aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/opto/graphKit.cpp
blob: dabc7e758b689c2a9437641178caaedf1e0a7c8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
/*
 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "memory/barrierSet.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "opto/addnode.hpp"
#include "opto/graphKit.hpp"
#include "opto/idealKit.hpp"
#include "opto/locknode.hpp"
#include "opto/machnode.hpp"
#include "opto/parse.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/sharedRuntime.hpp"

//----------------------------GraphKit-----------------------------------------
// Main utility constructor.
GraphKit::GraphKit(JVMState* jvms)
  : Phase(Phase::Parser),
    _env(C->env()),
    _gvn(*C->initial_gvn())
{
  _exceptions = jvms->map()->next_exception();
  if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  set_jvms(jvms);
}

// Private constructor for parser.
GraphKit::GraphKit()
  : Phase(Phase::Parser),
    _env(C->env()),
    _gvn(*C->initial_gvn())
{
  _exceptions = NULL;
  set_map(NULL);
  debug_only(_sp = -99);
  debug_only(set_bci(-99));
}



//---------------------------clean_stack---------------------------------------
// Clear away rubbish from the stack area of the JVM state.
// This destroys any arguments that may be waiting on the stack.
void GraphKit::clean_stack(int from_sp) {
  SafePointNode* map      = this->map();
  JVMState*      jvms     = this->jvms();
  int            stk_size = jvms->stk_size();
  int            stkoff   = jvms->stkoff();
  Node*          top      = this->top();
  for (int i = from_sp; i < stk_size; i++) {
    if (map->in(stkoff + i) != top) {
      map->set_req(stkoff + i, top);
    }
  }
}


//--------------------------------sync_jvms-----------------------------------
// Make sure our current jvms agrees with our parse state.
JVMState* GraphKit::sync_jvms() const {
  JVMState* jvms = this->jvms();
  jvms->set_bci(bci());       // Record the new bci in the JVMState
  jvms->set_sp(sp());         // Record the new sp in the JVMState
  assert(jvms_in_sync(), "jvms is now in sync");
  return jvms;
}

//--------------------------------sync_jvms_for_reexecute---------------------
// Make sure our current jvms agrees with our parse state.  This version
// uses the reexecute_sp for reexecuting bytecodes.
JVMState* GraphKit::sync_jvms_for_reexecute() {
  JVMState* jvms = this->jvms();
  jvms->set_bci(bci());          // Record the new bci in the JVMState
  jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
  return jvms;
}

#ifdef ASSERT
bool GraphKit::jvms_in_sync() const {
  Parse* parse = is_Parse();
  if (parse == NULL) {
    if (bci() !=      jvms()->bci())          return false;
    if (sp()  != (int)jvms()->sp())           return false;
    return true;
  }
  if (jvms()->method() != parse->method())    return false;
  if (jvms()->bci()    != parse->bci())       return false;
  int jvms_sp = jvms()->sp();
  if (jvms_sp          != parse->sp())        return false;
  int jvms_depth = jvms()->depth();
  if (jvms_depth       != parse->depth())     return false;
  return true;
}

// Local helper checks for special internal merge points
// used to accumulate and merge exception states.
// They are marked by the region's in(0) edge being the map itself.
// Such merge points must never "escape" into the parser at large,
// until they have been handed to gvn.transform.
static bool is_hidden_merge(Node* reg) {
  if (reg == NULL)  return false;
  if (reg->is_Phi()) {
    reg = reg->in(0);
    if (reg == NULL)  return false;
  }
  return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
}

void GraphKit::verify_map() const {
  if (map() == NULL)  return;  // null map is OK
  assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
  assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
  assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
}

void GraphKit::verify_exception_state(SafePointNode* ex_map) {
  assert(ex_map->next_exception() == NULL, "not already part of a chain");
  assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
}
#endif

//---------------------------stop_and_kill_map---------------------------------
// Set _map to NULL, signalling a stop to further bytecode execution.
// First smash the current map's control to a constant, to mark it dead.
void GraphKit::stop_and_kill_map() {
  SafePointNode* dead_map = stop();
  if (dead_map != NULL) {
    dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
    assert(dead_map->is_killed(), "must be so marked");
  }
}


//--------------------------------stopped--------------------------------------
// Tell if _map is NULL, or control is top.
bool GraphKit::stopped() {
  if (map() == NULL)           return true;
  else if (control() == top()) return true;
  else                         return false;
}


//-----------------------------has_ex_handler----------------------------------
// Tell if this method or any caller method has exception handlers.
bool GraphKit::has_ex_handler() {
  for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
    if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
      return true;
    }
  }
  return false;
}

//------------------------------save_ex_oop------------------------------------
// Save an exception without blowing stack contents or other JVM state.
void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
  assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
  ex_map->add_req(ex_oop);
  debug_only(verify_exception_state(ex_map));
}

inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
  assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
  Node* ex_oop = ex_map->in(ex_map->req()-1);
  if (clear_it)  ex_map->del_req(ex_map->req()-1);
  return ex_oop;
}

//-----------------------------saved_ex_oop------------------------------------
// Recover a saved exception from its map.
Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
  return common_saved_ex_oop(ex_map, false);
}

//--------------------------clear_saved_ex_oop---------------------------------
// Erase a previously saved exception from its map.
Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
  return common_saved_ex_oop(ex_map, true);
}

#ifdef ASSERT
//---------------------------has_saved_ex_oop----------------------------------
// Erase a previously saved exception from its map.
bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
  return ex_map->req() == ex_map->jvms()->endoff()+1;
}
#endif

//-------------------------make_exception_state--------------------------------
// Turn the current JVM state into an exception state, appending the ex_oop.
SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
  sync_jvms();
  SafePointNode* ex_map = stop();  // do not manipulate this map any more
  set_saved_ex_oop(ex_map, ex_oop);
  return ex_map;
}


//--------------------------add_exception_state--------------------------------
// Add an exception to my list of exceptions.
void GraphKit::add_exception_state(SafePointNode* ex_map) {
  if (ex_map == NULL || ex_map->control() == top()) {
    return;
  }
#ifdef ASSERT
  verify_exception_state(ex_map);
  if (has_exceptions()) {
    assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
  }
#endif

  // If there is already an exception of exactly this type, merge with it.
  // In particular, null-checks and other low-level exceptions common up here.
  Node*       ex_oop  = saved_ex_oop(ex_map);
  const Type* ex_type = _gvn.type(ex_oop);
  if (ex_oop == top()) {
    // No action needed.
    return;
  }
  assert(ex_type->isa_instptr(), "exception must be an instance");
  for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
    const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
    // We check sp also because call bytecodes can generate exceptions
    // both before and after arguments are popped!
    if (ex_type2 == ex_type
        && e2->_jvms->sp() == ex_map->_jvms->sp()) {
      combine_exception_states(ex_map, e2);
      return;
    }
  }

  // No pre-existing exception of the same type.  Chain it on the list.
  push_exception_state(ex_map);
}

//-----------------------add_exception_states_from-----------------------------
void GraphKit::add_exception_states_from(JVMState* jvms) {
  SafePointNode* ex_map = jvms->map()->next_exception();
  if (ex_map != NULL) {
    jvms->map()->set_next_exception(NULL);
    for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
      next_map = ex_map->next_exception();
      ex_map->set_next_exception(NULL);
      add_exception_state(ex_map);
    }
  }
}

//-----------------------transfer_exceptions_into_jvms-------------------------
JVMState* GraphKit::transfer_exceptions_into_jvms() {
  if (map() == NULL) {
    // We need a JVMS to carry the exceptions, but the map has gone away.
    // Create a scratch JVMS, cloned from any of the exception states...
    if (has_exceptions()) {
      _map = _exceptions;
      _map = clone_map();
      _map->set_next_exception(NULL);
      clear_saved_ex_oop(_map);
      debug_only(verify_map());
    } else {
      // ...or created from scratch
      JVMState* jvms = new (C) JVMState(_method, NULL);
      jvms->set_bci(_bci);
      jvms->set_sp(_sp);
      jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
      set_jvms(jvms);
      for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
      set_all_memory(top());
      while (map()->req() < jvms->endoff())  map()->add_req(top());
    }
    // (This is a kludge, in case you didn't notice.)
    set_control(top());
  }
  JVMState* jvms = sync_jvms();
  assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
  jvms->map()->set_next_exception(_exceptions);
  _exceptions = NULL;   // done with this set of exceptions
  return jvms;
}

static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
  assert(is_hidden_merge(dstphi), "must be a special merge node");
  assert(is_hidden_merge(srcphi), "must be a special merge node");
  uint limit = srcphi->req();
  for (uint i = PhiNode::Input; i < limit; i++) {
    dstphi->add_req(srcphi->in(i));
  }
}
static inline void add_one_req(Node* dstphi, Node* src) {
  assert(is_hidden_merge(dstphi), "must be a special merge node");
  assert(!is_hidden_merge(src), "must not be a special merge node");
  dstphi->add_req(src);
}

//-----------------------combine_exception_states------------------------------
// This helper function combines exception states by building phis on a
// specially marked state-merging region.  These regions and phis are
// untransformed, and can build up gradually.  The region is marked by
// having a control input of its exception map, rather than NULL.  Such
// regions do not appear except in this function, and in use_exception_state.
void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
  if (failing())  return;  // dying anyway...
  JVMState* ex_jvms = ex_map->_jvms;
  assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
  assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
  assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
  assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
  assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
  assert(ex_map->req() == phi_map->req(), "matching maps");
  uint tos = ex_jvms->stkoff() + ex_jvms->sp();
  Node*         hidden_merge_mark = root();
  Node*         region  = phi_map->control();
  MergeMemNode* phi_mem = phi_map->merged_memory();
  MergeMemNode* ex_mem  = ex_map->merged_memory();
  if (region->in(0) != hidden_merge_mark) {
    // The control input is not (yet) a specially-marked region in phi_map.
    // Make it so, and build some phis.
    region = new (C) RegionNode(2);
    _gvn.set_type(region, Type::CONTROL);
    region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
    region->init_req(1, phi_map->control());
    phi_map->set_control(region);
    Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
    record_for_igvn(io_phi);
    _gvn.set_type(io_phi, Type::ABIO);
    phi_map->set_i_o(io_phi);
    for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
      Node* m = mms.memory();
      Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
      record_for_igvn(m_phi);
      _gvn.set_type(m_phi, Type::MEMORY);
      mms.set_memory(m_phi);
    }
  }

  // Either or both of phi_map and ex_map might already be converted into phis.
  Node* ex_control = ex_map->control();
  // if there is special marking on ex_map also, we add multiple edges from src
  bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
  // how wide was the destination phi_map, originally?
  uint orig_width = region->req();

  if (add_multiple) {
    add_n_reqs(region, ex_control);
    add_n_reqs(phi_map->i_o(), ex_map->i_o());
  } else {
    // ex_map has no merges, so we just add single edges everywhere
    add_one_req(region, ex_control);
    add_one_req(phi_map->i_o(), ex_map->i_o());
  }
  for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
    if (mms.is_empty()) {
      // get a copy of the base memory, and patch some inputs into it
      const TypePtr* adr_type = mms.adr_type(C);
      Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
      assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
      mms.set_memory(phi);
      // Prepare to append interesting stuff onto the newly sliced phi:
      while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
    }
    // Append stuff from ex_map:
    if (add_multiple) {
      add_n_reqs(mms.memory(), mms.memory2());
    } else {
      add_one_req(mms.memory(), mms.memory2());
    }
  }
  uint limit = ex_map->req();
  for (uint i = TypeFunc::Parms; i < limit; i++) {
    // Skip everything in the JVMS after tos.  (The ex_oop follows.)
    if (i == tos)  i = ex_jvms->monoff();
    Node* src = ex_map->in(i);
    Node* dst = phi_map->in(i);
    if (src != dst) {
      PhiNode* phi;
      if (dst->in(0) != region) {
        dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
        record_for_igvn(phi);
        _gvn.set_type(phi, phi->type());
        phi_map->set_req(i, dst);
        // Prepare to append interesting stuff onto the new phi:
        while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
      } else {
        assert(dst->is_Phi(), "nobody else uses a hidden region");
        phi = dst->as_Phi();
      }
      if (add_multiple && src->in(0) == ex_control) {
        // Both are phis.
        add_n_reqs(dst, src);
      } else {
        while (dst->req() < region->req())  add_one_req(dst, src);
      }
      const Type* srctype = _gvn.type(src);
      if (phi->type() != srctype) {
        const Type* dsttype = phi->type()->meet_speculative(srctype);
        if (phi->type() != dsttype) {
          phi->set_type(dsttype);
          _gvn.set_type(phi, dsttype);
        }
      }
    }
  }
  phi_map->merge_replaced_nodes_with(ex_map);
}

//--------------------------use_exception_state--------------------------------
Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
  if (failing()) { stop(); return top(); }
  Node* region = phi_map->control();
  Node* hidden_merge_mark = root();
  assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
  Node* ex_oop = clear_saved_ex_oop(phi_map);
  if (region->in(0) == hidden_merge_mark) {
    // Special marking for internal ex-states.  Process the phis now.
    region->set_req(0, region);  // now it's an ordinary region
    set_jvms(phi_map->jvms());   // ...so now we can use it as a map
    // Note: Setting the jvms also sets the bci and sp.
    set_control(_gvn.transform(region));
    uint tos = jvms()->stkoff() + sp();
    for (uint i = 1; i < tos; i++) {
      Node* x = phi_map->in(i);
      if (x->in(0) == region) {
        assert(x->is_Phi(), "expected a special phi");
        phi_map->set_req(i, _gvn.transform(x));
      }
    }
    for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
      Node* x = mms.memory();
      if (x->in(0) == region) {
        assert(x->is_Phi(), "nobody else uses a hidden region");
        mms.set_memory(_gvn.transform(x));
      }
    }
    if (ex_oop->in(0) == region) {
      assert(ex_oop->is_Phi(), "expected a special phi");
      ex_oop = _gvn.transform(ex_oop);
    }
  } else {
    set_jvms(phi_map->jvms());
  }

  assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
  assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
  return ex_oop;
}

//---------------------------------java_bc-------------------------------------
Bytecodes::Code GraphKit::java_bc() const {
  ciMethod* method = this->method();
  int       bci    = this->bci();
  if (method != NULL && bci != InvocationEntryBci)
    return method->java_code_at_bci(bci);
  else
    return Bytecodes::_illegal;
}

void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
                                                          bool must_throw) {
    // if the exception capability is set, then we will generate code
    // to check the JavaThread.should_post_on_exceptions flag to see
    // if we actually need to report exception events (for this
    // thread).  If we don't need to report exception events, we will
    // take the normal fast path provided by add_exception_events.  If
    // exception event reporting is enabled for this thread, we will
    // take the uncommon_trap in the BuildCutout below.

    // first must access the should_post_on_exceptions_flag in this thread's JavaThread
    Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
    Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
    Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);

    // Test the should_post_on_exceptions_flag vs. 0
    Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
    Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );

    // Branch to slow_path if should_post_on_exceptions_flag was true
    { BuildCutout unless(this, tst, PROB_MAX);
      // Do not try anything fancy if we're notifying the VM on every throw.
      // Cf. case Bytecodes::_athrow in parse2.cpp.
      uncommon_trap(reason, Deoptimization::Action_none,
                    (ciKlass*)NULL, (char*)NULL, must_throw);
    }

}

//------------------------------builtin_throw----------------------------------
void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
  bool must_throw = true;

  if (env()->jvmti_can_post_on_exceptions()) {
    // check if we must post exception events, take uncommon trap if so
    uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
    // here if should_post_on_exceptions is false
    // continue on with the normal codegen
  }

  // If this particular condition has not yet happened at this
  // bytecode, then use the uncommon trap mechanism, and allow for
  // a future recompilation if several traps occur here.
  // If the throw is hot, try to use a more complicated inline mechanism
  // which keeps execution inside the compiled code.
  bool treat_throw_as_hot = false;
  ciMethodData* md = method()->method_data();

  if (ProfileTraps) {
    if (too_many_traps(reason)) {
      treat_throw_as_hot = true;
    }
    // (If there is no MDO at all, assume it is early in
    // execution, and that any deopts are part of the
    // startup transient, and don't need to be remembered.)

    // Also, if there is a local exception handler, treat all throws
    // as hot if there has been at least one in this method.
    if (C->trap_count(reason) != 0
        && method()->method_data()->trap_count(reason) != 0
        && has_ex_handler()) {
        treat_throw_as_hot = true;
    }
  }

  // If this throw happens frequently, an uncommon trap might cause
  // a performance pothole.  If there is a local exception handler,
  // and if this particular bytecode appears to be deoptimizing often,
  // let us handle the throw inline, with a preconstructed instance.
  // Note:   If the deopt count has blown up, the uncommon trap
  // runtime is going to flush this nmethod, not matter what.
  if (treat_throw_as_hot
      && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
    // If the throw is local, we use a pre-existing instance and
    // punt on the backtrace.  This would lead to a missing backtrace
    // (a repeat of 4292742) if the backtrace object is ever asked
    // for its backtrace.
    // Fixing this remaining case of 4292742 requires some flavor of
    // escape analysis.  Leave that for the future.
    ciInstance* ex_obj = NULL;
    switch (reason) {
    case Deoptimization::Reason_null_check:
      ex_obj = env()->NullPointerException_instance();
      break;
    case Deoptimization::Reason_div0_check:
      ex_obj = env()->ArithmeticException_instance();
      break;
    case Deoptimization::Reason_range_check:
      ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
      break;
    case Deoptimization::Reason_class_check:
      if (java_bc() == Bytecodes::_aastore) {
        ex_obj = env()->ArrayStoreException_instance();
      } else {
        ex_obj = env()->ClassCastException_instance();
      }
      break;
    }
    if (failing()) { stop(); return; }  // exception allocation might fail
    if (ex_obj != NULL) {
      // Cheat with a preallocated exception object.
      if (C->log() != NULL)
        C->log()->elem("hot_throw preallocated='1' reason='%s'",
                       Deoptimization::trap_reason_name(reason));
      const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
      Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );

      // Clear the detail message of the preallocated exception object.
      // Weblogic sometimes mutates the detail message of exceptions
      // using reflection.
      int offset = java_lang_Throwable::get_detailMessage_offset();
      const TypePtr* adr_typ = ex_con->add_offset(offset);

      Node *adr = basic_plus_adr(ex_node, ex_node, offset);
      const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
      // Conservatively release stores of object references.
      Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);

      add_exception_state(make_exception_state(ex_node));
      return;
    }
  }

  // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
  // It won't be much cheaper than bailing to the interp., since we'll
  // have to pass up all the debug-info, and the runtime will have to
  // create the stack trace.

  // Usual case:  Bail to interpreter.
  // Reserve the right to recompile if we haven't seen anything yet.

  assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
  Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
  if (treat_throw_as_hot
      && (method()->method_data()->trap_recompiled_at(bci(), NULL)
          || C->too_many_traps(reason))) {
    // We cannot afford to take more traps here.  Suffer in the interpreter.
    if (C->log() != NULL)
      C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
                     Deoptimization::trap_reason_name(reason),
                     C->trap_count(reason));
    action = Deoptimization::Action_none;
  }

  // "must_throw" prunes the JVM state to include only the stack, if there
  // are no local exception handlers.  This should cut down on register
  // allocation time and code size, by drastically reducing the number
  // of in-edges on the call to the uncommon trap.

  uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
}


//----------------------------PreserveJVMState---------------------------------
PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
  debug_only(kit->verify_map());
  _kit    = kit;
  _map    = kit->map();   // preserve the map
  _sp     = kit->sp();
  kit->set_map(clone_map ? kit->clone_map() : NULL);
#ifdef ASSERT
  _bci    = kit->bci();
  Parse* parser = kit->is_Parse();
  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
  _block  = block;
#endif
}
PreserveJVMState::~PreserveJVMState() {
  GraphKit* kit = _kit;
#ifdef ASSERT
  assert(kit->bci() == _bci, "bci must not shift");
  Parse* parser = kit->is_Parse();
  int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
  assert(block == _block,    "block must not shift");
#endif
  kit->set_map(_map);
  kit->set_sp(_sp);
}


//-----------------------------BuildCutout-------------------------------------
BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
  : PreserveJVMState(kit)
{
  assert(p->is_Con() || p->is_Bool(), "test must be a bool");
  SafePointNode* outer_map = _map;   // preserved map is caller's
  SafePointNode* inner_map = kit->map();
  IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
  outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
  inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
}
BuildCutout::~BuildCutout() {
  GraphKit* kit = _kit;
  assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
}

//---------------------------PreserveReexecuteState----------------------------
PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
  assert(!kit->stopped(), "must call stopped() before");
  _kit    =    kit;
  _sp     =    kit->sp();
  _reexecute = kit->jvms()->_reexecute;
}
PreserveReexecuteState::~PreserveReexecuteState() {
  if (_kit->stopped()) return;
  _kit->jvms()->_reexecute = _reexecute;
  _kit->set_sp(_sp);
}

//------------------------------clone_map--------------------------------------
// Implementation of PreserveJVMState
//
// Only clone_map(...) here. If this function is only used in the
// PreserveJVMState class we may want to get rid of this extra
// function eventually and do it all there.

SafePointNode* GraphKit::clone_map() {
  if (map() == NULL)  return NULL;

  // Clone the memory edge first
  Node* mem = MergeMemNode::make(C, map()->memory());
  gvn().set_type_bottom(mem);

  SafePointNode *clonemap = (SafePointNode*)map()->clone();
  JVMState* jvms = this->jvms();
  JVMState* clonejvms = jvms->clone_shallow(C);
  clonemap->set_memory(mem);
  clonemap->set_jvms(clonejvms);
  clonejvms->set_map(clonemap);
  record_for_igvn(clonemap);
  gvn().set_type_bottom(clonemap);
  return clonemap;
}


//-----------------------------set_map_clone-----------------------------------
void GraphKit::set_map_clone(SafePointNode* m) {
  _map = m;
  _map = clone_map();
  _map->set_next_exception(NULL);
  debug_only(verify_map());
}


//----------------------------kill_dead_locals---------------------------------
// Detect any locals which are known to be dead, and force them to top.
void GraphKit::kill_dead_locals() {
  // Consult the liveness information for the locals.  If any
  // of them are unused, then they can be replaced by top().  This
  // should help register allocation time and cut down on the size
  // of the deoptimization information.

  // This call is made from many of the bytecode handling
  // subroutines called from the Big Switch in do_one_bytecode.
  // Every bytecode which might include a slow path is responsible
  // for killing its dead locals.  The more consistent we
  // are about killing deads, the fewer useless phis will be
  // constructed for them at various merge points.

  // bci can be -1 (InvocationEntryBci).  We return the entry
  // liveness for the method.

  if (method() == NULL || method()->code_size() == 0) {
    // We are building a graph for a call to a native method.
    // All locals are live.
    return;
  }

  ResourceMark rm;

  // Consult the liveness information for the locals.  If any
  // of them are unused, then they can be replaced by top().  This
  // should help register allocation time and cut down on the size
  // of the deoptimization information.
  MethodLivenessResult live_locals = method()->liveness_at_bci(bci());

  int len = (int)live_locals.size();
  assert(len <= jvms()->loc_size(), "too many live locals");
  for (int local = 0; local < len; local++) {
    if (!live_locals.at(local)) {
      set_local(local, top());
    }
  }
}

#ifdef ASSERT
//-------------------------dead_locals_are_killed------------------------------
// Return true if all dead locals are set to top in the map.
// Used to assert "clean" debug info at various points.
bool GraphKit::dead_locals_are_killed() {
  if (method() == NULL || method()->code_size() == 0) {
    // No locals need to be dead, so all is as it should be.
    return true;
  }

  // Make sure somebody called kill_dead_locals upstream.
  ResourceMark rm;
  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
    if (jvms->loc_size() == 0)  continue;  // no locals to consult
    SafePointNode* map = jvms->map();
    ciMethod* method = jvms->method();
    int       bci    = jvms->bci();
    if (jvms == this->jvms()) {
      bci = this->bci();  // it might not yet be synched
    }
    MethodLivenessResult live_locals = method->liveness_at_bci(bci);
    int len = (int)live_locals.size();
    if (!live_locals.is_valid() || len == 0)
      // This method is trivial, or is poisoned by a breakpoint.
      return true;
    assert(len == jvms->loc_size(), "live map consistent with locals map");
    for (int local = 0; local < len; local++) {
      if (!live_locals.at(local) && map->local(jvms, local) != top()) {
        if (PrintMiscellaneous && (Verbose || WizardMode)) {
          tty->print_cr("Zombie local %d: ", local);
          jvms->dump();
        }
        return false;
      }
    }
  }
  return true;
}

#endif //ASSERT

// Helper function for enforcing certain bytecodes to reexecute if
// deoptimization happens
static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
  ciMethod* cur_method = jvms->method();
  int       cur_bci   = jvms->bci();
  if (cur_method != NULL && cur_bci != InvocationEntryBci) {
    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
    return Interpreter::bytecode_should_reexecute(code) ||
           is_anewarray && code == Bytecodes::_multianewarray;
    // Reexecute _multianewarray bytecode which was replaced with
    // sequence of [a]newarray. See Parse::do_multianewarray().
    //
    // Note: interpreter should not have it set since this optimization
    // is limited by dimensions and guarded by flag so in some cases
    // multianewarray() runtime calls will be generated and
    // the bytecode should not be reexecutes (stack will not be reset).
  } else
    return false;
}

// Helper function for adding JVMState and debug information to node
void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
  // Add the safepoint edges to the call (or other safepoint).

  // Make sure dead locals are set to top.  This
  // should help register allocation time and cut down on the size
  // of the deoptimization information.
  assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

  // Walk the inline list to fill in the correct set of JVMState's
  // Also fill in the associated edges for each JVMState.

  // If the bytecode needs to be reexecuted we need to put
  // the arguments back on the stack.
  const bool should_reexecute = jvms()->should_reexecute();
  JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();

  // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
  // undefined if the bci is different.  This is normal for Parse but it
  // should not happen for LibraryCallKit because only one bci is processed.
  assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
         "in LibraryCallKit the reexecute bit should not change");

  // If we are guaranteed to throw, we can prune everything but the
  // input to the current bytecode.
  bool can_prune_locals = false;
  uint stack_slots_not_pruned = 0;
  int inputs = 0, depth = 0;
  if (must_throw) {
    assert(method() == youngest_jvms->method(), "sanity");
    if (compute_stack_effects(inputs, depth)) {
      can_prune_locals = true;
      stack_slots_not_pruned = inputs;
    }
  }

  if (env()->jvmti_can_access_local_variables()) {
    // At any safepoint, this method can get breakpointed, which would
    // then require an immediate deoptimization.
    can_prune_locals = false;  // do not prune locals
    stack_slots_not_pruned = 0;
  }

  // do not scribble on the input jvms
  JVMState* out_jvms = youngest_jvms->clone_deep(C);
  call->set_jvms(out_jvms); // Start jvms list for call node

  // For a known set of bytecodes, the interpreter should reexecute them if
  // deoptimization happens. We set the reexecute state for them here
  if (out_jvms->is_reexecute_undefined() && //don't change if already specified
      should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
    out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
  }

  // Presize the call:
  DEBUG_ONLY(uint non_debug_edges = call->req());
  call->add_req_batch(top(), youngest_jvms->debug_depth());
  assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");

  // Set up edges so that the call looks like this:
  //  Call [state:] ctl io mem fptr retadr
  //       [parms:] parm0 ... parmN
  //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
  //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
  //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
  // Note that caller debug info precedes callee debug info.

  // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
  uint debug_ptr = call->req();

  // Loop over the map input edges associated with jvms, add them
  // to the call node, & reset all offsets to match call node array.
  for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
    uint debug_end   = debug_ptr;
    uint debug_start = debug_ptr - in_jvms->debug_size();
    debug_ptr = debug_start;  // back up the ptr

    uint p = debug_start;  // walks forward in [debug_start, debug_end)
    uint j, k, l;
    SafePointNode* in_map = in_jvms->map();
    out_jvms->set_map(call);

    if (can_prune_locals) {
      assert(in_jvms->method() == out_jvms->method(), "sanity");
      // If the current throw can reach an exception handler in this JVMS,
      // then we must keep everything live that can reach that handler.
      // As a quick and dirty approximation, we look for any handlers at all.
      if (in_jvms->method()->has_exception_handlers()) {
        can_prune_locals = false;
      }
    }

    // Add the Locals
    k = in_jvms->locoff();
    l = in_jvms->loc_size();
    out_jvms->set_locoff(p);
    if (!can_prune_locals) {
      for (j = 0; j < l; j++)
        call->set_req(p++, in_map->in(k+j));
    } else {
      p += l;  // already set to top above by add_req_batch
    }

    // Add the Expression Stack
    k = in_jvms->stkoff();
    l = in_jvms->sp();
    out_jvms->set_stkoff(p);
    if (!can_prune_locals) {
      for (j = 0; j < l; j++)
        call->set_req(p++, in_map->in(k+j));
    } else if (can_prune_locals && stack_slots_not_pruned != 0) {
      // Divide stack into {S0,...,S1}, where S0 is set to top.
      uint s1 = stack_slots_not_pruned;
      stack_slots_not_pruned = 0;  // for next iteration
      if (s1 > l)  s1 = l;
      uint s0 = l - s1;
      p += s0;  // skip the tops preinstalled by add_req_batch
      for (j = s0; j < l; j++)
        call->set_req(p++, in_map->in(k+j));
    } else {
      p += l;  // already set to top above by add_req_batch
    }

    // Add the Monitors
    k = in_jvms->monoff();
    l = in_jvms->mon_size();
    out_jvms->set_monoff(p);
    for (j = 0; j < l; j++)
      call->set_req(p++, in_map->in(k+j));

    // Copy any scalar object fields.
    k = in_jvms->scloff();
    l = in_jvms->scl_size();
    out_jvms->set_scloff(p);
    for (j = 0; j < l; j++)
      call->set_req(p++, in_map->in(k+j));

    // Finish the new jvms.
    out_jvms->set_endoff(p);

    assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
    assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
    assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
    assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
    assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
    assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");

    // Update the two tail pointers in parallel.
    out_jvms = out_jvms->caller();
    in_jvms  = in_jvms->caller();
  }

  assert(debug_ptr == non_debug_edges, "debug info must fit exactly");

  // Test the correctness of JVMState::debug_xxx accessors:
  assert(call->jvms()->debug_start() == non_debug_edges, "");
  assert(call->jvms()->debug_end()   == call->req(), "");
  assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
}

bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
  Bytecodes::Code code = java_bc();
  if (code == Bytecodes::_wide) {
    code = method()->java_code_at_bci(bci() + 1);
  }

  BasicType rtype = T_ILLEGAL;
  int       rsize = 0;

  if (code != Bytecodes::_illegal) {
    depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
    rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
    if (rtype < T_CONFLICT)
      rsize = type2size[rtype];
  }

  switch (code) {
  case Bytecodes::_illegal:
    return false;

  case Bytecodes::_ldc:
  case Bytecodes::_ldc_w:
  case Bytecodes::_ldc2_w:
    inputs = 0;
    break;

  case Bytecodes::_dup:         inputs = 1;  break;
  case Bytecodes::_dup_x1:      inputs = 2;  break;
  case Bytecodes::_dup_x2:      inputs = 3;  break;
  case Bytecodes::_dup2:        inputs = 2;  break;
  case Bytecodes::_dup2_x1:     inputs = 3;  break;
  case Bytecodes::_dup2_x2:     inputs = 4;  break;
  case Bytecodes::_swap:        inputs = 2;  break;
  case Bytecodes::_arraylength: inputs = 1;  break;

  case Bytecodes::_getstatic:
  case Bytecodes::_putstatic:
  case Bytecodes::_getfield:
  case Bytecodes::_putfield:
    {
      bool ignored_will_link;
      ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
      int      size  = field->type()->size();
      bool is_get = (depth >= 0), is_static = (depth & 1);
      inputs = (is_static ? 0 : 1);
      if (is_get) {
        depth = size - inputs;
      } else {
        inputs += size;        // putxxx pops the value from the stack
        depth = - inputs;
      }
    }
    break;

  case Bytecodes::_invokevirtual:
  case Bytecodes::_invokespecial:
  case Bytecodes::_invokestatic:
  case Bytecodes::_invokedynamic:
  case Bytecodes::_invokeinterface:
    {
      bool ignored_will_link;
      ciSignature* declared_signature = NULL;
      ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
      assert(declared_signature != NULL, "cannot be null");
      inputs   = declared_signature->arg_size_for_bc(code);
      int size = declared_signature->return_type()->size();
      depth = size - inputs;
    }
    break;

  case Bytecodes::_multianewarray:
    {
      ciBytecodeStream iter(method());
      iter.reset_to_bci(bci());
      iter.next();
      inputs = iter.get_dimensions();
      assert(rsize == 1, "");
      depth = rsize - inputs;
    }
    break;

  case Bytecodes::_ireturn:
  case Bytecodes::_lreturn:
  case Bytecodes::_freturn:
  case Bytecodes::_dreturn:
  case Bytecodes::_areturn:
    assert(rsize = -depth, "");
    inputs = rsize;
    break;

  case Bytecodes::_jsr:
  case Bytecodes::_jsr_w:
    inputs = 0;
    depth  = 1;                  // S.B. depth=1, not zero
    break;

  default:
    // bytecode produces a typed result
    inputs = rsize - depth;
    assert(inputs >= 0, "");
    break;
  }

#ifdef ASSERT
  // spot check
  int outputs = depth + inputs;
  assert(outputs >= 0, "sanity");
  switch (code) {
  case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  }
#endif //ASSERT

  return true;
}



//------------------------------basic_plus_adr---------------------------------
Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  // short-circuit a common case
  if (offset == intcon(0))  return ptr;
  return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
}

Node* GraphKit::ConvI2L(Node* offset) {
  // short-circuit a common case
  jint offset_con = find_int_con(offset, Type::OffsetBot);
  if (offset_con != Type::OffsetBot) {
    return longcon((jlong) offset_con);
  }
  return _gvn.transform( new (C) ConvI2LNode(offset));
}

Node* GraphKit::ConvI2UL(Node* offset) {
  juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
  if (offset_con != (juint) Type::OffsetBot) {
    return longcon((julong) offset_con);
  }
  Node* conv = _gvn.transform( new (C) ConvI2LNode(offset));
  Node* mask = _gvn.transform( ConLNode::make(C, (julong) max_juint) );
  return _gvn.transform( new (C) AndLNode(conv, mask) );
}

Node* GraphKit::ConvL2I(Node* offset) {
  // short-circuit a common case
  jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  if (offset_con != (jlong)Type::OffsetBot) {
    return intcon((int) offset_con);
  }
  return _gvn.transform( new (C) ConvL2INode(offset));
}

//-------------------------load_object_klass-----------------------------------
Node* GraphKit::load_object_klass(Node* obj) {
  // Special-case a fresh allocation to avoid building nodes:
  Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  if (akls != NULL)  return akls;
  Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
}

//-------------------------load_array_length-----------------------------------
Node* GraphKit::load_array_length(Node* array) {
  // Special-case a fresh allocation to avoid building nodes:
  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  Node *alen;
  if (alloc == NULL) {
    Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
    alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  } else {
    alen = alloc->Ideal_length();
    Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
    if (ccast != alen) {
      alen = _gvn.transform(ccast);
    }
  }
  return alen;
}

//------------------------------do_null_check----------------------------------
// Helper function to do a NULL pointer check.  Returned value is
// the incoming address with NULL casted away.  You are allowed to use the
// not-null value only if you are control dependent on the test.
extern int explicit_null_checks_inserted,
           explicit_null_checks_elided;
Node* GraphKit::null_check_common(Node* value, BasicType type,
                                  // optional arguments for variations:
                                  bool assert_null,
                                  Node* *null_control) {
  assert(!assert_null || null_control == NULL, "not both at once");
  if (stopped())  return top();
  if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
    // For some performance testing, we may wish to suppress null checking.
    value = cast_not_null(value);   // Make it appear to be non-null (4962416).
    return value;
  }
  explicit_null_checks_inserted++;

  // Construct NULL check
  Node *chk = NULL;
  switch(type) {
    case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
    case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
    case T_ARRAY  : // fall through
      type = T_OBJECT;  // simplify further tests
    case T_OBJECT : {
      const Type *t = _gvn.type( value );

      const TypeOopPtr* tp = t->isa_oopptr();
      if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
          // Only for do_null_check, not any of its siblings:
          && !assert_null && null_control == NULL) {
        // Usually, any field access or invocation on an unloaded oop type
        // will simply fail to link, since the statically linked class is
        // likely also to be unloaded.  However, in -Xcomp mode, sometimes
        // the static class is loaded but the sharper oop type is not.
        // Rather than checking for this obscure case in lots of places,
        // we simply observe that a null check on an unloaded class
        // will always be followed by a nonsense operation, so we
        // can just issue the uncommon trap here.
        // Our access to the unloaded class will only be correct
        // after it has been loaded and initialized, which requires
        // a trip through the interpreter.
#ifndef PRODUCT
        if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
#endif
        uncommon_trap(Deoptimization::Reason_unloaded,
                      Deoptimization::Action_reinterpret,
                      tp->klass(), "!loaded");
        return top();
      }

      if (assert_null) {
        // See if the type is contained in NULL_PTR.
        // If so, then the value is already null.
        if (t->higher_equal(TypePtr::NULL_PTR)) {
          explicit_null_checks_elided++;
          return value;           // Elided null assert quickly!
        }
      } else {
        // See if mixing in the NULL pointer changes type.
        // If so, then the NULL pointer was not allowed in the original
        // type.  In other words, "value" was not-null.
        if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
          // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
          explicit_null_checks_elided++;
          return value;           // Elided null check quickly!
        }
      }
      chk = new (C) CmpPNode( value, null() );
      break;
    }

    default:
      fatal(err_msg_res("unexpected type: %s", type2name(type)));
  }
  assert(chk != NULL, "sanity check");
  chk = _gvn.transform(chk);

  BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  BoolNode *btst = new (C) BoolNode( chk, btest);
  Node   *tst = _gvn.transform( btst );

  //-----------
  // if peephole optimizations occurred, a prior test existed.
  // If a prior test existed, maybe it dominates as we can avoid this test.
  if (tst != btst && type == T_OBJECT) {
    // At this point we want to scan up the CFG to see if we can
    // find an identical test (and so avoid this test altogether).
    Node *cfg = control();
    int depth = 0;
    while( depth < 16 ) {       // Limit search depth for speed
      if( cfg->Opcode() == Op_IfTrue &&
          cfg->in(0)->in(1) == tst ) {
        // Found prior test.  Use "cast_not_null" to construct an identical
        // CastPP (and hence hash to) as already exists for the prior test.
        // Return that casted value.
        if (assert_null) {
          replace_in_map(value, null());
          return null();  // do not issue the redundant test
        }
        Node *oldcontrol = control();
        set_control(cfg);
        Node *res = cast_not_null(value);
        set_control(oldcontrol);
        explicit_null_checks_elided++;
        return res;
      }
      cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
      if (cfg == NULL)  break;  // Quit at region nodes
      depth++;
    }
  }

  //-----------
  // Branch to failure if null
  float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  Deoptimization::DeoptReason reason;
  if (assert_null)
    reason = Deoptimization::Reason_null_assert;
  else if (type == T_OBJECT)
    reason = Deoptimization::Reason_null_check;
  else
    reason = Deoptimization::Reason_div0_check;

  // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  // ciMethodData::has_trap_at will return a conservative -1 if any
  // must-be-null assertion has failed.  This could cause performance
  // problems for a method after its first do_null_assert failure.
  // Consider using 'Reason_class_check' instead?

  // To cause an implicit null check, we set the not-null probability
  // to the maximum (PROB_MAX).  For an explicit check the probability
  // is set to a smaller value.
  if (null_control != NULL || too_many_traps(reason)) {
    // probability is less likely
    ok_prob =  PROB_LIKELY_MAG(3);
  } else if (!assert_null &&
             (ImplicitNullCheckThreshold > 0) &&
             method() != NULL &&
             (method()->method_data()->trap_count(reason)
              >= (uint)ImplicitNullCheckThreshold)) {
    ok_prob =  PROB_LIKELY_MAG(3);
  }

  if (null_control != NULL) {
    IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
    Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
    set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
    if (null_true == top())
      explicit_null_checks_elided++;
    (*null_control) = null_true;
  } else {
    BuildCutout unless(this, tst, ok_prob);
    // Check for optimizer eliding test at parse time
    if (stopped()) {
      // Failure not possible; do not bother making uncommon trap.
      explicit_null_checks_elided++;
    } else if (assert_null) {
      uncommon_trap(reason,
                    Deoptimization::Action_make_not_entrant,
                    NULL, "assert_null");
    } else {
      replace_in_map(value, zerocon(type));
      builtin_throw(reason);
    }
  }

  // Must throw exception, fall-thru not possible?
  if (stopped()) {
    return top();               // No result
  }

  if (assert_null) {
    // Cast obj to null on this path.
    replace_in_map(value, zerocon(type));
    return zerocon(type);
  }

  // Cast obj to not-null on this path, if there is no null_control.
  // (If there is a null_control, a non-null value may come back to haunt us.)
  if (type == T_OBJECT) {
    Node* cast = cast_not_null(value, false);
    if (null_control == NULL || (*null_control) == top())
      replace_in_map(value, cast);
    value = cast;
  }

  return value;
}


//------------------------------cast_not_null----------------------------------
// Cast obj to not-null on this path
Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  const Type *t = _gvn.type(obj);
  const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
  // Object is already not-null?
  if( t == t_not_null ) return obj;

  Node *cast = new (C) CastPPNode(obj,t_not_null);
  cast->init_req(0, control());
  cast = _gvn.transform( cast );

  // Scan for instances of 'obj' in the current JVM mapping.
  // These instances are known to be not-null after the test.
  if (do_replace_in_map)
    replace_in_map(obj, cast);

  return cast;                  // Return casted value
}


//--------------------------replace_in_map-------------------------------------
void GraphKit::replace_in_map(Node* old, Node* neww) {
  if (old == neww) {
    return;
  }

  map()->replace_edge(old, neww);

  // Note: This operation potentially replaces any edge
  // on the map.  This includes locals, stack, and monitors
  // of the current (innermost) JVM state.

  // don't let inconsistent types from profiling escape this
  // method

  const Type* told = _gvn.type(old);
  const Type* tnew = _gvn.type(neww);

  if (!tnew->higher_equal(told)) {
    return;
  }

  map()->record_replaced_node(old, neww);
}


//=============================================================================
//--------------------------------memory---------------------------------------
Node* GraphKit::memory(uint alias_idx) {
  MergeMemNode* mem = merged_memory();
  Node* p = mem->memory_at(alias_idx);
  _gvn.set_type(p, Type::MEMORY);  // must be mapped
  return p;
}

//-----------------------------reset_memory------------------------------------
Node* GraphKit::reset_memory() {
  Node* mem = map()->memory();
  // do not use this node for any more parsing!
  debug_only( map()->set_memory((Node*)NULL) );
  return _gvn.transform( mem );
}

//------------------------------set_all_memory---------------------------------
void GraphKit::set_all_memory(Node* newmem) {
  Node* mergemem = MergeMemNode::make(C, newmem);
  gvn().set_type_bottom(mergemem);
  map()->set_memory(mergemem);
}

//------------------------------set_all_memory_call----------------------------
void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
  Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
  set_all_memory(newmem);
}

//=============================================================================
//
// parser factory methods for MemNodes
//
// These are layered on top of the factory methods in LoadNode and StoreNode,
// and integrate with the parser's memory state and _gvn engine.
//

// factory methods in "int adr_idx"
Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
                          int adr_idx,
                          MemNode::MemOrd mo,
                          LoadNode::ControlDependency control_dependency,
                          bool require_atomic_access,
                          bool unaligned,
                          bool mismatched) {
  assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  const TypePtr* adr_type = NULL; // debug-mode-only argument
  debug_only(adr_type = C->get_adr_type(adr_idx));
  Node* mem = memory(adr_idx);
  Node* ld;
  if (require_atomic_access && bt == T_LONG) {
    ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo, control_dependency);
  } else if (require_atomic_access && bt == T_DOUBLE) {
    ld = LoadDNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo, control_dependency);
  } else {
    ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency);
  }
  if (unaligned) {
    ld->as_Load()->set_unaligned_access();
  }
  if (mismatched) {
    ld->as_Load()->set_mismatched_access();
  }
  ld = _gvn.transform(ld);
  if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
    // Improve graph before escape analysis and boxing elimination.
    record_for_igvn(ld);
  }
  return ld;
}

Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
                                int adr_idx,
                                MemNode::MemOrd mo,
                                bool require_atomic_access,
                                bool unaligned,
                                bool mismatched) {
  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  const TypePtr* adr_type = NULL;
  debug_only(adr_type = C->get_adr_type(adr_idx));
  Node *mem = memory(adr_idx);
  Node* st;
  if (require_atomic_access && bt == T_LONG) {
    st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
  } else if (require_atomic_access && bt == T_DOUBLE) {
    st = StoreDNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
  } else {
    st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
  }
  if (unaligned) {
    st->as_Store()->set_unaligned_access();
  }
  if (mismatched) {
    st->as_Store()->set_mismatched_access();
  }
  st = _gvn.transform(st);
  set_memory(st, adr_idx);
  // Back-to-back stores can only remove intermediate store with DU info
  // so push on worklist for optimizer.
  if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
    record_for_igvn(st);

  return st;
}


void GraphKit::pre_barrier(bool do_load,
                           Node* ctl,
                           Node* obj,
                           Node* adr,
                           uint  adr_idx,
                           Node* val,
                           const TypeOopPtr* val_type,
                           Node* pre_val,
                           BasicType bt) {

  BarrierSet* bs = Universe::heap()->barrier_set();
  set_control(ctl);
  switch (bs->kind()) {
    case BarrierSet::G1SATBCT:
    case BarrierSet::G1SATBCTLogging:
      g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
      break;

    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
    case BarrierSet::ModRef:
      break;

    case BarrierSet::Other:
    default      :
      ShouldNotReachHere();

  }
}

bool GraphKit::can_move_pre_barrier() const {
  BarrierSet* bs = Universe::heap()->barrier_set();
  switch (bs->kind()) {
    case BarrierSet::G1SATBCT:
    case BarrierSet::G1SATBCTLogging:
      return true; // Can move it if no safepoint

    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
    case BarrierSet::ModRef:
      return true; // There is no pre-barrier

    case BarrierSet::Other:
    default      :
      ShouldNotReachHere();
  }
  return false;
}

void GraphKit::post_barrier(Node* ctl,
                            Node* store,
                            Node* obj,
                            Node* adr,
                            uint  adr_idx,
                            Node* val,
                            BasicType bt,
                            bool use_precise) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  set_control(ctl);
  switch (bs->kind()) {
    case BarrierSet::G1SATBCT:
    case BarrierSet::G1SATBCTLogging:
      g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
      break;

    case BarrierSet::CardTableModRef:
    case BarrierSet::CardTableExtension:
      write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
      break;

    case BarrierSet::ModRef:
      break;

    case BarrierSet::Other:
    default      :
      ShouldNotReachHere();

  }
}

Node* GraphKit::store_oop(Node* ctl,
                          Node* obj,
                          Node* adr,
                          const TypePtr* adr_type,
                          Node* val,
                          const TypeOopPtr* val_type,
                          BasicType bt,
                          bool use_precise,
                          MemNode::MemOrd mo,
                          bool mismatched) {
  // Transformation of a value which could be NULL pointer (CastPP #NULL)
  // could be delayed during Parse (for example, in adjust_map_after_if()).
  // Execute transformation here to avoid barrier generation in such case.
  if (_gvn.type(val) == TypePtr::NULL_PTR)
    val = _gvn.makecon(TypePtr::NULL_PTR);

  set_control(ctl);
  if (stopped()) return top(); // Dead path ?

  assert(bt == T_OBJECT, "sanity");
  assert(val != NULL, "not dead path");
  uint adr_idx = C->get_alias_index(adr_type);
  assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );

  pre_barrier(true /* do_load */,
              control(), obj, adr, adr_idx, val, val_type,
              NULL /* pre_val */,
              bt);

  Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
  post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  return store;
}

// Could be an array or object we don't know at compile time (unsafe ref.)
Node* GraphKit::store_oop_to_unknown(Node* ctl,
                             Node* obj,   // containing obj
                             Node* adr,  // actual adress to store val at
                             const TypePtr* adr_type,
                             Node* val,
                             BasicType bt,
                             MemNode::MemOrd mo,
                             bool mismatched) {
  Compile::AliasType* at = C->alias_type(adr_type);
  const TypeOopPtr* val_type = NULL;
  if (adr_type->isa_instptr()) {
    if (at->field() != NULL) {
      // known field.  This code is a copy of the do_put_xxx logic.
      ciField* field = at->field();
      if (!field->type()->is_loaded()) {
        val_type = TypeInstPtr::BOTTOM;
      } else {
        val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
      }
    }
  } else if (adr_type->isa_aryptr()) {
    val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  }
  if (val_type == NULL) {
    val_type = TypeInstPtr::BOTTOM;
  }
  return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
}


//-------------------------array_element_address-------------------------
Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
                                      const TypeInt* sizetype, Node* ctrl) {
  uint shift  = exact_log2(type2aelembytes(elembt));
  uint header = arrayOopDesc::base_offset_in_bytes(elembt);

  // short-circuit a common case (saves lots of confusing waste motion)
  jint idx_con = find_int_con(idx, -1);
  if (idx_con >= 0) {
    intptr_t offset = header + ((intptr_t)idx_con << shift);
    return basic_plus_adr(ary, offset);
  }

  // must be correct type for alignment purposes
  Node* base  = basic_plus_adr(ary, header);
#ifdef _LP64
  // The scaled index operand to AddP must be a clean 64-bit value.
  // Java allows a 32-bit int to be incremented to a negative
  // value, which appears in a 64-bit register as a large
  // positive number.  Using that large positive number as an
  // operand in pointer arithmetic has bad consequences.
  // On the other hand, 32-bit overflow is rare, and the possibility
  // can often be excluded, if we annotate the ConvI2L node with
  // a type assertion that its value is known to be a small positive
  // number.  (The prior range check has ensured this.)
  // This assertion is used by ConvI2LNode::Ideal.
  int index_max = max_jint - 1;  // array size is max_jint, index is one less
  if (sizetype != NULL) index_max = sizetype->_hi - 1;
  const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
  idx = C->constrained_convI2L(&_gvn, idx, iidxtype, ctrl);
#endif
  Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
  return basic_plus_adr(ary, base, scale);
}

//-------------------------load_array_element-------------------------
Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  const Type* elemtype = arytype->elem();
  BasicType elembt = elemtype->array_element_basic_type();
  Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  if (elembt == T_NARROWOOP) {
    elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
  }
  Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
  return ld;
}

//-------------------------set_arguments_for_java_call-------------------------
// Arguments (pre-popped from the stack) are taken from the JVMS.
void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  // Add the call arguments:
  uint nargs = call->method()->arg_size();
  for (uint i = 0; i < nargs; i++) {
    Node* arg = argument(i);
    call->init_req(i + TypeFunc::Parms, arg);
  }
}

//---------------------------set_edges_for_java_call---------------------------
// Connect a newly created call into the current JVMS.
// A return value node (if any) is returned from set_edges_for_java_call.
void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {

  // Add the predefined inputs:
  call->init_req( TypeFunc::Control, control() );
  call->init_req( TypeFunc::I_O    , i_o() );
  call->init_req( TypeFunc::Memory , reset_memory() );
  call->init_req( TypeFunc::FramePtr, frameptr() );
  call->init_req( TypeFunc::ReturnAdr, top() );

  add_safepoint_edges(call, must_throw);

  Node* xcall = _gvn.transform(call);

  if (xcall == top()) {
    set_control(top());
    return;
  }
  assert(xcall == call, "call identity is stable");

  // Re-use the current map to produce the result.

  set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
  set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
  set_all_memory_call(xcall, separate_io_proj);

  //return xcall;   // no need, caller already has it
}

Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
  if (stopped())  return top();  // maybe the call folded up?

  // Capture the return value, if any.
  Node* ret;
  if (call->method() == NULL ||
      call->method()->return_type()->basic_type() == T_VOID)
        ret = top();
  else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));

  // Note:  Since any out-of-line call can produce an exception,
  // we always insert an I_O projection from the call into the result.

  make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);

  if (separate_io_proj) {
    // The caller requested separate projections be used by the fall
    // through and exceptional paths, so replace the projections for
    // the fall through path.
    set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
    set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
  }
  return ret;
}

//--------------------set_predefined_input_for_runtime_call--------------------
// Reading and setting the memory state is way conservative here.
// The real problem is that I am not doing real Type analysis on memory,
// so I cannot distinguish card mark stores from other stores.  Across a GC
// point the Store Barrier and the card mark memory has to agree.  I cannot
// have a card mark store and its barrier split across the GC point from
// either above or below.  Here I get that to happen by reading ALL of memory.
// A better answer would be to separate out card marks from other memory.
// For now, return the input memory state, so that it can be reused
// after the call, if this call has restricted memory effects.
Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
  // Set fixed predefined input arguments
  Node* memory = reset_memory();
  Node* m = narrow_mem == NULL ? memory : narrow_mem;
  call->init_req( TypeFunc::Control,   control()  );
  call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs
  call->init_req( TypeFunc::FramePtr,  frameptr() );
  call->init_req( TypeFunc::ReturnAdr, top()      );
  return memory;
}

//-------------------set_predefined_output_for_runtime_call--------------------
// Set control and memory (not i_o) from the call.
// If keep_mem is not NULL, use it for the output state,
// except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
// If hook_mem is NULL, this call produces no memory effects at all.
// If hook_mem is a Java-visible memory slice (such as arraycopy operands),
// then only that memory slice is taken from the call.
// In the last case, we must put an appropriate memory barrier before
// the call, so as to create the correct anti-dependencies on loads
// preceding the call.
void GraphKit::set_predefined_output_for_runtime_call(Node* call,
                                                      Node* keep_mem,
                                                      const TypePtr* hook_mem) {
  // no i/o
  set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
  if (keep_mem) {
    // First clone the existing memory state
    set_all_memory(keep_mem);
    if (hook_mem != NULL) {
      // Make memory for the call
      Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
      // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
      // We also use hook_mem to extract specific effects from arraycopy stubs.
      set_memory(mem, hook_mem);
    }
    // ...else the call has NO memory effects.

    // Make sure the call advertises its memory effects precisely.
    // This lets us build accurate anti-dependences in gcm.cpp.
    assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
           "call node must be constructed correctly");
  } else {
    assert(hook_mem == NULL, "");
    // This is not a "slow path" call; all memory comes from the call.
    set_all_memory_call(call);
  }
}


// Replace the call with the current state of the kit.
void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
  JVMState* ejvms = NULL;
  if (has_exceptions()) {
    ejvms = transfer_exceptions_into_jvms();
  }

  ReplacedNodes replaced_nodes = map()->replaced_nodes();
  ReplacedNodes replaced_nodes_exception;
  Node* ex_ctl = top();

  SafePointNode* final_state = stop();

  // Find all the needed outputs of this call
  CallProjections callprojs;
  call->extract_projections(&callprojs, true);

  Node* init_mem = call->in(TypeFunc::Memory);
  Node* final_mem = final_state->in(TypeFunc::Memory);
  Node* final_ctl = final_state->in(TypeFunc::Control);
  Node* final_io = final_state->in(TypeFunc::I_O);

  // Replace all the old call edges with the edges from the inlining result
  if (callprojs.fallthrough_catchproj != NULL) {
    C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
  }
  if (callprojs.fallthrough_memproj != NULL) {
    if (final_mem->is_MergeMem()) {
      // Parser's exits MergeMem was not transformed but may be optimized
      final_mem = _gvn.transform(final_mem);
    }
    C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
  }
  if (callprojs.fallthrough_ioproj != NULL) {
    C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
  }

  // Replace the result with the new result if it exists and is used
  if (callprojs.resproj != NULL && result != NULL) {
    C->gvn_replace_by(callprojs.resproj, result);
  }

  if (ejvms == NULL) {
    // No exception edges to simply kill off those paths
    if (callprojs.catchall_catchproj != NULL) {
      C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
    }
    if (callprojs.catchall_memproj != NULL) {
      C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
    }
    if (callprojs.catchall_ioproj != NULL) {
      C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
    }
    // Replace the old exception object with top
    if (callprojs.exobj != NULL) {
      C->gvn_replace_by(callprojs.exobj, C->top());
    }
  } else {
    GraphKit ekit(ejvms);

    // Load my combined exception state into the kit, with all phis transformed:
    SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
    replaced_nodes_exception = ex_map->replaced_nodes();

    Node* ex_oop = ekit.use_exception_state(ex_map);

    if (callprojs.catchall_catchproj != NULL) {
      C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
      ex_ctl = ekit.control();
    }
    if (callprojs.catchall_memproj != NULL) {
      C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
    }
    if (callprojs.catchall_ioproj != NULL) {
      C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
    }

    // Replace the old exception object with the newly created one
    if (callprojs.exobj != NULL) {
      C->gvn_replace_by(callprojs.exobj, ex_oop);
    }
  }

  // Disconnect the call from the graph
  call->disconnect_inputs(NULL, C);
  C->gvn_replace_by(call, C->top());

  // Clean up any MergeMems that feed other MergeMems since the
  // optimizer doesn't like that.
  if (final_mem->is_MergeMem()) {
    Node_List wl;
    for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
      Node* m = i.get();
      if (m->is_MergeMem() && !wl.contains(m)) {
        wl.push(m);
      }
    }
    while (wl.size()  > 0) {
      _gvn.transform(wl.pop());
    }
  }

  if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
    replaced_nodes.apply(C, final_ctl);
  }
  if (!ex_ctl->is_top() && do_replaced_nodes) {
    replaced_nodes_exception.apply(C, ex_ctl);
  }
}


//------------------------------increment_counter------------------------------
// for statistics: increment a VM counter by 1

void GraphKit::increment_counter(address counter_addr) {
  Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  increment_counter(adr1);
}

void GraphKit::increment_counter(Node* counter_addr) {
  int adr_type = Compile::AliasIdxRaw;
  Node* ctrl = control();
  Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
  store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
}


//------------------------------uncommon_trap----------------------------------
// Bail out to the interpreter in mid-method.  Implemented by calling the
// uncommon_trap blob.  This helper function inserts a runtime call with the
// right debug info.
void GraphKit::uncommon_trap(int trap_request,
                             ciKlass* klass, const char* comment,
                             bool must_throw,
                             bool keep_exact_action) {
  if (failing())  stop();
  if (stopped())  return; // trap reachable?

  // Note:  If ProfileTraps is true, and if a deopt. actually
  // occurs here, the runtime will make sure an MDO exists.  There is
  // no need to call method()->ensure_method_data() at this point.

  // Set the stack pointer to the right value for reexecution:
  set_sp(reexecute_sp());

#ifdef ASSERT
  if (!must_throw) {
    // Make sure the stack has at least enough depth to execute
    // the current bytecode.
    int inputs, ignored_depth;
    if (compute_stack_effects(inputs, ignored_depth)) {
      assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
             Bytecodes::name(java_bc()), sp(), inputs));
    }
  }
#endif

  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);

  switch (action) {
  case Deoptimization::Action_maybe_recompile:
  case Deoptimization::Action_reinterpret:
    // Temporary fix for 6529811 to allow virtual calls to be sure they
    // get the chance to go from mono->bi->mega
    if (!keep_exact_action &&
        Deoptimization::trap_request_index(trap_request) < 0 &&
        too_many_recompiles(reason)) {
      // This BCI is causing too many recompilations.
      if (C->log() != NULL) {
        C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
                Deoptimization::trap_reason_name(reason),
                Deoptimization::trap_action_name(action));
      }
      action = Deoptimization::Action_none;
      trap_request = Deoptimization::make_trap_request(reason, action);
    } else {
      C->set_trap_can_recompile(true);
    }
    break;
  case Deoptimization::Action_make_not_entrant:
    C->set_trap_can_recompile(true);
    break;
#ifdef ASSERT
  case Deoptimization::Action_none:
  case Deoptimization::Action_make_not_compilable:
    break;
  default:
    fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
    break;
#endif
  }

  if (TraceOptoParse) {
    char buf[100];
    tty->print_cr("Uncommon trap %s at bci:%d",
                  Deoptimization::format_trap_request(buf, sizeof(buf),
                                                      trap_request), bci());
  }

  CompileLog* log = C->log();
  if (log != NULL) {
    int kid = (klass == NULL)? -1: log->identify(klass);
    log->begin_elem("uncommon_trap bci='%d'", bci());
    char buf[100];
    log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
                                                          trap_request));
    if (kid >= 0)         log->print(" klass='%d'", kid);
    if (comment != NULL)  log->print(" comment='%s'", comment);
    log->end_elem();
  }

  // Make sure any guarding test views this path as very unlikely
  Node *i0 = control()->in(0);
  if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
    IfNode *iff = i0->as_If();
    float f = iff->_prob;   // Get prob
    if (control()->Opcode() == Op_IfTrue) {
      if (f > PROB_UNLIKELY_MAG(4))
        iff->_prob = PROB_MIN;
    } else {
      if (f < PROB_LIKELY_MAG(4))
        iff->_prob = PROB_MAX;
    }
  }

  // Clear out dead values from the debug info.
  kill_dead_locals();

  // Now insert the uncommon trap subroutine call
  address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
  const TypePtr* no_memory_effects = NULL;
  // Pass the index of the class to be loaded
  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
                                 (must_throw ? RC_MUST_THROW : 0),
                                 OptoRuntime::uncommon_trap_Type(),
                                 call_addr, "uncommon_trap", no_memory_effects,
                                 intcon(trap_request));
  assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
         "must extract request correctly from the graph");
  assert(trap_request != 0, "zero value reserved by uncommon_trap_request");

  call->set_req(TypeFunc::ReturnAdr, returnadr());
  // The debug info is the only real input to this call.

  // Halt-and-catch fire here.  The above call should never return!
  HaltNode* halt = new(C) HaltNode(control(), frameptr());
  _gvn.set_type_bottom(halt);
  root()->add_req(halt);

  stop_and_kill_map();
}


//--------------------------just_allocated_object------------------------------
// Report the object that was just allocated.
// It must be the case that there are no intervening safepoints.
// We use this to determine if an object is so "fresh" that
// it does not require card marks.
Node* GraphKit::just_allocated_object(Node* current_control) {
  if (C->recent_alloc_ctl() == current_control)
    return C->recent_alloc_obj();
  return NULL;
}


void GraphKit::round_double_arguments(ciMethod* dest_method) {
  // (Note:  TypeFunc::make has a cache that makes this fast.)
  const TypeFunc* tf    = TypeFunc::make(dest_method);
  int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  for (int j = 0; j < nargs; j++) {
    const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
    if( targ->basic_type() == T_DOUBLE ) {
      // If any parameters are doubles, they must be rounded before
      // the call, dstore_rounding does gvn.transform
      Node *arg = argument(j);
      arg = dstore_rounding(arg);
      set_argument(j, arg);
    }
  }
}

/**
 * Record profiling data exact_kls for Node n with the type system so
 * that it can propagate it (speculation)
 *
 * @param n          node that the type applies to
 * @param exact_kls  type from profiling
 *
 * @return           node with improved type
 */
Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
  const Type* current_type = _gvn.type(n);
  assert(UseTypeSpeculation, "type speculation must be on");

  const TypeOopPtr* speculative = current_type->speculative();

  if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
    const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
    const TypeOopPtr* xtype = tklass->as_instance_type();
    assert(xtype->klass_is_exact(), "Should be exact");
    // record the new speculative type's depth
    speculative = xtype->with_inline_depth(jvms()->depth());
  }

  if (speculative != current_type->speculative()) {
    // Build a type with a speculative type (what we think we know
    // about the type but will need a guard when we use it)
    const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
    // We're changing the type, we need a new CheckCast node to carry
    // the new type. The new type depends on the control: what
    // profiling tells us is only valid from here as far as we can
    // tell.
    Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
    cast = _gvn.transform(cast);
    replace_in_map(n, cast);
    n = cast;
  }

  return n;
}

/**
 * Record profiling data from receiver profiling at an invoke with the
 * type system so that it can propagate it (speculation)
 *
 * @param n  receiver node
 *
 * @return   node with improved type
 */
Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
  if (!UseTypeSpeculation) {
    return n;
  }
  ciKlass* exact_kls = profile_has_unique_klass();
  return record_profile_for_speculation(n, exact_kls);
}

/**
 * Record profiling data from argument profiling at an invoke with the
 * type system so that it can propagate it (speculation)
 *
 * @param dest_method  target method for the call
 * @param bc           what invoke bytecode is this?
 */
void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
  if (!UseTypeSpeculation) {
    return;
  }
  const TypeFunc* tf    = TypeFunc::make(dest_method);
  int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
  for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
    const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
    if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
      ciKlass* better_type = method()->argument_profiled_type(bci(), i);
      if (better_type != NULL) {
        record_profile_for_speculation(argument(j), better_type);
      }
      i++;
    }
  }
}

/**
 * Record profiling data from parameter profiling at an invoke with
 * the type system so that it can propagate it (speculation)
 */
void GraphKit::record_profiled_parameters_for_speculation() {
  if (!UseTypeSpeculation) {
    return;
  }
  for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
    if (_gvn.type(local(i))->isa_oopptr()) {
      ciKlass* better_type = method()->parameter_profiled_type(j);
      if (better_type != NULL) {
        record_profile_for_speculation(local(i), better_type);
      }
      j++;
    }
  }
}

void GraphKit::round_double_result(ciMethod* dest_method) {
  // A non-strict method may return a double value which has an extended
  // exponent, but this must not be visible in a caller which is 'strict'
  // If a strict caller invokes a non-strict callee, round a double result

  BasicType result_type = dest_method->return_type()->basic_type();
  assert( method() != NULL, "must have caller context");
  if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
    // Destination method's return value is on top of stack
    // dstore_rounding() does gvn.transform
    Node *result = pop_pair();
    result = dstore_rounding(result);
    push_pair(result);
  }
}

// rounding for strict float precision conformance
Node* GraphKit::precision_rounding(Node* n) {
  return UseStrictFP && _method->flags().is_strict()
    && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
    ? _gvn.transform( new (C) RoundFloatNode(0, n) )
    : n;
}

// rounding for strict double precision conformance
Node* GraphKit::dprecision_rounding(Node *n) {
  return UseStrictFP && _method->flags().is_strict()
    && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
    ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
    : n;
}

// rounding for non-strict double stores
Node* GraphKit::dstore_rounding(Node* n) {
  return Matcher::strict_fp_requires_explicit_rounding
    && UseSSE <= 1
    ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
    : n;
}

//=============================================================================
// Generate a fast path/slow path idiom.  Graph looks like:
// [foo] indicates that 'foo' is a parameter
//
//              [in]     NULL
//                 \    /
//                  CmpP
//                  Bool ne
//                   If
//                  /  \
//              True    False-<2>
//              / |
//             /  cast_not_null
//           Load  |    |   ^
//        [fast_test]   |   |
// gvn to   opt_test    |   |
//          /    \      |  <1>
//      True     False  |
//        |         \\  |
//   [slow_call]     \[fast_result]
//    Ctl   Val       \      \
//     |               \      \
//    Catch       <1>   \      \
//   /    \        ^     \      \
//  Ex    No_Ex    |      \      \
//  |       \   \  |       \ <2>  \
//  ...      \  [slow_res] |  |    \   [null_result]
//            \         \--+--+---  |  |
//             \           | /    \ | /
//              --------Region     Phi
//
//=============================================================================
// Code is structured as a series of driver functions all called 'do_XXX' that
// call a set of helper functions.  Helper functions first, then drivers.

//------------------------------null_check_oop---------------------------------
// Null check oop.  Set null-path control into Region in slot 3.
// Make a cast-not-nullness use the other not-null control.  Return cast.
Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
                               bool never_see_null, bool safe_for_replace) {
  // Initial NULL check taken path
  (*null_control) = top();
  Node* cast = null_check_common(value, T_OBJECT, false, null_control);

  // Generate uncommon_trap:
  if (never_see_null && (*null_control) != top()) {
    // If we see an unexpected null at a check-cast we record it and force a
    // recompile; the offending check-cast will be compiled to handle NULLs.
    // If we see more than one offending BCI, then all checkcasts in the
    // method will be compiled to handle NULLs.
    PreserveJVMState pjvms(this);
    set_control(*null_control);
    replace_in_map(value, null());
    uncommon_trap(Deoptimization::Reason_null_check,
                  Deoptimization::Action_make_not_entrant);
    (*null_control) = top();    // NULL path is dead
  }
  if ((*null_control) == top() && safe_for_replace) {
    replace_in_map(value, cast);
  }

  // Cast away null-ness on the result
  return cast;
}

//------------------------------opt_iff----------------------------------------
// Optimize the fast-check IfNode.  Set the fast-path region slot 2.
// Return slow-path control.
Node* GraphKit::opt_iff(Node* region, Node* iff) {
  IfNode *opt_iff = _gvn.transform(iff)->as_If();

  // Fast path taken; set region slot 2
  Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
  region->init_req(2,fast_taken); // Capture fast-control

  // Fast path not-taken, i.e. slow path
  Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
  return slow_taken;
}

//-----------------------------make_runtime_call-------------------------------
Node* GraphKit::make_runtime_call(int flags,
                                  const TypeFunc* call_type, address call_addr,
                                  const char* call_name,
                                  const TypePtr* adr_type,
                                  // The following parms are all optional.
                                  // The first NULL ends the list.
                                  Node* parm0, Node* parm1,
                                  Node* parm2, Node* parm3,
                                  Node* parm4, Node* parm5,
                                  Node* parm6, Node* parm7) {
  // Slow-path call
  bool is_leaf = !(flags & RC_NO_LEAF);
  bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  if (call_name == NULL) {
    assert(!is_leaf, "must supply name for leaf");
    call_name = OptoRuntime::stub_name(call_addr);
  }
  CallNode* call;
  if (!is_leaf) {
    call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
                                           bci(), adr_type);
  } else if (flags & RC_NO_FP) {
    call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  } else {
    call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
  }

  // The following is similar to set_edges_for_java_call,
  // except that the memory effects of the call are restricted to AliasIdxRaw.

  // Slow path call has no side-effects, uses few values
  bool wide_in  = !(flags & RC_NARROW_MEM);
  bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);

  Node* prev_mem = NULL;
  if (wide_in) {
    prev_mem = set_predefined_input_for_runtime_call(call);
  } else {
    assert(!wide_out, "narrow in => narrow out");
    Node* narrow_mem = memory(adr_type);
    prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
  }

  // Hook each parm in order.  Stop looking at the first NULL.
  if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
    /* close each nested if ===> */  } } } } } } } }
  assert(call->in(call->req()-1) != NULL, "must initialize all parms");

  if (!is_leaf) {
    // Non-leaves can block and take safepoints:
    add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  }
  // Non-leaves can throw exceptions:
  if (has_io) {
    call->set_req(TypeFunc::I_O, i_o());
  }

  if (flags & RC_UNCOMMON) {
    // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
    // (An "if" probability corresponds roughly to an unconditional count.
    // Sort of.)
    call->set_cnt(PROB_UNLIKELY_MAG(4));
  }

  Node* c = _gvn.transform(call);
  assert(c == call, "cannot disappear");

  if (wide_out) {
    // Slow path call has full side-effects.
    set_predefined_output_for_runtime_call(call);
  } else {
    // Slow path call has few side-effects, and/or sets few values.
    set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  }

  if (has_io) {
    set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
  }
  return call;

}

//------------------------------merge_memory-----------------------------------
// Merge memory from one path into the current memory state.
void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
    Node* old_slice = mms.force_memory();
    Node* new_slice = mms.memory2();
    if (old_slice != new_slice) {
      PhiNode* phi;
      if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
        if (mms.is_empty()) {
          // clone base memory Phi's inputs for this memory slice
          assert(old_slice == mms.base_memory(), "sanity");
          phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
          _gvn.set_type(phi, Type::MEMORY);
          for (uint i = 1; i < phi->req(); i++) {
            phi->init_req(i, old_slice->in(i));
          }
        } else {
          phi = old_slice->as_Phi(); // Phi was generated already
        }
      } else {
        phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
        _gvn.set_type(phi, Type::MEMORY);
      }
      phi->set_req(new_path, new_slice);
      mms.set_memory(phi);
    }
  }
}

//------------------------------make_slow_call_ex------------------------------
// Make the exception handler hookups for the slow call
void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
  if (stopped())  return;

  // Make a catch node with just two handlers:  fall-through and catch-all
  Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
  Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );

  { PreserveJVMState pjvms(this);
    set_control(excp);
    set_i_o(i_o);

    if (excp != top()) {
      if (deoptimize) {
        // Deoptimize if an exception is caught. Don't construct exception state in this case.
        uncommon_trap(Deoptimization::Reason_unhandled,
                      Deoptimization::Action_none);
      } else {
        // Create an exception state also.
        // Use an exact type if the caller has specified a specific exception.
        const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
        Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
        add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
      }
    }
  }

  // Get the no-exception control from the CatchNode.
  set_control(norm);
}


//-------------------------------gen_subtype_check-----------------------------
// Generate a subtyping check.  Takes as input the subtype and supertype.
// Returns 2 values: sets the default control() to the true path and returns
// the false path.  Only reads invariant memory; sets no (visible) memory.
// The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
// but that's not exposed to the optimizer.  This call also doesn't take in an
// Object; if you wish to check an Object you need to load the Object's class
// prior to coming here.
Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  // Fast check for identical types, perhaps identical constants.
  // The types can even be identical non-constants, in cases
  // involving Array.newInstance, Object.clone, etc.
  if (subklass == superklass)
    return top();             // false path is dead; no test needed.

  if (_gvn.type(superklass)->singleton()) {
    ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
    ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();

    // In the common case of an exact superklass, try to fold up the
    // test before generating code.  You may ask, why not just generate
    // the code and then let it fold up?  The answer is that the generated
    // code will necessarily include null checks, which do not always
    // completely fold away.  If they are also needless, then they turn
    // into a performance loss.  Example:
    //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
    // Here, the type of 'fa' is often exact, so the store check
    // of fa[1]=x will fold up, without testing the nullness of x.
    switch (static_subtype_check(superk, subk)) {
    case SSC_always_false:
      {
        Node* always_fail = control();
        set_control(top());
        return always_fail;
      }
    case SSC_always_true:
      return top();
    case SSC_easy_test:
      {
        // Just do a direct pointer compare and be done.
        Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
        Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
        IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
        set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
        return       _gvn.transform( new(C) IfFalseNode(iff) );
      }
    case SSC_full_test:
      break;
    default:
      ShouldNotReachHere();
    }
  }

  // %%% Possible further optimization:  Even if the superklass is not exact,
  // if the subklass is the unique subtype of the superklass, the check
  // will always succeed.  We could leave a dependency behind to ensure this.

  // First load the super-klass's check-offset
  Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
  Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
                                                   TypeInt::INT, MemNode::unordered));
  int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
  bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);

  // Load from the sub-klass's super-class display list, or a 1-word cache of
  // the secondary superclass list, or a failing value with a sentinel offset
  // if the super-klass is an interface or exceptionally deep in the Java
  // hierarchy and we have to scan the secondary superclass list the hard way.
  // Worst-case type is a little odd: NULL is allowed as a result (usually
  // klass loads can never produce a NULL).
  Node *chk_off_X = ConvI2X(chk_off);
  Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
  // For some types like interfaces the following loadKlass is from a 1-word
  // cache which is mutable so can't use immutable memory.  Other
  // types load from the super-class display table which is immutable.
  Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  Node* nkls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));

  // Compile speed common case: ARE a subtype and we canNOT fail
  if( superklass == nkls )
    return top();             // false path is dead; no test needed.

  // See if we get an immediate positive hit.  Happens roughly 83% of the
  // time.  Test to see if the value loaded just previously from the subklass
  // is exactly the superklass.
  Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
  Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
  IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
  set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );

  // Compile speed common case: Check for being deterministic right now.  If
  // chk_off is a constant and not equal to cacheoff then we are NOT a
  // subklass.  In this case we need exactly the 1 test above and we can
  // return those results immediately.
  if (!might_be_cache) {
    Node* not_subtype_ctrl = control();
    set_control(iftrue1); // We need exactly the 1 test above
    return not_subtype_ctrl;
  }

  // Gather the various success & failures here
  RegionNode *r_ok_subtype = new (C) RegionNode(4);
  record_for_igvn(r_ok_subtype);
  RegionNode *r_not_subtype = new (C) RegionNode(3);
  record_for_igvn(r_not_subtype);

  r_ok_subtype->init_req(1, iftrue1);

  // Check for immediate negative hit.  Happens roughly 11% of the time (which
  // is roughly 63% of the remaining cases).  Test to see if the loaded
  // check-offset points into the subklass display list or the 1-element
  // cache.  If it points to the display (and NOT the cache) and the display
  // missed then it's not a subtype.
  Node *cacheoff = _gvn.intcon(cacheoff_con);
  Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
  Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
  IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
  set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );

  // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  // No performance impact (too rare) but allows sharing of secondary arrays
  // which has some footprint reduction.
  Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
  Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
  IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
  set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );

  // -- Roads not taken here: --
  // We could also have chosen to perform the self-check at the beginning
  // of this code sequence, as the assembler does.  This would not pay off
  // the same way, since the optimizer, unlike the assembler, can perform
  // static type analysis to fold away many successful self-checks.
  // Non-foldable self checks work better here in second position, because
  // the initial primary superclass check subsumes a self-check for most
  // types.  An exception would be a secondary type like array-of-interface,
  // which does not appear in its own primary supertype display.
  // Finally, we could have chosen to move the self-check into the
  // PartialSubtypeCheckNode, and from there out-of-line in a platform
  // dependent manner.  But it is worthwhile to have the check here,
  // where it can be perhaps be optimized.  The cost in code space is
  // small (register compare, branch).

  // Now do a linear scan of the secondary super-klass array.  Again, no real
  // performance impact (too rare) but it's gotta be done.
  // Since the code is rarely used, there is no penalty for moving it
  // out of line, and it can only improve I-cache density.
  // The decision to inline or out-of-line this final check is platform
  // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  Node* psc = _gvn.transform(
    new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );

  Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
  Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
  IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
  r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );

  // Return false path; set default control to true path.
  set_control( _gvn.transform(r_ok_subtype) );
  return _gvn.transform(r_not_subtype);
}

//----------------------------static_subtype_check-----------------------------
// Shortcut important common cases when superklass is exact:
// (0) superklass is java.lang.Object (can occur in reflective code)
// (1) subklass is already limited to a subtype of superklass => always ok
// (2) subklass does not overlap with superklass => always fail
// (3) superklass has NO subtypes and we can check with a simple compare.
int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  if (StressReflectiveCode) {
    return SSC_full_test;       // Let caller generate the general case.
  }

  if (superk == env()->Object_klass()) {
    return SSC_always_true;     // (0) this test cannot fail
  }

  ciType* superelem = superk;
  if (superelem->is_array_klass())
    superelem = superelem->as_array_klass()->base_element_type();

  if (!subk->is_interface()) {  // cannot trust static interface types yet
    if (subk->is_subtype_of(superk)) {
      return SSC_always_true;   // (1) false path dead; no dynamic test needed
    }
    if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
        !superk->is_subtype_of(subk)) {
      return SSC_always_false;
    }
  }

  // If casting to an instance klass, it must have no subtypes
  if (superk->is_interface()) {
    // Cannot trust interfaces yet.
    // %%% S.B. superk->nof_implementors() == 1
  } else if (superelem->is_instance_klass()) {
    ciInstanceKlass* ik = superelem->as_instance_klass();
    if (!ik->has_subklass() && !ik->is_interface()) {
      if (!ik->is_final()) {
        // Add a dependency if there is a chance of a later subclass.
        C->dependencies()->assert_leaf_type(ik);
      }
      return SSC_easy_test;     // (3) caller can do a simple ptr comparison
    }
  } else {
    // A primitive array type has no subtypes.
    return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  }

  return SSC_full_test;
}

// Profile-driven exact type check:
Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
                                    float prob,
                                    Node* *casted_receiver) {
  const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  Node* recv_klass = load_object_klass(receiver);
  Node* want_klass = makecon(tklass);
  Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
  Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
  Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );

  const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  assert(recv_xtype->klass_is_exact(), "");

  // Subsume downstream occurrences of receiver with a cast to
  // recv_xtype, since now we know what the type will be.
  Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
  (*casted_receiver) = _gvn.transform(cast);
  // (User must make the replace_in_map call.)

  return fail;
}


//------------------------------seems_never_null-------------------------------
// Use null_seen information if it is available from the profile.
// If we see an unexpected null at a type check we record it and force a
// recompile; the offending check will be recompiled to handle NULLs.
// If we see several offending BCIs, then all checks in the
// method will be recompiled.
bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
  if (UncommonNullCast               // Cutout for this technique
      && obj != null()               // And not the -Xcomp stupid case?
      && !too_many_traps(Deoptimization::Reason_null_check)
      ) {
    if (data == NULL)
      // Edge case:  no mature data.  Be optimistic here.
      return true;
    // If the profile has not seen a null, assume it won't happen.
    assert(java_bc() == Bytecodes::_checkcast ||
           java_bc() == Bytecodes::_instanceof ||
           java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
    return !data->as_BitData()->null_seen();
  }
  return false;
}

//------------------------maybe_cast_profiled_receiver-------------------------
// If the profile has seen exactly one type, narrow to exactly that type.
// Subsequent type checks will always fold up.
Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
                                             ciKlass* require_klass,
                                             ciKlass* spec_klass,
                                             bool safe_for_replace) {
  if (!UseTypeProfile || !TypeProfileCasts) return NULL;

  Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;

  // Make sure we haven't already deoptimized from this tactic.
  if (too_many_traps(reason) || too_many_recompiles(reason))
    return NULL;

  // (No, this isn't a call, but it's enough like a virtual call
  // to use the same ciMethod accessor to get the profile info...)
  // If we have a speculative type use it instead of profiling (which
  // may not help us)
  ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
  if (exact_kls != NULL) {// no cast failures here
    if (require_klass == NULL ||
        static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
      // If we narrow the type to match what the type profile sees or
      // the speculative type, we can then remove the rest of the
      // cast.
      // This is a win, even if the exact_kls is very specific,
      // because downstream operations, such as method calls,
      // will often benefit from the sharper type.
      Node* exact_obj = not_null_obj; // will get updated in place...
      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
                                            &exact_obj);
      { PreserveJVMState pjvms(this);
        set_control(slow_ctl);
        uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
      }
      if (safe_for_replace) {
        replace_in_map(not_null_obj, exact_obj);
      }
      return exact_obj;
    }
    // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
  }

  return NULL;
}

/**
 * Cast obj to type and emit guard unless we had too many traps here
 * already
 *
 * @param obj       node being casted
 * @param type      type to cast the node to
 * @param not_null  true if we know node cannot be null
 */
Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
                                        ciKlass* type,
                                        bool not_null) {
  // type == NULL if profiling tells us this object is always null
  if (type != NULL) {
    Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
    Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
    if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
        !too_many_traps(class_reason) && !too_many_recompiles(class_reason)) {
      Node* not_null_obj = NULL;
      // not_null is true if we know the object is not null and
      // there's no need for a null check
      if (!not_null) {
        Node* null_ctl = top();
        not_null_obj = null_check_oop(obj, &null_ctl, true, true);
        assert(null_ctl->is_top(), "no null control here");
      } else {
        not_null_obj = obj;
      }

      Node* exact_obj = not_null_obj;
      ciKlass* exact_kls = type;
      Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
                                            &exact_obj);
      {
        PreserveJVMState pjvms(this);
        set_control(slow_ctl);
        uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
      }
      replace_in_map(not_null_obj, exact_obj);
      obj = exact_obj;
    }
  } else {
    if (!too_many_traps(Deoptimization::Reason_null_assert) &&
        !too_many_recompiles(Deoptimization::Reason_null_assert)) {
      Node* exact_obj = null_assert(obj);
      replace_in_map(obj, exact_obj);
      obj = exact_obj;
    }
  }
  return obj;
}

//-------------------------------gen_instanceof--------------------------------
// Generate an instance-of idiom.  Used by both the instance-of bytecode
// and the reflective instance-of call.
Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
  kill_dead_locals();           // Benefit all the uncommon traps
  assert( !stopped(), "dead parse path should be checked in callers" );
  assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
         "must check for not-null not-dead klass in callers");

  // Make the merge point
  enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  RegionNode* region = new(C) RegionNode(PATH_LIMIT);
  Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
  C->set_has_split_ifs(true); // Has chance for split-if optimization

  ciProfileData* data = NULL;
  if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
    data = method()->method_data()->bci_to_data(bci());
  }
  bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
                         && seems_never_null(obj, data));

  // Null check; get casted pointer; set region slot 3
  Node* null_ctl = top();
  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);

  // If not_null_obj is dead, only null-path is taken
  if (stopped()) {              // Doing instance-of on a NULL?
    set_control(null_ctl);
    return intcon(0);
  }
  region->init_req(_null_path, null_ctl);
  phi   ->init_req(_null_path, intcon(0)); // Set null path value
  if (null_ctl == top()) {
    // Do this eagerly, so that pattern matches like is_diamond_phi
    // will work even during parsing.
    assert(_null_path == PATH_LIMIT-1, "delete last");
    region->del_req(_null_path);
    phi   ->del_req(_null_path);
  }

  // Do we know the type check always succeed?
  bool known_statically = false;
  if (_gvn.type(superklass)->singleton()) {
    ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
    ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
    if (subk != NULL && subk->is_loaded()) {
      int static_res = static_subtype_check(superk, subk);
      known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
    }
  }

  if (known_statically && UseTypeSpeculation) {
    // If we know the type check always succeeds then we don't use the
    // profiling data at this bytecode. Don't lose it, feed it to the
    // type system as a speculative type.
    not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
  } else {
    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
    // We may not have profiling here or it may not help us. If we
    // have a speculative type use it to perform an exact cast.
    ciKlass* spec_obj_type = obj_type->speculative_type();
    if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
      Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
      if (stopped()) {            // Profile disagrees with this path.
        set_control(null_ctl);    // Null is the only remaining possibility.
        return intcon(0);
      }
      if (cast_obj != NULL) {
        not_null_obj = cast_obj;
      }
    }
  }

  // Load the object's klass
  Node* obj_klass = load_object_klass(not_null_obj);

  // Generate the subtype check
  Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);

  // Plug in the success path to the general merge in slot 1.
  region->init_req(_obj_path, control());
  phi   ->init_req(_obj_path, intcon(1));

  // Plug in the failing path to the general merge in slot 2.
  region->init_req(_fail_path, not_subtype_ctrl);
  phi   ->init_req(_fail_path, intcon(0));

  // Return final merged results
  set_control( _gvn.transform(region) );
  record_for_igvn(region);
  return _gvn.transform(phi);
}

//-------------------------------gen_checkcast---------------------------------
// Generate a checkcast idiom.  Used by both the checkcast bytecode and the
// array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
// uncommon-trap paths work.  Adjust stack after this call.
// If failure_control is supplied and not null, it is filled in with
// the control edge for the cast failure.  Otherwise, an appropriate
// uncommon trap or exception is thrown.
Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
                              Node* *failure_control) {
  kill_dead_locals();           // Benefit all the uncommon traps
  const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  const Type *toop = TypeOopPtr::make_from_klass(tk->klass());

  // Fast cutout:  Check the case that the cast is vacuously true.
  // This detects the common cases where the test will short-circuit
  // away completely.  We do this before we perform the null check,
  // because if the test is going to turn into zero code, we don't
  // want a residual null check left around.  (Causes a slowdown,
  // for example, in some objArray manipulations, such as a[i]=a[j].)
  if (tk->singleton()) {
    const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
    if (objtp != NULL && objtp->klass() != NULL) {
      switch (static_subtype_check(tk->klass(), objtp->klass())) {
      case SSC_always_true:
        // If we know the type check always succeed then we don't use
        // the profiling data at this bytecode. Don't lose it, feed it
        // to the type system as a speculative type.
        return record_profiled_receiver_for_speculation(obj);
      case SSC_always_false:
        // It needs a null check because a null will *pass* the cast check.
        // A non-null value will always produce an exception.
        return null_assert(obj);
      }
    }
  }

  ciProfileData* data = NULL;
  bool safe_for_replace = false;
  if (failure_control == NULL) {        // use MDO in regular case only
    assert(java_bc() == Bytecodes::_aastore ||
           java_bc() == Bytecodes::_checkcast,
           "interpreter profiles type checks only for these BCs");
    data = method()->method_data()->bci_to_data(bci());
    safe_for_replace = true;
  }

  // Make the merge point
  enum { _obj_path = 1, _null_path, PATH_LIMIT };
  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  Node*       phi    = new (C) PhiNode(region, toop);
  C->set_has_split_ifs(true); // Has chance for split-if optimization

  // Use null-cast information if it is available
  bool never_see_null = ((failure_control == NULL)  // regular case only
                         && seems_never_null(obj, data));

  // Null check; get casted pointer; set region slot 3
  Node* null_ctl = top();
  Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);

  // If not_null_obj is dead, only null-path is taken
  if (stopped()) {              // Doing instance-of on a NULL?
    set_control(null_ctl);
    return null();
  }
  region->init_req(_null_path, null_ctl);
  phi   ->init_req(_null_path, null());  // Set null path value
  if (null_ctl == top()) {
    // Do this eagerly, so that pattern matches like is_diamond_phi
    // will work even during parsing.
    assert(_null_path == PATH_LIMIT-1, "delete last");
    region->del_req(_null_path);
    phi   ->del_req(_null_path);
  }

  Node* cast_obj = NULL;
  if (tk->klass_is_exact()) {
    // The following optimization tries to statically cast the speculative type of the object
    // (for example obtained during profiling) to the type of the superklass and then do a
    // dynamic check that the type of the object is what we expect. To work correctly
    // for checkcast and aastore the type of superklass should be exact.
    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
    // We may not have profiling here or it may not help us. If we have
    // a speculative type use it to perform an exact cast.
    ciKlass* spec_obj_type = obj_type->speculative_type();
    if (spec_obj_type != NULL ||
        (data != NULL &&
         // Counter has never been decremented (due to cast failure).
         // ...This is a reasonable thing to expect.  It is true of
         // all casts inserted by javac to implement generic types.
         data->as_CounterData()->count() >= 0)) {
      cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
      if (cast_obj != NULL) {
        if (failure_control != NULL) // failure is now impossible
          (*failure_control) = top();
        // adjust the type of the phi to the exact klass:
        phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
      }
    }
  }

  if (cast_obj == NULL) {
    // Load the object's klass
    Node* obj_klass = load_object_klass(not_null_obj);

    // Generate the subtype check
    Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );

    // Plug in success path into the merge
    cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
                                                         not_null_obj, toop));
    // Failure path ends in uncommon trap (or may be dead - failure impossible)
    if (failure_control == NULL) {
      if (not_subtype_ctrl != top()) { // If failure is possible
        PreserveJVMState pjvms(this);
        set_control(not_subtype_ctrl);
        builtin_throw(Deoptimization::Reason_class_check, obj_klass);
      }
    } else {
      (*failure_control) = not_subtype_ctrl;
    }
  }

  region->init_req(_obj_path, control());
  phi   ->init_req(_obj_path, cast_obj);

  // A merge of NULL or Casted-NotNull obj
  Node* res = _gvn.transform(phi);

  // Note I do NOT always 'replace_in_map(obj,result)' here.
  //  if( tk->klass()->can_be_primary_super()  )
    // This means that if I successfully store an Object into an array-of-String
    // I 'forget' that the Object is really now known to be a String.  I have to
    // do this because we don't have true union types for interfaces - if I store
    // a Baz into an array-of-Interface and then tell the optimizer it's an
    // Interface, I forget that it's also a Baz and cannot do Baz-like field
    // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  //  replace_in_map( obj, res );

  // Return final merged results
  set_control( _gvn.transform(region) );
  record_for_igvn(region);
  return res;
}

//------------------------------next_monitor-----------------------------------
// What number should be given to the next monitor?
int GraphKit::next_monitor() {
  int current = jvms()->monitor_depth()* C->sync_stack_slots();
  int next = current + C->sync_stack_slots();
  // Keep the toplevel high water mark current:
  if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  return current;
}

//------------------------------insert_mem_bar---------------------------------
// Memory barrier to avoid floating things around
// The membar serves as a pinch point between both control and all memory slices.
Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  mb->init_req(TypeFunc::Control, control());
  mb->init_req(TypeFunc::Memory,  reset_memory());
  Node* membar = _gvn.transform(mb);
  set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
  set_all_memory_call(membar);
  return membar;
}

//-------------------------insert_mem_bar_volatile----------------------------
// Memory barrier to avoid floating things around
// The membar serves as a pinch point between both control and memory(alias_idx).
// If you want to make a pinch point on all memory slices, do not use this
// function (even with AliasIdxBot); use insert_mem_bar() instead.
Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  // When Parse::do_put_xxx updates a volatile field, it appends a series
  // of MemBarVolatile nodes, one for *each* volatile field alias category.
  // The first membar is on the same memory slice as the field store opcode.
  // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  // All the other membars (for other volatile slices, including AliasIdxBot,
  // which stands for all unknown volatile slices) are control-dependent
  // on the first membar.  This prevents later volatile loads or stores
  // from sliding up past the just-emitted store.

  MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  mb->set_req(TypeFunc::Control,control());
  if (alias_idx == Compile::AliasIdxBot) {
    mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  } else {
    assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
    mb->set_req(TypeFunc::Memory, memory(alias_idx));
  }
  Node* membar = _gvn.transform(mb);
  set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
  if (alias_idx == Compile::AliasIdxBot) {
    merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
  } else {
    set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  }
  return membar;
}

//------------------------------shared_lock------------------------------------
// Emit locking code.
FastLockNode* GraphKit::shared_lock(Node* obj) {
  // bci is either a monitorenter bc or InvocationEntryBci
  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  assert(SynchronizationEntryBCI == InvocationEntryBci, "");

  if( !GenerateSynchronizationCode )
    return NULL;                // Not locking things?
  if (stopped())                // Dead monitor?
    return NULL;

  assert(dead_locals_are_killed(), "should kill locals before sync. point");

  // Box the stack location
  Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
  Node* mem = reset_memory();

  FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
  if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
    // Create the counters for this fast lock.
    flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  }

  // Create the rtm counters for this fast lock if needed.
  flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci

  // Add monitor to debug info for the slow path.  If we block inside the
  // slow path and de-opt, we need the monitor hanging around
  map()->push_monitor( flock );

  const TypeFunc *tf = LockNode::lock_type();
  LockNode *lock = new (C) LockNode(C, tf);

  lock->init_req( TypeFunc::Control, control() );
  lock->init_req( TypeFunc::Memory , mem );
  lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  lock->init_req( TypeFunc::FramePtr, frameptr() );
  lock->init_req( TypeFunc::ReturnAdr, top() );

  lock->init_req(TypeFunc::Parms + 0, obj);
  lock->init_req(TypeFunc::Parms + 1, box);
  lock->init_req(TypeFunc::Parms + 2, flock);
  add_safepoint_edges(lock);

  lock = _gvn.transform( lock )->as_Lock();

  // lock has no side-effects, sets few values
  set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);

  insert_mem_bar(Op_MemBarAcquireLock);

  // Add this to the worklist so that the lock can be eliminated
  record_for_igvn(lock);

#ifndef PRODUCT
  if (PrintLockStatistics) {
    // Update the counter for this lock.  Don't bother using an atomic
    // operation since we don't require absolute accuracy.
    lock->create_lock_counter(map()->jvms());
    increment_counter(lock->counter()->addr());
  }
#endif

  return flock;
}


//------------------------------shared_unlock----------------------------------
// Emit unlocking code.
void GraphKit::shared_unlock(Node* box, Node* obj) {
  // bci is either a monitorenter bc or InvocationEntryBci
  // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  assert(SynchronizationEntryBCI == InvocationEntryBci, "");

  if( !GenerateSynchronizationCode )
    return;
  if (stopped()) {               // Dead monitor?
    map()->pop_monitor();        // Kill monitor from debug info
    return;
  }

  // Memory barrier to avoid floating things down past the locked region
  insert_mem_bar(Op_MemBarReleaseLock);

  const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  UnlockNode *unlock = new (C) UnlockNode(C, tf);
#ifdef ASSERT
  unlock->set_dbg_jvms(sync_jvms());
#endif
  uint raw_idx = Compile::AliasIdxRaw;
  unlock->init_req( TypeFunc::Control, control() );
  unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  unlock->init_req( TypeFunc::FramePtr, frameptr() );
  unlock->init_req( TypeFunc::ReturnAdr, top() );

  unlock->init_req(TypeFunc::Parms + 0, obj);
  unlock->init_req(TypeFunc::Parms + 1, box);
  unlock = _gvn.transform(unlock)->as_Unlock();

  Node* mem = reset_memory();

  // unlock has no side-effects, sets few values
  set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);

  // Kill monitor from debug info
  map()->pop_monitor( );
}

//-------------------------------get_layout_helper-----------------------------
// If the given klass is a constant or known to be an array,
// fetch the constant layout helper value into constant_value
// and return (Node*)NULL.  Otherwise, load the non-constant
// layout helper value, and return the node which represents it.
// This two-faced routine is useful because allocation sites
// almost always feature constant types.
Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  if (!StressReflectiveCode && inst_klass != NULL) {
    ciKlass* klass = inst_klass->klass();
    bool    xklass = inst_klass->klass_is_exact();
    if (xklass || klass->is_array_klass()) {
      jint lhelper = klass->layout_helper();
      if (lhelper != Klass::_lh_neutral_value) {
        constant_value = lhelper;
        return (Node*) NULL;
      }
    }
  }
  constant_value = Klass::_lh_neutral_value;  // put in a known value
  Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
  return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
}

// We just put in an allocate/initialize with a big raw-memory effect.
// Hook selected additional alias categories on the initialization.
static void hook_memory_on_init(GraphKit& kit, int alias_idx,
                                MergeMemNode* init_in_merge,
                                Node* init_out_raw) {
  DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");

  Node* prevmem = kit.memory(alias_idx);
  init_in_merge->set_memory_at(alias_idx, prevmem);
  kit.set_memory(init_out_raw, alias_idx);
}

//---------------------------set_output_for_allocation-------------------------
Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
                                          const TypeOopPtr* oop_type,
                                          bool deoptimize_on_exception) {
  int rawidx = Compile::AliasIdxRaw;
  alloc->set_req( TypeFunc::FramePtr, frameptr() );
  add_safepoint_edges(alloc);
  Node* allocx = _gvn.transform(alloc);
  set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
  // create memory projection for i_o
  set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);

  // create a memory projection as for the normal control path
  Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
  set_memory(malloc, rawidx);

  // a normal slow-call doesn't change i_o, but an allocation does
  // we create a separate i_o projection for the normal control path
  set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
  Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );

  // put in an initialization barrier
  InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
                                                 rawoop)->as_Initialize();
  assert(alloc->initialization() == init,  "2-way macro link must work");
  assert(init ->allocation()     == alloc, "2-way macro link must work");
  {
    // Extract memory strands which may participate in the new object's
    // initialization, and source them from the new InitializeNode.
    // This will allow us to observe initializations when they occur,
    // and link them properly (as a group) to the InitializeNode.
    assert(init->in(InitializeNode::Memory) == malloc, "");
    MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
    init->set_req(InitializeNode::Memory, minit_in);
    record_for_igvn(minit_in); // fold it up later, if possible
    Node* minit_out = memory(rawidx);
    assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
    if (oop_type->isa_aryptr()) {
      const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
      int            elemidx  = C->get_alias_index(telemref);
      hook_memory_on_init(*this, elemidx, minit_in, minit_out);
    } else if (oop_type->isa_instptr()) {
      ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
      for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
        ciField* field = ik->nonstatic_field_at(i);
        if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
          continue;  // do not bother to track really large numbers of fields
        // Find (or create) the alias category for this field:
        int fieldidx = C->alias_type(field)->index();
        hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
      }
    }
  }

  // Cast raw oop to the real thing...
  Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
  javaoop = _gvn.transform(javaoop);
  C->set_recent_alloc(control(), javaoop);
  assert(just_allocated_object(control()) == javaoop, "just allocated");

#ifdef ASSERT
  { // Verify that the AllocateNode::Ideal_allocation recognizers work:
    assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
           "Ideal_allocation works");
    assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
           "Ideal_allocation works");
    if (alloc->is_AllocateArray()) {
      assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
             "Ideal_allocation works");
      assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
             "Ideal_allocation works");
    } else {
      assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
    }
  }
#endif //ASSERT

  return javaoop;
}

//---------------------------new_instance--------------------------------------
// This routine takes a klass_node which may be constant (for a static type)
// or may be non-constant (for reflective code).  It will work equally well
// for either, and the graph will fold nicely if the optimizer later reduces
// the type to a constant.
// The optional arguments are for specialized use by intrinsics:
//  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
//  - If 'return_size_val', report the the total object size to the caller.
//  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
Node* GraphKit::new_instance(Node* klass_node,
                             Node* extra_slow_test,
                             Node* *return_size_val,
                             bool deoptimize_on_exception) {
  // Compute size in doublewords
  // The size is always an integral number of doublewords, represented
  // as a positive bytewise size stored in the klass's layout_helper.
  // The layout_helper also encodes (in a low bit) the need for a slow path.
  jint  layout_con = Klass::_lh_neutral_value;
  Node* layout_val = get_layout_helper(klass_node, layout_con);
  int   layout_is_con = (layout_val == NULL);

  if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  // Generate the initial go-slow test.  It's either ALWAYS (return a
  // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  // case) a computed value derived from the layout_helper.
  Node* initial_slow_test = NULL;
  if (layout_is_con) {
    assert(!StressReflectiveCode, "stress mode does not use these paths");
    bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
    initial_slow_test = must_go_slow? intcon(1): extra_slow_test;

  } else {   // reflective case
    // This reflective path is used by Unsafe.allocateInstance.
    // (It may be stress-tested by specifying StressReflectiveCode.)
    // Basically, we want to get into the VM is there's an illegal argument.
    Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
    initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
    if (extra_slow_test != intcon(0)) {
      initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
    }
    // (Macro-expander will further convert this to a Bool, if necessary.)
  }

  // Find the size in bytes.  This is easy; it's the layout_helper.
  // The size value must be valid even if the slow path is taken.
  Node* size = NULL;
  if (layout_is_con) {
    size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  } else {   // reflective case
    // This reflective path is used by clone and Unsafe.allocateInstance.
    size = ConvI2X(layout_val);

    // Clear the low bits to extract layout_helper_size_in_bytes:
    assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
    Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
    size = _gvn.transform( new (C) AndXNode(size, mask) );
  }
  if (return_size_val != NULL) {
    (*return_size_val) = size;
  }

  // This is a precise notnull oop of the klass.
  // (Actually, it need not be precise if this is a reflective allocation.)
  // It's what we cast the result to.
  const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  const TypeOopPtr* oop_type = tklass->as_instance_type();

  // Now generate allocation code

  // The entire memory state is needed for slow path of the allocation
  // since GC and deoptimization can happened.
  Node *mem = reset_memory();
  set_all_memory(mem); // Create new memory state

  AllocateNode* alloc
    = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
                           control(), mem, i_o(),
                           size, klass_node,
                           initial_slow_test);

  return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
}

//-------------------------------new_array-------------------------------------
// helper for both newarray and anewarray
// The 'length' parameter is (obviously) the length of the array.
// See comments on new_instance for the meaning of the other arguments.
Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
                          Node* length,         // number of array elements
                          int   nargs,          // number of arguments to push back for uncommon trap
                          Node* *return_size_val,
                          bool deoptimize_on_exception) {
  jint  layout_con = Klass::_lh_neutral_value;
  Node* layout_val = get_layout_helper(klass_node, layout_con);
  int   layout_is_con = (layout_val == NULL);

  if (!layout_is_con && !StressReflectiveCode &&
      !too_many_traps(Deoptimization::Reason_class_check)) {
    // This is a reflective array creation site.
    // Optimistically assume that it is a subtype of Object[],
    // so that we can fold up all the address arithmetic.
    layout_con = Klass::array_layout_helper(T_OBJECT);
    Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
    Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
    { BuildCutout unless(this, bol_lh, PROB_MAX);
      inc_sp(nargs);
      uncommon_trap(Deoptimization::Reason_class_check,
                    Deoptimization::Action_maybe_recompile);
    }
    layout_val = NULL;
    layout_is_con = true;
  }

  // Generate the initial go-slow test.  Make sure we do not overflow
  // if length is huge (near 2Gig) or negative!  We do not need
  // exact double-words here, just a close approximation of needed
  // double-words.  We can't add any offset or rounding bits, lest we
  // take a size -1 of bytes and make it positive.  Use an unsigned
  // compare, so negative sizes look hugely positive.
  int fast_size_limit = FastAllocateSizeLimit;
  if (layout_is_con) {
    assert(!StressReflectiveCode, "stress mode does not use these paths");
    // Increase the size limit if we have exact knowledge of array type.
    int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
    fast_size_limit <<= (LogBytesPerLong - log2_esize);
  }

  Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
  Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );

  // --- Size Computation ---
  // array_size = round_to_heap(array_header + (length << elem_shift));
  // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  // and round_to(x, y) == ((x + y-1) & ~(y-1))
  // The rounding mask is strength-reduced, if possible.
  int round_mask = MinObjAlignmentInBytes - 1;
  Node* header_size = NULL;
  int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  // (T_BYTE has the weakest alignment and size restrictions...)
  if (layout_is_con) {
    int       hsize  = Klass::layout_helper_header_size(layout_con);
    int       eshift = Klass::layout_helper_log2_element_size(layout_con);
    BasicType etype  = Klass::layout_helper_element_type(layout_con);
    if ((round_mask & ~right_n_bits(eshift)) == 0)
      round_mask = 0;  // strength-reduce it if it goes away completely
    assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
    assert(header_size_min <= hsize, "generic minimum is smallest");
    header_size_min = hsize;
    header_size = intcon(hsize + round_mask);
  } else {
    Node* hss   = intcon(Klass::_lh_header_size_shift);
    Node* hsm   = intcon(Klass::_lh_header_size_mask);
    Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
    hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
    Node* mask  = intcon(round_mask);
    header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
  }

  Node* elem_shift = NULL;
  if (layout_is_con) {
    int eshift = Klass::layout_helper_log2_element_size(layout_con);
    if (eshift != 0)
      elem_shift = intcon(eshift);
  } else {
    // There is no need to mask or shift this value.
    // The semantics of LShiftINode include an implicit mask to 0x1F.
    assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
    elem_shift = layout_val;
  }

  // Transition to native address size for all offset calculations:
  Node* lengthx = ConvI2X(length);
  Node* headerx = ConvI2X(header_size);
#ifdef _LP64
  { const TypeInt* tilen = _gvn.find_int_type(length);
    if (tilen != NULL && tilen->_lo < 0) {
      // Add a manual constraint to a positive range.  Cf. array_element_address.
      jlong size_max = fast_size_limit;
      if (size_max > tilen->_hi)  size_max = tilen->_hi;
      const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);

      // Only do a narrow I2L conversion if the range check passed.
      IfNode* iff = new (C) IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
      _gvn.transform(iff);
      RegionNode* region = new (C) RegionNode(3);
      _gvn.set_type(region, Type::CONTROL);
      lengthx = new (C) PhiNode(region, TypeLong::LONG);
      _gvn.set_type(lengthx, TypeLong::LONG);

      // Range check passed. Use ConvI2L node with narrow type.
      Node* passed = IfFalse(iff);
      region->init_req(1, passed);
      // Make I2L conversion control dependent to prevent it from
      // floating above the range check during loop optimizations.
      lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));

      // Range check failed. Use ConvI2L with wide type because length may be invalid.
      region->init_req(2, IfTrue(iff));
      lengthx->init_req(2, ConvI2X(length));

      set_control(region);
      record_for_igvn(region);
      record_for_igvn(lengthx);
    }
  }
#endif

  // Combine header size (plus rounding) and body size.  Then round down.
  // This computation cannot overflow, because it is used only in two
  // places, one where the length is sharply limited, and the other
  // after a successful allocation.
  Node* abody = lengthx;
  if (elem_shift != NULL)
    abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
  Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
  if (round_mask != 0) {
    Node* mask = MakeConX(~round_mask);
    size       = _gvn.transform( new(C) AndXNode(size, mask) );
  }
  // else if round_mask == 0, the size computation is self-rounding

  if (return_size_val != NULL) {
    // This is the size
    (*return_size_val) = size;
  }

  // Now generate allocation code

  // The entire memory state is needed for slow path of the allocation
  // since GC and deoptimization can happened.
  Node *mem = reset_memory();
  set_all_memory(mem); // Create new memory state

  if (initial_slow_test->is_Bool()) {
    // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
    initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  }

  // Create the AllocateArrayNode and its result projections
  AllocateArrayNode* alloc
    = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
                                control(), mem, i_o(),
                                size, klass_node,
                                initial_slow_test,
                                length);

  // Cast to correct type.  Note that the klass_node may be constant or not,
  // and in the latter case the actual array type will be inexact also.
  // (This happens via a non-constant argument to inline_native_newArray.)
  // In any case, the value of klass_node provides the desired array type.
  const TypeInt* length_type = _gvn.find_int_type(length);
  const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  if (ary_type->isa_aryptr() && length_type != NULL) {
    // Try to get a better type than POS for the size
    ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  }

  Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);

  // Cast length on remaining path to be as narrow as possible
  if (map()->find_edge(length) >= 0) {
    Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
    if (ccast != length) {
      _gvn.set_type_bottom(ccast);
      record_for_igvn(ccast);
      replace_in_map(length, ccast);
    }
  }

  return javaoop;
}

// The following "Ideal_foo" functions are placed here because they recognize
// the graph shapes created by the functions immediately above.

//---------------------------Ideal_allocation----------------------------------
// Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  if (ptr == NULL) {     // reduce dumb test in callers
    return NULL;
  }
  if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
    ptr = ptr->in(1);
    if (ptr == NULL) return NULL;
  }
  // Return NULL for allocations with several casts:
  //   j.l.reflect.Array.newInstance(jobject, jint)
  //   Object.clone()
  // to keep more precise type from last cast.
  if (ptr->is_Proj()) {
    Node* allo = ptr->in(0);
    if (allo != NULL && allo->is_Allocate()) {
      return allo->as_Allocate();
    }
  }
  // Report failure to match.
  return NULL;
}

// Fancy version which also strips off an offset (and reports it to caller).
AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
                                             intptr_t& offset) {
  Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  if (base == NULL)  return NULL;
  return Ideal_allocation(base, phase);
}

// Trace Initialize <- Proj[Parm] <- Allocate
AllocateNode* InitializeNode::allocation() {
  Node* rawoop = in(InitializeNode::RawAddress);
  if (rawoop->is_Proj()) {
    Node* alloc = rawoop->in(0);
    if (alloc->is_Allocate()) {
      return alloc->as_Allocate();
    }
  }
  return NULL;
}

// Trace Allocate -> Proj[Parm] -> Initialize
InitializeNode* AllocateNode::initialization() {
  ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  if (rawoop == NULL)  return NULL;
  for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
    Node* init = rawoop->fast_out(i);
    if (init->is_Initialize()) {
      assert(init->as_Initialize()->allocation() == this, "2-way link");
      return init->as_Initialize();
    }
  }
  return NULL;
}

//----------------------------- loop predicates ---------------------------

//------------------------------add_predicate_impl----------------------------
void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
  // Too many traps seen?
  if (too_many_traps(reason)) {
#ifdef ASSERT
    if (TraceLoopPredicate) {
      int tc = C->trap_count(reason);
      tty->print("too many traps=%s tcount=%d in ",
                    Deoptimization::trap_reason_name(reason), tc);
      method()->print(); // which method has too many predicate traps
      tty->cr();
    }
#endif
    // We cannot afford to take more traps here,
    // do not generate predicate.
    return;
  }

  Node *cont    = _gvn.intcon(1);
  Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
  Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
  IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
  C->add_predicate_opaq(opq);
  {
    PreserveJVMState pjvms(this);
    set_control(iffalse);
    inc_sp(nargs);
    uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
  }
  Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
  set_control(iftrue);
}

//------------------------------add_predicate---------------------------------
void GraphKit::add_predicate(int nargs) {
  if (UseLoopPredicate) {
    add_predicate_impl(Deoptimization::Reason_predicate, nargs);
  }
  // loop's limit check predicate should be near the loop.
  if (LoopLimitCheck) {
    add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
  }
}

//----------------------------- store barriers ----------------------------
#define __ ideal.

void GraphKit::sync_kit(IdealKit& ideal) {
  set_all_memory(__ merged_memory());
  set_i_o(__ i_o());
  set_control(__ ctrl());
}

void GraphKit::final_sync(IdealKit& ideal) {
  // Final sync IdealKit and graphKit.
  sync_kit(ideal);
}

// vanilla/CMS post barrier
// Insert a write-barrier store.  This is to let generational GC work; we have
// to flag all oop-stores before the next GC point.
void GraphKit::write_barrier_post(Node* oop_store,
                                  Node* obj,
                                  Node* adr,
                                  uint  adr_idx,
                                  Node* val,
                                  bool use_precise) {
  // No store check needed if we're storing a NULL or an old object
  // (latter case is probably a string constant). The concurrent
  // mark sweep garbage collector, however, needs to have all nonNull
  // oop updates flagged via card-marks.
  if (val != NULL && val->is_Con()) {
    // must be either an oop or NULL
    const Type* t = val->bottom_type();
    if (t == TypePtr::NULL_PTR || t == Type::TOP)
      // stores of null never (?) need barriers
      return;
  }

  if (use_ReduceInitialCardMarks()
      && obj == just_allocated_object(control())) {
    // We can skip marks on a freshly-allocated object in Eden.
    // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
    // That routine informs GC to take appropriate compensating steps,
    // upon a slow-path allocation, so as to make this card-mark
    // elision safe.
    return;
  }

  if (!use_precise) {
    // All card marks for a (non-array) instance are in one place:
    adr = obj;
  }
  // (Else it's an array (or unknown), and we want more precise card marks.)
  assert(adr != NULL, "");

  IdealKit ideal(this, true);

  // Convert the pointer to an int prior to doing math on it
  Node* cast = __ CastPX(__ ctrl(), adr);

  // Divide by card size
  assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
         "Only one we handle so far.");
  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );

  // Combine card table base and card offset
  Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );

  // Get the alias_index for raw card-mark memory
  int adr_type = Compile::AliasIdxRaw;
  Node*   zero = __ ConI(0); // Dirty card value
  BasicType bt = T_BYTE;

  if (UseCondCardMark) {
    // The classic GC reference write barrier is typically implemented
    // as a store into the global card mark table.  Unfortunately
    // unconditional stores can result in false sharing and excessive
    // coherence traffic as well as false transactional aborts.
    // UseCondCardMark enables MP "polite" conditional card mark
    // stores.  In theory we could relax the load from ctrl() to
    // no_ctrl, but that doesn't buy much latitude.
    Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
    __ if_then(card_val, BoolTest::ne, zero);
  }

  // Smash zero into card
  if( !UseConcMarkSweepGC ) {
    __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
  } else {
    // Specialized path for CM store barrier
    __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  }

  if (UseCondCardMark) {
    __ end_if();
  }

  // Final sync IdealKit and GraphKit.
  final_sync(ideal);
}

// G1 pre/post barriers
void GraphKit::g1_write_barrier_pre(bool do_load,
                                    Node* obj,
                                    Node* adr,
                                    uint alias_idx,
                                    Node* val,
                                    const TypeOopPtr* val_type,
                                    Node* pre_val,
                                    BasicType bt) {

  // Some sanity checks
  // Note: val is unused in this routine.

  if (do_load) {
    // We need to generate the load of the previous value
    assert(obj != NULL, "must have a base");
    assert(adr != NULL, "where are loading from?");
    assert(pre_val == NULL, "loaded already?");
    assert(val_type != NULL, "need a type");
  } else {
    // In this case both val_type and alias_idx are unused.
    assert(pre_val != NULL, "must be loaded already");
    // Nothing to be done if pre_val is null.
    if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
    assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
  }
  assert(bt == T_OBJECT, "or we shouldn't be here");

  IdealKit ideal(this, true);

  Node* tls = __ thread(); // ThreadLocalStorage

  Node* no_ctrl = NULL;
  Node* no_base = __ top();
  Node* zero  = __ ConI(0);
  Node* zeroX = __ ConX(0);

  float likely  = PROB_LIKELY(0.999);
  float unlikely  = PROB_UNLIKELY(0.999);

  BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");

  // Offsets into the thread
  const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
                                          PtrQueue::byte_offset_of_active());
  const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
                                          PtrQueue::byte_offset_of_index());
  const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
                                          PtrQueue::byte_offset_of_buf());

  // Now the actual pointers into the thread
  Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));

  // Now some of the values
  Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);

  // if (!marking)
  __ if_then(marking, BoolTest::ne, zero, unlikely); {
    BasicType index_bt = TypeX_X->basic_type();
    assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
    Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);

    if (do_load) {
      // load original value
      // alias_idx correct??
      pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
    }

    // if (pre_val != NULL)
    __ if_then(pre_val, BoolTest::ne, null()); {
      Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);

      // is the queue for this thread full?
      __ if_then(index, BoolTest::ne, zeroX, likely); {

        // decrement the index
        Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));

        // Now get the buffer location we will log the previous value into and store it
        Node *log_addr = __ AddP(no_base, buffer, next_index);
        __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
        // update the index
        __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);

      } __ else_(); {

        // logging buffer is full, call the runtime
        const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
        __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
      } __ end_if();  // (!index)
    } __ end_if();  // (pre_val != NULL)
  } __ end_if();  // (!marking)

  // Final sync IdealKit and GraphKit.
  final_sync(ideal);
}

//
// Update the card table and add card address to the queue
//
void GraphKit::g1_mark_card(IdealKit& ideal,
                            Node* card_adr,
                            Node* oop_store,
                            uint oop_alias_idx,
                            Node* index,
                            Node* index_adr,
                            Node* buffer,
                            const TypeFunc* tf) {

  Node* zero  = __ ConI(0);
  Node* zeroX = __ ConX(0);
  Node* no_base = __ top();
  BasicType card_bt = T_BYTE;
  // Smash zero into card. MUST BE ORDERED WRT TO STORE
  __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);

  //  Now do the queue work
  __ if_then(index, BoolTest::ne, zeroX); {

    Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
    Node* log_addr = __ AddP(no_base, buffer, next_index);

    // Order, see storeCM.
    __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
    __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);

  } __ else_(); {
    __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  } __ end_if();

}

void GraphKit::g1_write_barrier_post(Node* oop_store,
                                     Node* obj,
                                     Node* adr,
                                     uint alias_idx,
                                     Node* val,
                                     BasicType bt,
                                     bool use_precise) {
  // If we are writing a NULL then we need no post barrier

  if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
    // Must be NULL
    const Type* t = val->bottom_type();
    assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
    // No post barrier if writing NULLx
    return;
  }

  if (!use_precise) {
    // All card marks for a (non-array) instance are in one place:
    adr = obj;
  }
  // (Else it's an array (or unknown), and we want more precise card marks.)
  assert(adr != NULL, "");

  IdealKit ideal(this, true);

  Node* tls = __ thread(); // ThreadLocalStorage

  Node* no_base = __ top();
  float likely  = PROB_LIKELY(0.999);
  float unlikely  = PROB_UNLIKELY(0.999);
  Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
  Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
  Node* zeroX = __ ConX(0);

  // Get the alias_index for raw card-mark memory
  const TypePtr* card_type = TypeRawPtr::BOTTOM;

  const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();

  // Offsets into the thread
  const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
                                     PtrQueue::byte_offset_of_index());
  const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
                                     PtrQueue::byte_offset_of_buf());

  // Pointers into the thread

  Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));

  // Now some values
  // Use ctrl to avoid hoisting these values past a safepoint, which could
  // potentially reset these fields in the JavaThread.
  Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
  Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);

  // Convert the store obj pointer to an int prior to doing math on it
  // Must use ctrl to prevent "integerized oop" existing across safepoint
  Node* cast =  __ CastPX(__ ctrl(), adr);

  // Divide pointer by card size
  Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );

  // Combine card table base and card offset
  Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );

  // If we know the value being stored does it cross regions?

  if (val != NULL) {
    // Does the store cause us to cross regions?

    // Should be able to do an unsigned compare of region_size instead of
    // and extra shift. Do we have an unsigned compare??
    // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
    Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));

    // if (xor_res == 0) same region so skip
    __ if_then(xor_res, BoolTest::ne, zeroX); {

      // No barrier if we are storing a NULL
      __ if_then(val, BoolTest::ne, null(), unlikely); {

        // Ok must mark the card if not already dirty

        // load the original value of the card
        Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);

        __ if_then(card_val, BoolTest::ne, young_card); {
          sync_kit(ideal);
          // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
          insert_mem_bar(Op_MemBarVolatile, oop_store);
          __ sync_kit(this);

          Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
          __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
            g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
          } __ end_if();
        } __ end_if();
      } __ end_if();
    } __ end_if();
  } else {
    // Object.clone() instrinsic uses this path.
    g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  }

  // Final sync IdealKit and GraphKit.
  final_sync(ideal);
}
#undef __



Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
  if (java_lang_String::has_offset_field()) {
    int offset_offset = java_lang_String::offset_offset_in_bytes();
    const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
                                                       false, NULL, 0);
    const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
    int offset_field_idx = C->get_alias_index(offset_field_type);
    return make_load(ctrl,
                     basic_plus_adr(str, str, offset_offset),
                     TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
  } else {
    return intcon(0);
  }
}

Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
  if (java_lang_String::has_count_field()) {
    int count_offset = java_lang_String::count_offset_in_bytes();
    const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
                                                       false, NULL, 0);
    const TypePtr* count_field_type = string_type->add_offset(count_offset);
    int count_field_idx = C->get_alias_index(count_field_type);
    return make_load(ctrl,
                     basic_plus_adr(str, str, count_offset),
                     TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
  } else {
    return load_array_length(load_String_value(ctrl, str));
  }
}

Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
  int value_offset = java_lang_String::value_offset_in_bytes();
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
                                                     false, NULL, 0);
  const TypePtr* value_field_type = string_type->add_offset(value_offset);
  const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
                                                   TypeAry::make(TypeInt::CHAR,TypeInt::POS),
                                                   ciTypeArrayKlass::make(T_CHAR), true, 0);
  int value_field_idx = C->get_alias_index(value_field_type);
  Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
                         value_type, T_OBJECT, value_field_idx, MemNode::unordered);
  // String.value field is known to be @Stable.
  if (UseImplicitStableValues) {
    load = cast_array_to_stable(load, value_type);
  }
  return load;
}

void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
  int offset_offset = java_lang_String::offset_offset_in_bytes();
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
                                                     false, NULL, 0);
  const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
  int offset_field_idx = C->get_alias_index(offset_field_type);
  store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
                  value, T_INT, offset_field_idx, MemNode::unordered);
}

void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
  int value_offset = java_lang_String::value_offset_in_bytes();
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
                                                     false, NULL, 0);
  const TypePtr* value_field_type = string_type->add_offset(value_offset);

  store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
      value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
}

void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
  int count_offset = java_lang_String::count_offset_in_bytes();
  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
                                                     false, NULL, 0);
  const TypePtr* count_field_type = string_type->add_offset(count_offset);
  int count_field_idx = C->get_alias_index(count_field_type);
  store_to_memory(ctrl, basic_plus_adr(str, count_offset),
                  value, T_INT, count_field_idx, MemNode::unordered);
}

Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
  // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
  // assumption of CCP analysis.
  return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));
}