code>
     * whose value is equal to the given <code>long</code>.
     * 
     * @param lint The <code>long</code> to be translated.
     * @return The <code>BigDecimal</code> equal in value to <code>lint</code>.
     */

    public static android.icu.math.BigDecimal valueOf(long lint) {
        return valueOf(lint, 0);
    }

    /**
     * Translates a <code>long</code> to a <code>BigDecimal</code> with a given scale. That is, returns a plain <code>
     * BigDecimal</code> whose unscaled value is equal to the given <code>long</code>, adjusted by the second parameter,
     * <code>scale</code>.
     * <p>
     * The result is given by:
     * <p>
     * <code> (new BigDecimal(lint)).divide(TEN.pow(new BigDecimal(scale))) </code>
     * <p>
     * A <code>NumberFormatException</code> is thrown if <code>scale</code> is negative.
     * 
     * @param lint The <code>long</code> to be translated.
     * @param scale The <code>int</code> scale to be applied.
     * @return The <code>BigDecimal</code> equal in value to <code>lint</code>.
     * @throws NumberFormatException if the scale is negative.
     */

    public static android.icu.math.BigDecimal valueOf(long lint, int scale) {
        android.icu.math.BigDecimal res = null;
        {/* select */
            if (lint == 0)
                res = ZERO;
            else if (lint == 1)
                res = ONE;
            else if (lint == 10)
                res = TEN;
            else {
                res = new android.icu.math.BigDecimal(lint);
            }
        }
        if (scale == 0)
            return res;
        if (scale < 0)
            throw new java.lang.NumberFormatException("Negative scale:" + " " + scale);
        res = clone(res); // safe copy [do not mutate]
        res.exp = -scale; // exponent is -scale
        return res;
    }

    /* ---------------------------------------------------------------- */
    /* Private methods */
    /* ---------------------------------------------------------------- */

    /*
     * <sgml> Return char array value of a BigDecimal (conversion from BigDecimal to laid-out canonical char array).
     * <p>The mantissa will either already have been rounded (following an operation) or will be of length appropriate
     * (in the case of construction from an int, for example). <p>We must not alter the mantissa, here. <p>'form'
     * describes whether we are to use exponential notation (and if so, which), or if we are to lay out as a plain/pure
     * numeric. </sgml>
     */

    private char[] layout() {
        char cmant[];
        int i = 0;
        StringBuilder sb = null;
        int euse = 0;
        int sig = 0;
        char csign = 0;
        char rec[] = null;
        int needsign;
        int mag;
        int len = 0;
        cmant = new char[mant.length]; // copy byte[] to a char[]
        {
            int $18 = mant.length;
            i = 0;
            for (; $18 > 0; $18--, i++) {
                cmant[i] = (char) (mant[i] + ((int) ('0')));
            }
        }/* i */

        if (form != android.icu.math.MathContext.PLAIN) {/* exponential notation needed */
            sb = new StringBuilder(cmant.length + 15); // -x.xxxE+999999999
            if (ind == isneg)
                sb.append('-');
            euse = (exp + cmant.length) - 1; // exponent to use
            /* setup sig=significant digits and copy to result */
            if (form == android.icu.math.MathContext.SCIENTIFIC) { // [default]
                sb.append(cmant[0]); // significant character
                if (cmant.length > 1) // have decimal part
                    sb.append('.').append(cmant, 1, cmant.length - 1);
            } else {
                do {
                    sig = euse % 3; // common
                    if (sig < 0)
                        sig = 3 + sig; // negative exponent
                    euse = euse - sig;
                    sig++;
                    if (sig >= cmant.length) { // zero padding may be needed
                        sb.append(cmant, 0, cmant.length);
                        {
                            int $19 = sig - cmant.length;
                            for (; $19 > 0; $19--) {
                                sb.append('0');
                            }
                        }
                    } else { // decimal point needed
                        sb.append(cmant, 0, sig).append('.').append(cmant, sig, cmant.length - sig);
                    }
                } while (false);
            }/* engineering */
            if (euse != 0) {
                if (euse < 0) {
                    csign = '-';
                    euse = -euse;
                } else
                    csign = '+';
                sb.append('E').append(csign).append(euse);
            }
            rec = new char[sb.length()];
            int srcEnd = sb.length();
            if (0 != srcEnd) {
                sb.getChars(0, srcEnd, rec, 0);
            }
            return rec;
        }

        /* Here for non-exponential (plain) notation */
        if (exp == 0) {/* easy */
            if (ind >= 0)
                return cmant; // non-negative integer
            rec = new char[cmant.length + 1];
            rec[0] = '-';
            java.lang.System.arraycopy((java.lang.Object) cmant, 0, (java.lang.Object) rec, 1, cmant.length);
            return rec;
        }

        /* Need a '.' and/or some zeros */
        needsign = (ind == isneg) ? 1 : 0; // space for sign? 0 or 1

        /*
         * MAG is the position of the point in the mantissa (index of the character it follows)
         */
        mag = exp + cmant.length;

        if (mag < 1) {/* 0.00xxxx form */
            len = (needsign + 2) - exp; // needsign+2+(-mag)+cmant.length
            rec = new char[len];
            if (needsign != 0)
                rec[0] = '-';
            rec[needsign] = '0';
            rec[needsign + 1] = '.';
            {
                int $20 = -mag;
                i = needsign + 2;
                for (; $20 > 0; $20--, i++) { // maybe none
                    rec[i] = '0';
                }
            }/* i */
            java.lang.System.arraycopy((java.lang.Object) cmant, 0, (java.lang.Object) rec, (needsign + 2) - mag,
                    cmant.length);
            return rec;
        }

        if (mag > cmant.length) {/* xxxx0000 form */
            len = needsign + mag;
            rec = new char[len];
            if (needsign != 0)
                rec[0] = '-';
            java.lang.System.arraycopy((java.lang.Object) cmant, 0, (java.lang.Object) rec, needsign, cmant.length);
            {
                int $21 = mag - cmant.length;
                i = needsign + cmant.length;
                for (; $21 > 0; $21--, i++) { // never 0
                    rec[i] = '0';
                }
            }/* i */
            return rec;
        }

        /* decimal point is in the middle of the mantissa */
        len = (needsign + 1) + cmant.length;
        rec = new char[len];
        if (needsign != 0)
            rec[0] = '-';
        java.lang.System.arraycopy((java.lang.Object) cmant, 0, (java.lang.Object) rec, needsign, mag);
        rec[needsign + mag] = '.';
        java.lang.System.arraycopy((java.lang.Object) cmant, mag, (java.lang.Object) rec, (needsign + mag) + 1,
                cmant.length - mag);
        return rec;
    }

    /*
     * <sgml> Checks a BigDecimal argument to ensure it's a true integer in a given range. <p>If OK, returns it as an
     * int. </sgml>
     */
    // [currently only used by pow]
    private int intcheck(int min, int max) {
        int i;
        i = this.intValueExact(); // [checks for non-0 decimal part]
        // Use same message as though intValueExact failed due to size
        if ((i < min) | (i > max))
            throw new java.lang.ArithmeticException("Conversion overflow:" + " " + i);
        return i;
    }

    /* <sgml> Carry out division operations. </sgml> */
    /*
     * Arg1 is operation code: D=divide, I=integer divide, R=remainder Arg2 is the rhs. Arg3 is the context. Arg4 is
     * explicit scale iff code='D' or 'I' (-1 if none).
     * 
     * Underlying algorithm (complications for Remainder function and scaled division are omitted for clarity):
     * 
     * Test for x/0 and then 0/x Exp =Exp1 - Exp2 Exp =Exp +len(var1) -len(var2) Sign=Sign1 Sign2 Pad accumulator (Var1)
     * to double-length with 0's (pad1) Pad Var2 to same length as Var1 B2B=1st two digits of var2, +1 to allow for
     * roundup have=0 Do until (have=digits+1 OR residue=0) if exp<0 then if integer divide/residue then leave
     * this_digit=0 Do forever compare numbers if <0 then leave inner_loop if =0 then (- quick exit without subtract -)
     * do this_digit=this_digit+1; output this_digit leave outer_loop; end Compare lengths of numbers (mantissae): If
     * same then CA=first_digit_of_Var1 else CA=first_two_digits_of_Var1 mult=ca10/b2b -- Good and safe guess at divisor
     * if mult=0 then mult=1 this_digit=this_digit+mult subtract end inner_loop if have\=0 | this_digit\=0 then do
     * output this_digit have=have+1; end var2=var2/10 exp=exp-1 end outer_loop exp=exp+1 -- set the proper exponent if
     * have=0 then generate answer=0 Return to FINISHED Result defined by MATHV1
     * 
     * For extended commentary, see DMSRCN.
     */

    private android.icu.math.BigDecimal dodivide(char code, android.icu.math.BigDecimal rhs,
            android.icu.math.MathContext set, int scale) {
        android.icu.math.BigDecimal lhs;
        int reqdig;
        int newexp;
        android.icu.math.BigDecimal res;
        int newlen;
        byte var1[];
        int var1len;
        byte var2[];
        int var2len;
        int b2b;
        int have;
        int thisdigit = 0;
        int i = 0;
        byte v2 = 0;
        int ba = 0;
        int mult = 0;
        int start = 0;
        int padding = 0;
        int d = 0;
        byte newvar1[] = null;
        byte lasthave = 0;
        int actdig = 0;
        byte newmant[] = null;

        if (set.lostDigits)
            checkdigits(rhs, set.digits);
        lhs = this; // name for clarity

        // [note we must have checked lostDigits before the following checks]
        if (rhs.ind == 0)
            throw new java.lang.ArithmeticException("Divide by 0"); // includes 0/0
        if (lhs.ind == 0) { // 0/x => 0 [possibly with .0s]
            if (set.form != android.icu.math.MathContext.PLAIN)
                return ZERO;
            if (scale == (-1))
                return lhs;
            return lhs.setScale(scale);
        }

        /* Prepare numbers according to BigDecimal rules */
        reqdig = set.digits; // local copy (heavily used)
        if (reqdig > 0) {
            if (lhs.mant.length > reqdig)
                lhs = clone(lhs).round(set);
            if (rhs.mant.length > reqdig)
                rhs = clone(rhs).round(set);
        } else {/* scaled divide */
            if (scale == (-1))
                scale = lhs.scale();
            // set reqdig to be at least large enough for the computation
            reqdig = lhs.mant.length; // base length
            // next line handles both positive lhs.exp and also scale mismatch
            if (scale != -lhs.exp)
                reqdig = (reqdig + scale) + lhs.exp;
            reqdig = (reqdig - ((rhs.mant.length - 1))) - rhs.exp; // reduce by RHS effect
            if (reqdig < lhs.mant.length)
                reqdig = lhs.mant.length; // clamp
            if (reqdig < rhs.mant.length)
                reqdig = rhs.mant.length; // ..
        }

        /* precalculate exponent */
        newexp = ((lhs.exp - rhs.exp) + lhs.mant.length) - rhs.mant.length;
        /* If new exponent -ve, then some quick exits are possible */
        if (newexp < 0)
            if (code != 'D') {
                if (code == 'I')
                    return ZERO; // easy - no integer part
                /* Must be 'R'; remainder is [finished clone of] input value */
                return clone(lhs).finish(set, false);
            }

        /* We need slow division */
        res = new android.icu.math.BigDecimal(); // where we'll build result
        res.ind = (byte) (lhs.ind * rhs.ind); // final sign (for D/I)
        res.exp = newexp; // initial exponent (for D/I)
        res.mant = new byte[reqdig + 1]; // where build the result

        /* Now [virtually pad the mantissae with trailing zeros */
        // Also copy the LHS, which will be our working array
        newlen = (reqdig + reqdig) + 1;
        var1 = extend(lhs.mant, newlen); // always makes longer, so new safe array
        var1len = newlen; // [remaining digits are 0]

        var2 = rhs.mant;
        var2len = newlen;

        /* Calculate first two digits of rhs (var2), +1 for later estimations */
        b2b = (var2[0] * 10) + 1;
        if (var2.length > 1)
            b2b = b2b + var2[1];

        /* start the long-division loops */
        have = 0;
        {
            outer: for (;;) {
                thisdigit = 0;
                /* find the next digit */
                {
                    inner: for (;;) {
                        if (var1len < var2len)
                            break inner; // V1 too low
                        if (var1len == var2len) { // compare needed
                            {
                                compare: do { // comparison
                                    {
                                        int $22 = var1len;
                                        i = 0;
                                        for (; $22 > 0; $22--, i++) {
                                            // var1len is always <= var1.length
                                            if (i < var2.length)
                                                v2 = var2[i];
                                            else
                                                v2 = (byte) 0;
                                            if (var1[i] < v2)
                                                break inner; // V1 too low
                                            if (var1[i] > v2)
                                                break compare; // OK to subtract
                                        }
                                    }/* i */
                                    /*
                                     * reach here if lhs and rhs are identical; subtraction will increase digit by one,
                                     * and the residue will be 0 so we are done; leave the loop with residue set to 0
                                     * (in case code is 'R' or ROUND_UNNECESSARY or a ROUND_HALF_xxxx is being checked)
                                     */
                                    thisdigit++;
                                    res.mant[have] = (byte) thisdigit;
                                    have++;
                                    var1[0] = (byte) 0; // residue to 0 [this is all we'll test]
                                    // var1len=1 -- [optimized out]
                                    break outer;
                                } while (false);
                            }/* compare */
                            /* prepare for subtraction. Estimate BA (lengths the same) */
                            ba = (int) var1[0]; // use only first digit
                        } // lengths the same
                        else {/* lhs longer than rhs */
                            /* use first two digits for estimate */
                            ba = var1[0] * 10;
                            if (var1len > 1)
                                ba = ba + var1[1];
                        }
                        /* subtraction needed; V1>=V2 */
                        mult = (ba * 10) / b2b;
                        if (mult == 0)
                            mult = 1;
                        thisdigit = thisdigit + mult;
                        // subtract; var1 reusable
                        var1 = byteaddsub(var1, var1len, var2, var2len, -mult, true);
                        if (var1[0] != 0)
                            continue inner; // maybe another subtract needed
                        /*
                         * V1 now probably has leading zeros, remove leading 0's and try again. (It could be longer than
                         * V2)
                         */
                        {
                            int $23 = var1len - 2;
                            start = 0;
                            start: for (; start <= $23; start++) {
                                if (var1[start] != 0)
                                    break start;
                                var1len--;
                            }
                        }/* start */
                        if (start == 0)
                            continue inner;
                        // shift left
                        java.lang.System.arraycopy((java.lang.Object) var1, start, (java.lang.Object) var1, 0, var1len);
                    }
                }/* inner */

                /* We have the next digit */
                if ((have != 0) | (thisdigit != 0)) { // put the digit we got
                    res.mant[have] = (byte) thisdigit;
                    have++;
                    if (have == (reqdig + 1))
                        break outer; // we have all we need
                    if (var1[0] == 0)
                        break outer; // residue now 0
                }
                /* can leave now if a scaled divide and exponent is small enough */
                if (scale >= 0)
                    if (-res.exp > scale)
                        break outer;
                /* can leave now if not Divide and no integer part left */
                if (code != 'D')
                    if (res.exp <= 0)
                        break outer;
                res.exp = res.exp - 1; // reduce the exponent
                /*
                 * to get here, V1 is less than V2, so divide V2 by 10 and go for the next digit
                 */
                var2len--;
            }
        }/* outer */

        /* here when we have finished dividing, for some reason */
        // have is the number of digits we collected in res.mant
        if (have == 0)
            have = 1; // res.mant[0] is 0; we always want a digit

        if ((code == 'I') | (code == 'R')) {/* check for integer overflow needed */
            if ((have + res.exp) > reqdig)
                throw new java.lang.ArithmeticException("Integer overflow");

            if (code == 'R') {
                do {
                    /* We were doing Remainder -- return the residue */
                    if (res.mant[0] == 0) // no integer part was found
                        return clone(lhs).finish(set, false); // .. so return lhs, canonical
                    if (var1[0] == 0)
                        return ZERO; // simple 0 residue
                    res.ind = lhs.ind; // sign is always as LHS
                    /*
                     * Calculate the exponent by subtracting the number of padding zeros we added and adding the
                     * original exponent
                     */
                    padding = ((reqdig + reqdig) + 1) - lhs.mant.length;
                    res.exp = (res.exp - padding) + lhs.exp;

                    /*
                     * strip insignificant padding zeros from residue, and create/copy the resulting mantissa if need be
                     */
                    d = var1len;
                    {
                        i = d - 1;
                        i: for (; i >= 1; i--) {
                            if (!((res.exp < lhs.exp) & (res.exp < rhs.exp)))
                                break;
                            if (var1[i] != 0)
                                break i;
                            d--;
                            res.exp = res.exp + 1;
                        }
                    }/* i */
                    if (d < var1.length) {/* need to reduce */
                        newvar1 = new byte[d];
                        java.lang.System.arraycopy((java.lang.Object) var1, 0, (java.lang.Object) newvar1, 0, d); // shorten
                        var1 = newvar1;
                    }
                    res.mant = var1;
                    return res.finish(set, false);
                } while (false);
            }/* remainder */
        }

        else {/* 'D' -- no overflow check needed */
            // If there was a residue then bump the final digit (iff 0 or 5)
            // so that the residue is visible for ROUND_UP, ROUND_HALF_xxx and
            // ROUND_UNNECESSARY checks (etc.) later.
            // [if we finished early, the residue will be 0]
            if (var1[0] != 0) { // residue not 0
                lasthave = res.mant[have - 1];
                if (((lasthave % 5)) == 0)
                    res.mant[have - 1] = (byte) (lasthave + 1);
            }
        }

        /* Here for Divide or Integer Divide */
        // handle scaled results first ['I' always scale 0, optional for 'D']
        if (scale >= 0) {
            do {
                // say 'scale have res.exp len' scale have res.exp res.mant.length
                if (have != res.mant.length)
                    // already padded with 0's, so just adjust exponent
                    res.exp = res.exp - ((res.mant.length - have));
                // calculate number of digits we really want [may be 0]
                actdig = res.mant.length - (-res.exp - scale);
                res.round(actdig, set.roundingMode); // round to desired length
                // This could have shifted left if round (say) 0.9->1[.0]
                // Repair if so by adding a zero and reducing exponent
                if (res.exp != -scale) {
                    res.mant = extend(res.mant, res.mant.length + 1);
                    res.exp = res.exp - 1;
                }
                return res.finish(set, true); // [strip if not PLAIN]
            } while (false);
        }/* scaled */

        // reach here only if a non-scaled
        if (have == res.mant.length) { // got digits+1 digits
            res.round(set);
            have = reqdig;
        } else {/* have<=reqdig */
            if (res.mant[0] == 0)
                return ZERO; // fastpath
            // make the mantissa truly just 'have' long
            // [we could let finish do this, during strip, if we adjusted
            // the exponent; however, truncation avoids the strip loop]
            newmant = new byte[have]; // shorten
            java.lang.System.arraycopy((java.lang.Object) res.mant, 0, (java.lang.Object) newmant, 0, have);
            res.mant = newmant;
        }
        return res.finish(set, true);
    }

    /* <sgml> Report a conversion exception. </sgml> */

    private void bad(char s[]) {
        throw new java.lang.NumberFormatException("Not a number:" + " " + java.lang.String.valueOf(s));
    }

    /*
     * <sgml> Report a bad argument to a method. </sgml> Arg1 is method name Arg2 is argument position Arg3 is what was
     * found
     */

    private void badarg(java.lang.String name, int pos, java.lang.String value) {
        throw new java.lang.IllegalArgumentException("Bad argument" + " " + pos + " " + "to" + " " + name + ":" + " "
                + value);
    }

    /*
     * <sgml> Extend byte array to given length, padding with 0s. If no extension is required then return the same
     * array. </sgml>
     * 
     * Arg1 is the source byte array Arg2 is the new length (longer)
     */

    private static final byte[] extend(byte inarr[], int newlen) {
        byte newarr[];
        if (inarr.length == newlen)
            return inarr;
        newarr = new byte[newlen];
        java.lang.System.arraycopy((java.lang.Object) inarr, 0, (java.lang.Object) newarr, 0, inarr.length);
        // 0 padding is carried out by the JVM on allocation initialization
        return newarr;
    }

    /*
     * <sgml> Add or subtract two >=0 integers in byte arrays <p>This routine performs the calculation: <pre> C=A+(BM)
     * </pre> Where M is in the range -9 through +9 <p> If M<0 then A>=B must be true, so the result is always
     * non-negative.
     * 
     * Leading zeros are not removed after a subtraction. The result is either the same length as the longer of A and B,
     * or 1 longer than that (if a carry occurred).
     * 
     * A is not altered unless Arg6 is 1. B is never altered.
     * 
     * Arg1 is A Arg2 is A length to use (if longer than A, pad with 0's) Arg3 is B Arg4 is B length to use (if longer
     * than B, pad with 0's) Arg5 is M, the multiplier Arg6 is 1 if A can be used to build the result (if it fits)
     * 
     * This routine is severely performance-critical;any change here must be measured (timed) to assure no performance
     * degradation.
     */
    // 1996.02.20 -- enhanced version of DMSRCN algorithm (1981)
    // 1997.10.05 -- changed to byte arrays (from char arrays)
    // 1998.07.01 -- changed to allow destructive reuse of LHS
    // 1998.07.01 -- changed to allow virtual lengths for the arrays
    // 1998.12.29 -- use lookaside for digit/carry calculation
    // 1999.08.07 -- avoid multiply when mult=1, and make db an int
    // 1999.12.22 -- special case m=-1, also drop 0 special case
    private static final byte[] byteaddsub(byte a[], int avlen, byte b[], int bvlen, int m, boolean reuse) {
        int alength;
        int blength;
        int ap;
        int bp;
        int maxarr;
        byte reb[];
        boolean quickm;
        int digit;
        int op = 0;
        int dp90 = 0;
        byte newarr[];
        int i = 0;

        // We'll usually be right if we assume no carry
        alength = a.length; // physical lengths
        blength = b.length; // ..
        ap = avlen - 1; // -> final (rightmost) digit
        bp = bvlen - 1; // ..
        maxarr = bp;
        if (maxarr < ap)
            maxarr = ap;
        reb = (byte[]) null; // result byte array
        if (reuse)
            if ((maxarr + 1) == alength)
                reb = a; // OK to reuse A
        if (reb == null)
            reb = new byte[maxarr + 1]; // need new array

        quickm = false; // 1 if no multiply needed
        if (m == 1)
            quickm = true; // most common
        else if (m == (-1))
            quickm = true; // also common

        digit = 0; // digit, with carry or borrow
        {
            op = maxarr;
            op: for (; op >= 0; op--) {
                if (ap >= 0) {
                    if (ap < alength)
                        digit = digit + a[ap]; // within A
                    ap--;
                }
                if (bp >= 0) {
                    if (bp < blength) { // within B
                        if (quickm) {
                            if (m > 0)
                                digit = digit + b[bp]; // most common
                            else
                                digit = digit - b[bp]; // also common
                        } else
                            digit = digit + (b[bp] * m);
                    }
                    bp--;
                }
                /* result so far (digit) could be -90 through 99 */
                if (digit < 10)
                    if (digit >= 0) {
                        do { // 0-9
                            reb[op] = (byte) digit;
                            digit = 0; // no carry
                            continue op;
                        } while (false);
                    }/* quick */
                dp90 = digit + 90;
                reb[op] = bytedig[dp90]; // this digit
                digit = bytecar[dp90]; // carry or borrow
            }
        }/* op */

        if (digit == 0)
            return reb; // no carry
        // following line will become an Assert, later
        // if digit<0 then signal ArithmeticException("internal.error ["digit"]")

        /* We have carry -- need to make space for the extra digit */
        newarr = (byte[]) null;
        if (reuse)
            if ((maxarr + 2) == a.length)
                newarr = a; // OK to reuse A
        if (newarr == null)
            newarr = new byte[maxarr + 2];
        newarr[0] = (byte) digit; // the carried digit ..
        // .. and all the rest [use local loop for short numbers]
        if (maxarr < 10) {
            int $24 = maxarr + 1;
            i = 0;
            for (; $24 > 0; $24--, i++) {
                newarr[i + 1] = reb[i];
            }
        }/* i */
        else
            java.lang.System.arraycopy((java.lang.Object) reb, 0, (java.lang.Object) newarr, 1, maxarr + 1);
        return newarr;
    }

    /*
     * <sgml> Initializer for digit array properties (lookaside). </sgml> Returns the digit array, and initializes the
     * carry array.
     */

    private static final byte[] diginit() {
        byte work[];
        int op = 0;
        int digit = 0;
        work = new byte[(90 + 99) + 1];
        {
            op = 0;
            op: for (; op <= (90 + 99); op++) {
                digit = op - 90;
                if (digit >= 0) {
                    work[op] = (byte) (digit % 10);
                    bytecar[op] = (byte) (digit / 10); // calculate carry
                    continue op;
                }
                // borrowing...
                digit = digit + 100; // yes, this is right [consider -50]
                work[op] = (byte) (digit % 10);
                bytecar[op] = (byte) ((digit / 10) - 10); // calculate borrow [NB: - after %]
            }
        }/* op */
        return work;
    }

    /*
     * <sgml> Create a copy of BigDecimal object for local use. <p>This does NOT make a copy of the mantissa array.
     * </sgml> Arg1 is the BigDecimal to clone (non-null)
     */

    private static final android.icu.math.BigDecimal clone(android.icu.math.BigDecimal dec) {
        android.icu.math.BigDecimal copy;
        copy = new android.icu.math.BigDecimal();
        copy.ind = dec.ind;
        copy.exp = dec.exp;
        copy.form = dec.form;
        copy.mant = dec.mant;
        return copy;
    }

    /*
     * <sgml> Check one or two numbers for lost digits. </sgml> Arg1 is RHS (or null, if none) Arg2 is current DIGITS
     * setting returns quietly or throws an exception
     */

    private void checkdigits(android.icu.math.BigDecimal rhs, int dig) {
        if (dig == 0)
            return; // don't check if digits=0
        // first check lhs...
        if (this.mant.length > dig)
            if ((!(allzero(this.mant, dig))))
                throw new java.lang.ArithmeticException("Too many digits:" + " " + this.toString());
        if (rhs == null)
            return; // monadic
        if (rhs.mant.length > dig)
            if ((!(allzero(rhs.mant, dig))))
                throw new java.lang.ArithmeticException("Too many digits:" + " " + rhs.toString());
    }

    /*
     * <sgml> Round to specified digits, if necessary. </sgml> Arg1 is requested MathContext [with length and rounding
     * mode] returns this, for convenience
     */

    private android.icu.math.BigDecimal round(android.icu.math.MathContext set) {
        return round(set.digits, set.roundingMode);
    }

    /*
     * <sgml> Round to specified digits, if necessary. Arg1 is requested length (digits to round to) [may be <=0 when
     * called from format, dodivide, etc.] Arg2 is rounding mode returns this, for convenience
     * 
     * ind and exp are adjusted, but not cleared for a mantissa of zero
     * 
     * The length of the mantissa returned will be Arg1, except when Arg1 is 0, in which case the returned mantissa
     * length will be 1. </sgml>
     */

    private android.icu.math.BigDecimal round(int len, int mode) {
        int adjust;
        int sign;
        byte oldmant[];
        boolean reuse = false;
        byte first = 0;
        int increment;
        byte newmant[] = null;
        adjust = mant.length - len;
        if (adjust <= 0)
            return this; // nowt to do

        exp = exp + adjust; // exponent of result
        sign = (int) ind; // save [assumes -1, 0, 1]
        oldmant = mant; // save
        if (len > 0) {
            // remove the unwanted digits
            mant = new byte[len];
            java.lang.System.arraycopy((java.lang.Object) oldmant, 0, (java.lang.Object) mant, 0, len);
            reuse = true; // can reuse mantissa
            first = oldmant[len]; // first of discarded digits
        } else {/* len<=0 */
            mant = ZERO.mant;
            ind = iszero;
            reuse = false; // cannot reuse mantissa
            if (len == 0)
                first = oldmant[0];
            else
                first = (byte) 0; // [virtual digit]
        }

        // decide rounding adjustment depending on mode, sign, and discarded digits
        increment = 0; // bumper
        {
            do {/* select */
                if (mode == ROUND_HALF_UP) { // default first [most common]
                    if (first >= 5)
                        increment = sign;
                } else if (mode == ROUND_UNNECESSARY) { // default for setScale()
                    // discarding any non-zero digits is an error
                    if ((!(allzero(oldmant, len))))
                        throw new java.lang.ArithmeticException("Rounding necessary");
                } else if (mode == ROUND_HALF_DOWN) { // 0.5000 goes down
                    if (first > 5)
                        increment = sign;
                    else if (first == 5)
                        if ((!(allzero(oldmant, len + 1))))
                            increment = sign;
                } else if (mode == ROUND_HALF_EVEN) { // 0.5000 goes down if left digit even
                    if (first > 5)
                        increment = sign;
                    else if (first == 5) {
                        if ((!(allzero(oldmant, len + 1))))
                            increment = sign;
                        else /* 0.5000 */
                        if ((((mant[mant.length - 1]) % 2)) != 0)
                            increment = sign;
                    }
                } else if (mode == ROUND_DOWN) {
                    // never increment
                } else if (mode == ROUND_UP) { // increment if discarded non-zero
                    if ((!(allzero(oldmant, len))))
                        increment = sign;
                } else if (mode == ROUND_CEILING) { // more positive
                    if (sign > 0)
                        if ((!(allzero(oldmant, len))))
                            increment = sign;
                } else if (mode == ROUND_FLOOR) { // more negative
                    if (sign < 0)
                        if ((!(allzero(oldmant, len))))
                            increment = sign;
                } else {
                    throw new java.lang.IllegalArgumentException("Bad round value:" + " " + mode);
                }
            } while (false);
        }/* modes */

        if (increment != 0) {
            do {
                if (ind == iszero) {
                    // we must not subtract from 0, but result is trivial anyway
                    mant = ONE.mant;
                    ind = (byte) increment;
                } else {
                    // mantissa is non-0; we can safely add or subtract 1
                    if (ind == isneg)
                        increment = -increment;
                    newmant = byteaddsub(mant, mant.length, ONE.mant, 1, increment, reuse);
                    if (newmant.length > mant.length) { // had a carry
                        // drop rightmost digit and raise exponent
                        exp++;
                        // mant is already the correct length
                        java.lang.System.arraycopy((java.lang.Object) newmant, 0, (java.lang.Object) mant, 0,
                                mant.length);
                    } else
                        mant = newmant;
                }
            } while (false);
        }/* bump */
        // rounding can increase exponent significantly
        if (exp > MaxExp)
            throw new java.lang.ArithmeticException("Exponent Overflow:" + " " + exp);
        return this;
    }

    /*
     * <sgml> Test if rightmost digits are all 0. Arg1 is a mantissa array to test Arg2 is the offset of first digit to
     * check [may be negative; if so, digits to left are 0's] returns 1 if all the digits starting at Arg2 are 0
     * 
     * Arg2 may be beyond array bounds, in which case 1 is returned </sgml>
     */

    private static final boolean allzero(byte array[], int start) {
        int i = 0;
        if (start < 0)
            start = 0;
        {
            int $25 = array.length - 1;
            i = start;
            for (; i <= $25; i++) {
                if (array[i] != 0)
                    return false;
            }
        }/* i */
        return true;
    }

    /*
     * <sgml> Carry out final checks and canonicalization <p> This finishes off the current number by: 1. Rounding if
     * necessary (NB: length includes leading zeros) 2. Stripping trailing zeros (if requested and \PLAIN) 3. Stripping
     * leading zeros (always) 4. Selecting exponential notation (if required) 5. Converting a zero result to just '0'
     * (if \PLAIN) In practice, these operations overlap and share code. It always sets form. </sgml> Arg1 is requested
     * MathContext (length to round to, trigger, and FORM) Arg2 is 1 if trailing insignificant zeros should be removed
     * after round (for division, etc.), provided that set.form isn't PLAIN. returns this, for convenience
     */

    private android.icu.math.BigDecimal finish(android.icu.math.MathContext set, boolean strip) {
        int d = 0;
        int i = 0;
        byte newmant[] = null;
        int mag = 0;
        int sig = 0;
        /* Round if mantissa too long and digits requested */
        if (set.digits != 0)
            if (this.mant.length > set.digits)
                this.round(set);

        /*
         * If strip requested (and standard formatting), remove insignificant trailing zeros.
         */
        if (strip)
            if (set.form != android.icu.math.MathContext.PLAIN) {
                d = this.mant.length;
                /* see if we need to drop any trailing zeros */
                {
                    i = d - 1;
                    i: for (; i >= 1; i--) {
                        if (this.mant[i] != 0)
                            break i;
                        d--;
                        exp++;
                    }
                }/* i */
                if (d < this.mant.length) {/* need to reduce */
                    newmant = new byte[d];
                    java.lang.System.arraycopy((java.lang.Object) this.mant, 0, (java.lang.Object) newmant, 0, d);
                    this.mant = newmant;
                }
            }

        form = (byte) android.icu.math.MathContext.PLAIN; // preset

        /* Now check for leading- and all- zeros in mantissa */
        {
            int $26 = this.mant.length;
            i = 0;
            for (; $26 > 0; $26--, i++) {
                if (this.mant[i] != 0) {
                    // non-0 result; ind will be correct
                    // remove leading zeros [e.g., after subtract]
                    if (i > 0) {
                        do {
                            newmant = new byte[this.mant.length - i];
                            java.lang.System.arraycopy((java.lang.Object) this.mant, i, (java.lang.Object) newmant, 0,
                                    this.mant.length - i);
                            this.mant = newmant;
                        } while (false);
                    }/* delead */
                    // now determine form if not PLAIN
                    mag = exp + mant.length;
                    if (mag > 0) { // most common path
                        if (mag > set.digits)
                            if (set.digits != 0)
                                form = (byte) set.form;
                        if ((mag - 1) <= MaxExp)
                            return this; // no overflow; quick return
                    } else if (mag < (-5))
                        form = (byte) set.form;
                    /* check for overflow */
                    mag--;
                    if ((mag < MinExp) | (mag > MaxExp)) {
                        overflow: do {
                            // possible reprieve if form is engineering
                            if (form == android.icu.math.MathContext.ENGINEERING) {
                                sig = mag % 3; // leftover
                                if (sig < 0)
                                    sig = 3 + sig; // negative exponent
                                mag = mag - sig; // exponent to use
                                // 1999.06.29: second test here must be MaxExp
                                if (mag >= MinExp)
                                    if (mag <= MaxExp)
                                        break overflow;
                            }
                            throw new java.lang.ArithmeticException("Exponent Overflow:" + " " + mag);
                        } while (false);
                    }/* overflow */
                    return this;
                }
            }
        }/* i */

        // Drop through to here only if mantissa is all zeros
        ind = iszero;
        {/* select */
            if (set.form != android.icu.math.MathContext.PLAIN)
                exp = 0; // standard result; go to '0'
            else if (exp > 0)
                exp = 0; // +ve exponent also goes to '0'
            else {
                // a plain number with -ve exponent; preserve and check exponent
                if (exp < MinExp)
                    throw new java.lang.ArithmeticException("Exponent Overflow:" + " " + exp);
            }
        }
        mant = ZERO.mant; // canonical mantissa
        return this;
    }
}