aboutsummaryrefslogtreecommitdiff
path: root/src/share/classes/sun/java2d/marlin/Helpers.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/classes/sun/java2d/marlin/Helpers.java')
-rw-r--r--src/share/classes/sun/java2d/marlin/Helpers.java1108
1 files changed, 835 insertions, 273 deletions
diff --git a/src/share/classes/sun/java2d/marlin/Helpers.java b/src/share/classes/sun/java2d/marlin/Helpers.java
index 0b0277dc24..0aa55f7ca1 100644
--- a/src/share/classes/sun/java2d/marlin/Helpers.java
+++ b/src/share/classes/sun/java2d/marlin/Helpers.java
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -25,11 +25,10 @@
package sun.java2d.marlin;
-import static java.lang.Math.PI;
-import static java.lang.Math.cos;
-import static java.lang.Math.sqrt;
-import static java.lang.Math.cbrt;
-import static java.lang.Math.acos;
+import java.util.Arrays;
+import sun.awt.geom.PathConsumer2D;
+import sun.java2d.marlin.stats.Histogram;
+import sun.java2d.marlin.stats.StatLong;
final class Helpers implements MarlinConst {
@@ -47,58 +46,71 @@ final class Helpers implements MarlinConst {
return (d <= err && d >= -err);
}
- static int quadraticRoots(final float a, final float b,
- final float c, float[] zeroes, final int off)
+ public static float evalCubic(final float a, final float b,
+ final float c, final float d,
+ final float t)
+ {
+ return t * (t * (t * a + b) + c) + d;
+ }
+
+ public static float evalQuad(final float a, final float b,
+ final float c, final float t)
+ {
+ return t * (t * a + b) + c;
+ }
+
+ static int quadraticRoots(final float a, final float b, final float c,
+ final float[] zeroes, final int off)
{
int ret = off;
- float t;
- if (a != 0f) {
- final float dis = b*b - 4*a*c;
- if (dis > 0f) {
- final float sqrtDis = (float)Math.sqrt(dis);
+ if (a != 0.0f) {
+ final float dis = b*b - 4.0f * a * c;
+ if (dis > 0.0f) {
+ final float sqrtDis = (float) Math.sqrt(dis);
// depending on the sign of b we use a slightly different
// algorithm than the traditional one to find one of the roots
// so we can avoid adding numbers of different signs (which
// might result in loss of precision).
- if (b >= 0f) {
- zeroes[ret++] = (2f * c) / (-b - sqrtDis);
- zeroes[ret++] = (-b - sqrtDis) / (2f * a);
+ if (b >= 0.0f) {
+ zeroes[ret++] = (2.0f * c) / (-b - sqrtDis);
+ zeroes[ret++] = (-b - sqrtDis) / (2.0f * a);
} else {
- zeroes[ret++] = (-b + sqrtDis) / (2f * a);
- zeroes[ret++] = (2f * c) / (-b + sqrtDis);
+ zeroes[ret++] = (-b + sqrtDis) / (2.0f * a);
+ zeroes[ret++] = (2.0f * c) / (-b + sqrtDis);
}
- } else if (dis == 0f) {
- t = (-b) / (2f * a);
- zeroes[ret++] = t;
- }
- } else {
- if (b != 0f) {
- t = (-c) / b;
- zeroes[ret++] = t;
+ } else if (dis == 0.0f) {
+ zeroes[ret++] = -b / (2.0f * a);
}
+ } else if (b != 0.0f) {
+ zeroes[ret++] = -c / b;
}
return ret - off;
}
// find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
- static int cubicRootsInAB(float d, float a, float b, float c,
- float[] pts, final int off,
+ public static int cubicRootsInAB(final float d0, float a0, float b0, float c0,
+ final float[] pts, final int off,
final float A, final float B)
{
- if (d == 0f) {
- int num = quadraticRoots(a, b, c, pts, off);
+ if (d0 == 0.0f) {
+ final int num = quadraticRoots(a0, b0, c0, pts, off);
return filterOutNotInAB(pts, off, num, A, B) - off;
}
// From Graphics Gems:
- // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
+ // https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c
// (also from awt.geom.CubicCurve2D. But here we don't need as
// much accuracy and we don't want to create arrays so we use
// our own customized version).
// normal form: x^3 + ax^2 + bx + c = 0
- a /= d;
- b /= d;
- c /= d;
+
+ // 2018.1: Need double precision if d is very small (flat curve) !
+ /*
+ * TODO: cleanup all that code after reading Roots3And4.c
+ */
+ final double a = ((double)a0) / d0;
+ final double b = ((double)b0) / d0;
+ final double c = ((double)c0) / d0;
// substitute x = y - A/3 to eliminate quadratic term:
// x^3 +Px + Q = 0
@@ -108,63 +120,45 @@ final class Helpers implements MarlinConst {
// p = P/3
// q = Q/2
// instead and use those values for simplicity of the code.
- double sq_A = a * a;
- double p = (1.0/3.0) * ((-1.0/3.0) * sq_A + b);
- double q = (1.0/2.0) * ((2.0/27.0) * a * sq_A - (1.0/3.0) * a * b + c);
+ final double sub = (1.0d / 3.0d) * a;
+ final double sq_A = a * a;
+ final double p = (1.0d / 3.0d) * ((-1.0d / 3.0d) * sq_A + b);
+ final double q = (1.0d / 2.0d) * ((2.0d / 27.0d) * a * sq_A - sub * b + c);
// use Cardano's formula
- double cb_p = p * p * p;
- double D = q * q + cb_p;
+ final double cb_p = p * p * p;
+ final double D = q * q + cb_p;
int num;
- if (D < 0.0) {
+ if (D < 0.0d) {
// see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
- final double phi = (1.0/3.0) * acos(-q / sqrt(-cb_p));
- final double t = 2.0 * sqrt(-p);
+ final double phi = (1.0d / 3.0d) * Math.acos(-q / Math.sqrt(-cb_p));
+ final double t = 2.0d * Math.sqrt(-p);
- pts[ off+0 ] = (float)( t * cos(phi));
- pts[ off+1 ] = (float)(-t * cos(phi + (PI / 3.0)));
- pts[ off+2 ] = (float)(-t * cos(phi - (PI / 3.0)));
+ pts[off ] = (float) ( t * Math.cos(phi) - sub);
+ pts[off + 1] = (float) (-t * Math.cos(phi + (Math.PI / 3.0d)) - sub);
+ pts[off + 2] = (float) (-t * Math.cos(phi - (Math.PI / 3.0d)) - sub);
num = 3;
} else {
- final double sqrt_D = sqrt(D);
- final double u = cbrt(sqrt_D - q);
- final double v = - cbrt(sqrt_D + q);
+ final double sqrt_D = Math.sqrt(D);
+ final double u = Math.cbrt(sqrt_D - q);
+ final double v = - Math.cbrt(sqrt_D + q);
- pts[ off ] = (float)(u + v);
+ pts[off ] = (float) (u + v - sub);
num = 1;
- if (within(D, 0.0, 1e-8)) {
- pts[off+1] = -(pts[off] / 2f);
+ if (within(D, 0.0d, 1e-8d)) {
+ pts[off + 1] = (float)((-1.0d / 2.0d) * (u + v) - sub);
num = 2;
}
}
- final float sub = (1f/3f) * a;
-
- for (int i = 0; i < num; ++i) {
- pts[ off+i ] -= sub;
- }
-
return filterOutNotInAB(pts, off, num, A, B) - off;
}
- static float evalCubic(final float a, final float b,
- final float c, final float d,
- final float t)
- {
- return t * (t * (t * a + b) + c) + d;
- }
-
- static float evalQuad(final float a, final float b,
- final float c, final float t)
- {
- return t * (t * a + b) + c;
- }
-
// returns the index 1 past the last valid element remaining after filtering
- static int filterOutNotInAB(float[] nums, final int off, final int len,
+ static int filterOutNotInAB(final float[] nums, final int off, final int len,
final float a, final float b)
{
int ret = off;
@@ -176,50 +170,199 @@ final class Helpers implements MarlinConst {
return ret;
}
- static float polyLineLength(float[] poly, final int off, final int nCoords) {
- assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
- float acc = 0;
- for (int i = off + 2; i < off + nCoords; i += 2) {
- acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
+ static float fastLineLen(final float x0, final float y0,
+ final float x1, final float y1)
+ {
+ final float dx = x1 - x0;
+ final float dy = y1 - y0;
+
+ // use manhattan norm:
+ return Math.abs(dx) + Math.abs(dy);
+ }
+
+ static float linelen(final float x0, final float y0,
+ final float x1, final float y1)
+ {
+ final float dx = x1 - x0;
+ final float dy = y1 - y0;
+ return (float) Math.sqrt(dx * dx + dy * dy);
+ }
+
+ static float fastQuadLen(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x2, final float y2)
+ {
+ final float dx1 = x1 - x0;
+ final float dx2 = x2 - x1;
+ final float dy1 = y1 - y0;
+ final float dy2 = y2 - y1;
+
+ // use manhattan norm:
+ return Math.abs(dx1) + Math.abs(dx2)
+ + Math.abs(dy1) + Math.abs(dy2);
+ }
+
+ static float quadlen(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x2, final float y2)
+ {
+ return (linelen(x0, y0, x1, y1)
+ + linelen(x1, y1, x2, y2)
+ + linelen(x0, y0, x2, y2)) / 2.0f;
+ }
+
+
+ static float fastCurvelen(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x2, final float y2,
+ final float x3, final float y3)
+ {
+ final float dx1 = x1 - x0;
+ final float dx2 = x2 - x1;
+ final float dx3 = x3 - x2;
+ final float dy1 = y1 - y0;
+ final float dy2 = y2 - y1;
+ final float dy3 = y3 - y2;
+
+ // use manhattan norm:
+ return Math.abs(dx1) + Math.abs(dx2) + Math.abs(dx3)
+ + Math.abs(dy1) + Math.abs(dy2) + Math.abs(dy3);
+ }
+
+ static float curvelen(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x2, final float y2,
+ final float x3, final float y3)
+ {
+ return (linelen(x0, y0, x1, y1)
+ + linelen(x1, y1, x2, y2)
+ + linelen(x2, y2, x3, y3)
+ + linelen(x0, y0, x3, y3)) / 2.0f;
+ }
+
+ // finds values of t where the curve in pts should be subdivided in order
+ // to get good offset curves a distance of w away from the middle curve.
+ // Stores the points in ts, and returns how many of them there were.
+ static int findSubdivPoints(final Curve c, final float[] pts,
+ final float[] ts, final int type,
+ final float w2)
+ {
+ final float x12 = pts[2] - pts[0];
+ final float y12 = pts[3] - pts[1];
+ // if the curve is already parallel to either axis we gain nothing
+ // from rotating it.
+ if ((y12 != 0.0f && x12 != 0.0f)) {
+ // we rotate it so that the first vector in the control polygon is
+ // parallel to the x-axis. This will ensure that rotated quarter
+ // circles won't be subdivided.
+ final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12);
+ final float cos = x12 / hypot;
+ final float sin = y12 / hypot;
+ final float x1 = cos * pts[0] + sin * pts[1];
+ final float y1 = cos * pts[1] - sin * pts[0];
+ final float x2 = cos * pts[2] + sin * pts[3];
+ final float y2 = cos * pts[3] - sin * pts[2];
+ final float x3 = cos * pts[4] + sin * pts[5];
+ final float y3 = cos * pts[5] - sin * pts[4];
+
+ switch(type) {
+ case 8:
+ final float x4 = cos * pts[6] + sin * pts[7];
+ final float y4 = cos * pts[7] - sin * pts[6];
+ c.set(x1, y1, x2, y2, x3, y3, x4, y4);
+ break;
+ case 6:
+ c.set(x1, y1, x2, y2, x3, y3);
+ break;
+ default:
+ }
+ } else {
+ c.set(pts, type);
+ }
+
+ int ret = 0;
+ // we subdivide at values of t such that the remaining rotated
+ // curves are monotonic in x and y.
+ ret += c.dxRoots(ts, ret);
+ ret += c.dyRoots(ts, ret);
+
+ // subdivide at inflection points.
+ if (type == 8) {
+ // quadratic curves can't have inflection points
+ ret += c.infPoints(ts, ret);
}
- return acc;
+
+ // now we must subdivide at points where one of the offset curves will have
+ // a cusp. This happens at ts where the radius of curvature is equal to w.
+ ret += c.rootsOfROCMinusW(ts, ret, w2, 0.0001f);
+
+ ret = filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
+ isort(ts, ret);
+ return ret;
}
- static float linelen(float x1, float y1, float x2, float y2) {
- final float dx = x2 - x1;
- final float dy = y2 - y1;
- return (float)Math.sqrt(dx*dx + dy*dy);
+ // finds values of t where the curve in pts should be subdivided in order
+ // to get intersections with the given clip rectangle.
+ // Stores the points in ts, and returns how many of them there were.
+ static int findClipPoints(final Curve curve, final float[] pts,
+ final float[] ts, final int type,
+ final int outCodeOR,
+ final float[] clipRect)
+ {
+ curve.set(pts, type);
+
+ // clip rectangle (ymin, ymax, xmin, xmax)
+ int ret = 0;
+
+ if ((outCodeOR & OUTCODE_LEFT) != 0) {
+ ret += curve.xPoints(ts, ret, clipRect[2]);
+ }
+ if ((outCodeOR & OUTCODE_RIGHT) != 0) {
+ ret += curve.xPoints(ts, ret, clipRect[3]);
+ }
+ if ((outCodeOR & OUTCODE_TOP) != 0) {
+ ret += curve.yPoints(ts, ret, clipRect[0]);
+ }
+ if ((outCodeOR & OUTCODE_BOTTOM) != 0) {
+ ret += curve.yPoints(ts, ret, clipRect[1]);
+ }
+ isort(ts, ret);
+ return ret;
}
- static void subdivide(float[] src, int srcoff, float[] left, int leftoff,
- float[] right, int rightoff, int type)
+ static void subdivide(final float[] src,
+ final float[] left, final float[] right,
+ final int type)
{
switch(type) {
+ case 4:
+ subdivideLine(src, left, right);
+ return;
case 6:
- Helpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
+ subdivideQuad(src, left, right);
return;
case 8:
- Helpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
+ subdivideCubic(src, left, right);
return;
default:
throw new InternalError("Unsupported curve type");
}
}
- static void isort(float[] a, int off, int len) {
- for (int i = off + 1, end = off + len; i < end; i++) {
- float ai = a[i];
- int j = i - 1;
- for (; j >= off && a[j] > ai; j--) {
- a[j+1] = a[j];
+ static void isort(final float[] a, final int len) {
+ for (int i = 1, j; i < len; i++) {
+ final float ai = a[i];
+ j = i - 1;
+ for (; j >= 0 && a[j] > ai; j--) {
+ a[j + 1] = a[j];
}
- a[j+1] = ai;
+ a[j + 1] = ai;
}
}
// Most of these are copied from classes in java.awt.geom because we need
- // float versions of these functions, and Line2D, CubicCurve2D,
- // QuadCurve2D don't provide them.
+ // both single and double precision variants of these functions, and Line2D,
+ // CubicCurve2D, QuadCurve2D don't provide them.
/**
* Subdivides the cubic curve specified by the coordinates
* stored in the <code>src</code> array at indices <code>srcoff</code>
@@ -236,206 +379,625 @@ final class Helpers implements MarlinConst {
* equals (<code>leftoff</code> + 6), in order
* to avoid allocating extra storage for this common point.
* @param src the array holding the coordinates for the source curve
- * @param srcoff the offset into the array of the beginning of the
- * the 6 source coordinates
* @param left the array for storing the coordinates for the first
* half of the subdivided curve
- * @param leftoff the offset into the array of the beginning of the
- * the 6 left coordinates
* @param right the array for storing the coordinates for the second
* half of the subdivided curve
- * @param rightoff the offset into the array of the beginning of the
- * the 6 right coordinates
* @since 1.7
*/
- static void subdivideCubic(float[] src, int srcoff,
- float[] left, int leftoff,
- float[] right, int rightoff)
+ static void subdivideCubic(final float[] src,
+ final float[] left,
+ final float[] right)
{
- float x1 = src[srcoff + 0];
- float y1 = src[srcoff + 1];
- float ctrlx1 = src[srcoff + 2];
- float ctrly1 = src[srcoff + 3];
- float ctrlx2 = src[srcoff + 4];
- float ctrly2 = src[srcoff + 5];
- float x2 = src[srcoff + 6];
- float y2 = src[srcoff + 7];
- if (left != null) {
- left[leftoff + 0] = x1;
- left[leftoff + 1] = y1;
- }
- if (right != null) {
- right[rightoff + 6] = x2;
- right[rightoff + 7] = y2;
- }
- x1 = (x1 + ctrlx1) / 2f;
- y1 = (y1 + ctrly1) / 2f;
- x2 = (x2 + ctrlx2) / 2f;
- y2 = (y2 + ctrly2) / 2f;
- float centerx = (ctrlx1 + ctrlx2) / 2f;
- float centery = (ctrly1 + ctrly2) / 2f;
- ctrlx1 = (x1 + centerx) / 2f;
- ctrly1 = (y1 + centery) / 2f;
- ctrlx2 = (x2 + centerx) / 2f;
- ctrly2 = (y2 + centery) / 2f;
- centerx = (ctrlx1 + ctrlx2) / 2f;
- centery = (ctrly1 + ctrly2) / 2f;
- if (left != null) {
- left[leftoff + 2] = x1;
- left[leftoff + 3] = y1;
- left[leftoff + 4] = ctrlx1;
- left[leftoff + 5] = ctrly1;
- left[leftoff + 6] = centerx;
- left[leftoff + 7] = centery;
- }
- if (right != null) {
- right[rightoff + 0] = centerx;
- right[rightoff + 1] = centery;
- right[rightoff + 2] = ctrlx2;
- right[rightoff + 3] = ctrly2;
- right[rightoff + 4] = x2;
- right[rightoff + 5] = y2;
- }
+ float x1 = src[0];
+ float y1 = src[1];
+ float cx1 = src[2];
+ float cy1 = src[3];
+ float cx2 = src[4];
+ float cy2 = src[5];
+ float x2 = src[6];
+ float y2 = src[7];
+
+ left[0] = x1;
+ left[1] = y1;
+
+ right[6] = x2;
+ right[7] = y2;
+
+ x1 = (x1 + cx1) / 2.0f;
+ y1 = (y1 + cy1) / 2.0f;
+ x2 = (x2 + cx2) / 2.0f;
+ y2 = (y2 + cy2) / 2.0f;
+
+ float cx = (cx1 + cx2) / 2.0f;
+ float cy = (cy1 + cy2) / 2.0f;
+
+ cx1 = (x1 + cx) / 2.0f;
+ cy1 = (y1 + cy) / 2.0f;
+ cx2 = (x2 + cx) / 2.0f;
+ cy2 = (y2 + cy) / 2.0f;
+ cx = (cx1 + cx2) / 2.0f;
+ cy = (cy1 + cy2) / 2.0f;
+
+ left[2] = x1;
+ left[3] = y1;
+ left[4] = cx1;
+ left[5] = cy1;
+ left[6] = cx;
+ left[7] = cy;
+
+ right[0] = cx;
+ right[1] = cy;
+ right[2] = cx2;
+ right[3] = cy2;
+ right[4] = x2;
+ right[5] = y2;
+ }
+
+ static void subdivideCubicAt(final float t,
+ final float[] src, final int offS,
+ final float[] pts, final int offL, final int offR)
+ {
+ float x1 = src[offS ];
+ float y1 = src[offS + 1];
+ float cx1 = src[offS + 2];
+ float cy1 = src[offS + 3];
+ float cx2 = src[offS + 4];
+ float cy2 = src[offS + 5];
+ float x2 = src[offS + 6];
+ float y2 = src[offS + 7];
+
+ pts[offL ] = x1;
+ pts[offL + 1] = y1;
+
+ pts[offR + 6] = x2;
+ pts[offR + 7] = y2;
+
+ x1 = x1 + t * (cx1 - x1);
+ y1 = y1 + t * (cy1 - y1);
+ x2 = cx2 + t * (x2 - cx2);
+ y2 = cy2 + t * (y2 - cy2);
+
+ float cx = cx1 + t * (cx2 - cx1);
+ float cy = cy1 + t * (cy2 - cy1);
+
+ cx1 = x1 + t * (cx - x1);
+ cy1 = y1 + t * (cy - y1);
+ cx2 = cx + t * (x2 - cx);
+ cy2 = cy + t * (y2 - cy);
+ cx = cx1 + t * (cx2 - cx1);
+ cy = cy1 + t * (cy2 - cy1);
+
+ pts[offL + 2] = x1;
+ pts[offL + 3] = y1;
+ pts[offL + 4] = cx1;
+ pts[offL + 5] = cy1;
+ pts[offL + 6] = cx;
+ pts[offL + 7] = cy;
+
+ pts[offR ] = cx;
+ pts[offR + 1] = cy;
+ pts[offR + 2] = cx2;
+ pts[offR + 3] = cy2;
+ pts[offR + 4] = x2;
+ pts[offR + 5] = y2;
}
+ static void subdivideLine(final float[] src,
+ final float[] left,
+ final float[] right)
+ {
+ float x1 = src[0];
+ float y1 = src[1];
+ float x2 = src[2];
+ float y2 = src[3];
+
+ left[0] = x1;
+ left[1] = y1;
+
+ right[2] = x2;
+ right[3] = y2;
+
+ float cx = (x1 + x2) / 2.0f;
+ float cy = (y1 + y2) / 2.0f;
+
+ left[2] = cx;
+ left[3] = cy;
- static void subdivideCubicAt(float t, float[] src, int srcoff,
- float[] left, int leftoff,
- float[] right, int rightoff)
+ right[0] = cx;
+ right[1] = cy;
+ }
+
+ static void subdivideQuad(final float[] src,
+ final float[] left,
+ final float[] right)
{
- float x1 = src[srcoff + 0];
- float y1 = src[srcoff + 1];
- float ctrlx1 = src[srcoff + 2];
- float ctrly1 = src[srcoff + 3];
- float ctrlx2 = src[srcoff + 4];
- float ctrly2 = src[srcoff + 5];
- float x2 = src[srcoff + 6];
- float y2 = src[srcoff + 7];
- if (left != null) {
- left[leftoff + 0] = x1;
- left[leftoff + 1] = y1;
- }
- if (right != null) {
- right[rightoff + 6] = x2;
- right[rightoff + 7] = y2;
- }
- x1 = x1 + t * (ctrlx1 - x1);
- y1 = y1 + t * (ctrly1 - y1);
- x2 = ctrlx2 + t * (x2 - ctrlx2);
- y2 = ctrly2 + t * (y2 - ctrly2);
- float centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
- float centery = ctrly1 + t * (ctrly2 - ctrly1);
- ctrlx1 = x1 + t * (centerx - x1);
- ctrly1 = y1 + t * (centery - y1);
- ctrlx2 = centerx + t * (x2 - centerx);
- ctrly2 = centery + t * (y2 - centery);
- centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
- centery = ctrly1 + t * (ctrly2 - ctrly1);
- if (left != null) {
- left[leftoff + 2] = x1;
- left[leftoff + 3] = y1;
- left[leftoff + 4] = ctrlx1;
- left[leftoff + 5] = ctrly1;
- left[leftoff + 6] = centerx;
- left[leftoff + 7] = centery;
- }
- if (right != null) {
- right[rightoff + 0] = centerx;
- right[rightoff + 1] = centery;
- right[rightoff + 2] = ctrlx2;
- right[rightoff + 3] = ctrly2;
- right[rightoff + 4] = x2;
- right[rightoff + 5] = y2;
- }
+ float x1 = src[0];
+ float y1 = src[1];
+ float cx = src[2];
+ float cy = src[3];
+ float x2 = src[4];
+ float y2 = src[5];
+
+ left[0] = x1;
+ left[1] = y1;
+
+ right[4] = x2;
+ right[5] = y2;
+
+ x1 = (x1 + cx) / 2.0f;
+ y1 = (y1 + cy) / 2.0f;
+ x2 = (x2 + cx) / 2.0f;
+ y2 = (y2 + cy) / 2.0f;
+ cx = (x1 + x2) / 2.0f;
+ cy = (y1 + y2) / 2.0f;
+
+ left[2] = x1;
+ left[3] = y1;
+ left[4] = cx;
+ left[5] = cy;
+
+ right[0] = cx;
+ right[1] = cy;
+ right[2] = x2;
+ right[3] = y2;
}
- static void subdivideQuad(float[] src, int srcoff,
- float[] left, int leftoff,
- float[] right, int rightoff)
+ static void subdivideQuadAt(final float t,
+ final float[] src, final int offS,
+ final float[] pts, final int offL, final int offR)
{
- float x1 = src[srcoff + 0];
- float y1 = src[srcoff + 1];
- float ctrlx = src[srcoff + 2];
- float ctrly = src[srcoff + 3];
- float x2 = src[srcoff + 4];
- float y2 = src[srcoff + 5];
- if (left != null) {
- left[leftoff + 0] = x1;
- left[leftoff + 1] = y1;
- }
- if (right != null) {
- right[rightoff + 4] = x2;
- right[rightoff + 5] = y2;
- }
- x1 = (x1 + ctrlx) / 2f;
- y1 = (y1 + ctrly) / 2f;
- x2 = (x2 + ctrlx) / 2f;
- y2 = (y2 + ctrly) / 2f;
- ctrlx = (x1 + x2) / 2f;
- ctrly = (y1 + y2) / 2f;
- if (left != null) {
- left[leftoff + 2] = x1;
- left[leftoff + 3] = y1;
- left[leftoff + 4] = ctrlx;
- left[leftoff + 5] = ctrly;
- }
- if (right != null) {
- right[rightoff + 0] = ctrlx;
- right[rightoff + 1] = ctrly;
- right[rightoff + 2] = x2;
- right[rightoff + 3] = y2;
- }
+ float x1 = src[offS ];
+ float y1 = src[offS + 1];
+ float cx = src[offS + 2];
+ float cy = src[offS + 3];
+ float x2 = src[offS + 4];
+ float y2 = src[offS + 5];
+
+ pts[offL ] = x1;
+ pts[offL + 1] = y1;
+
+ pts[offR + 4] = x2;
+ pts[offR + 5] = y2;
+
+ x1 = x1 + t * (cx - x1);
+ y1 = y1 + t * (cy - y1);
+ x2 = cx + t * (x2 - cx);
+ y2 = cy + t * (y2 - cy);
+ cx = x1 + t * (x2 - x1);
+ cy = y1 + t * (y2 - y1);
+
+ pts[offL + 2] = x1;
+ pts[offL + 3] = y1;
+ pts[offL + 4] = cx;
+ pts[offL + 5] = cy;
+
+ pts[offR ] = cx;
+ pts[offR + 1] = cy;
+ pts[offR + 2] = x2;
+ pts[offR + 3] = y2;
}
- static void subdivideQuadAt(float t, float[] src, int srcoff,
- float[] left, int leftoff,
- float[] right, int rightoff)
+ static void subdivideLineAt(final float t,
+ final float[] src, final int offS,
+ final float[] pts, final int offL, final int offR)
{
- float x1 = src[srcoff + 0];
- float y1 = src[srcoff + 1];
- float ctrlx = src[srcoff + 2];
- float ctrly = src[srcoff + 3];
- float x2 = src[srcoff + 4];
- float y2 = src[srcoff + 5];
- if (left != null) {
- left[leftoff + 0] = x1;
- left[leftoff + 1] = y1;
- }
- if (right != null) {
- right[rightoff + 4] = x2;
- right[rightoff + 5] = y2;
- }
- x1 = x1 + t * (ctrlx - x1);
- y1 = y1 + t * (ctrly - y1);
- x2 = ctrlx + t * (x2 - ctrlx);
- y2 = ctrly + t * (y2 - ctrly);
- ctrlx = x1 + t * (x2 - x1);
- ctrly = y1 + t * (y2 - y1);
- if (left != null) {
- left[leftoff + 2] = x1;
- left[leftoff + 3] = y1;
- left[leftoff + 4] = ctrlx;
- left[leftoff + 5] = ctrly;
- }
- if (right != null) {
- right[rightoff + 0] = ctrlx;
- right[rightoff + 1] = ctrly;
- right[rightoff + 2] = x2;
- right[rightoff + 3] = y2;
+ float x1 = src[offS ];
+ float y1 = src[offS + 1];
+ float x2 = src[offS + 2];
+ float y2 = src[offS + 3];
+
+ pts[offL ] = x1;
+ pts[offL + 1] = y1;
+
+ pts[offR + 2] = x2;
+ pts[offR + 3] = y2;
+
+ x1 = x1 + t * (x2 - x1);
+ y1 = y1 + t * (y2 - y1);
+
+ pts[offL + 2] = x1;
+ pts[offL + 3] = y1;
+
+ pts[offR ] = x1;
+ pts[offR + 1] = y1;
+ }
+
+ static void subdivideAt(final float t,
+ final float[] src, final int offS,
+ final float[] pts, final int offL, final int type)
+ {
+ // if instead of switch (perf + most probable cases first)
+ if (type == 8) {
+ subdivideCubicAt(t, src, offS, pts, offL, offL + type);
+ } else if (type == 4) {
+ subdivideLineAt(t, src, offS, pts, offL, offL + type);
+ } else {
+ subdivideQuadAt(t, src, offS, pts, offL, offL + type);
}
}
- static void subdivideAt(float t, float[] src, int srcoff,
- float[] left, int leftoff,
- float[] right, int rightoff, int size)
+ // From sun.java2d.loops.GeneralRenderer:
+
+ static int outcode(final float x, final float y,
+ final float[] clipRect)
{
- switch(size) {
- case 8:
- subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
- return;
- case 6:
- subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
- return;
+ int code;
+ if (y < clipRect[0]) {
+ code = OUTCODE_TOP;
+ } else if (y >= clipRect[1]) {
+ code = OUTCODE_BOTTOM;
+ } else {
+ code = 0;
+ }
+ if (x < clipRect[2]) {
+ code |= OUTCODE_LEFT;
+ } else if (x >= clipRect[3]) {
+ code |= OUTCODE_RIGHT;
+ }
+ return code;
+ }
+
+ // a stack of polynomial curves where each curve shares endpoints with
+ // adjacent ones.
+ static final class PolyStack {
+ private static final byte TYPE_LINETO = (byte) 0;
+ private static final byte TYPE_QUADTO = (byte) 1;
+ private static final byte TYPE_CUBICTO = (byte) 2;
+
+ // curves capacity = edges count (8192) = edges x 2 (coords)
+ private static final int INITIAL_CURVES_COUNT = INITIAL_EDGES_COUNT << 1;
+
+ // types capacity = edges count (4096)
+ private static final int INITIAL_TYPES_COUNT = INITIAL_EDGES_COUNT;
+
+ float[] curves;
+ int end;
+ byte[] curveTypes;
+ int numCurves;
+
+ // curves ref (dirty)
+ final FloatArrayCache.Reference curves_ref;
+ // curveTypes ref (dirty)
+ final ByteArrayCache.Reference curveTypes_ref;
+
+ // used marks (stats only)
+ int curveTypesUseMark;
+ int curvesUseMark;
+
+ private final StatLong stat_polystack_types;
+ private final StatLong stat_polystack_curves;
+ private final Histogram hist_polystack_curves;
+ private final StatLong stat_array_polystack_curves;
+ private final StatLong stat_array_polystack_curveTypes;
+
+ PolyStack(final RendererContext rdrCtx) {
+ this(rdrCtx, null, null, null, null, null);
+ }
+
+ PolyStack(final RendererContext rdrCtx,
+ final StatLong stat_polystack_types,
+ final StatLong stat_polystack_curves,
+ final Histogram hist_polystack_curves,
+ final StatLong stat_array_polystack_curves,
+ final StatLong stat_array_polystack_curveTypes)
+ {
+ curves_ref = rdrCtx.newDirtyFloatArrayRef(INITIAL_CURVES_COUNT); // 32K
+ curves = curves_ref.initial;
+
+ curveTypes_ref = rdrCtx.newDirtyByteArrayRef(INITIAL_TYPES_COUNT); // 4K
+ curveTypes = curveTypes_ref.initial;
+ numCurves = 0;
+ end = 0;
+
+ if (DO_STATS) {
+ curveTypesUseMark = 0;
+ curvesUseMark = 0;
+ }
+ this.stat_polystack_types = stat_polystack_types;
+ this.stat_polystack_curves = stat_polystack_curves;
+ this.hist_polystack_curves = hist_polystack_curves;
+ this.stat_array_polystack_curves = stat_array_polystack_curves;
+ this.stat_array_polystack_curveTypes = stat_array_polystack_curveTypes;
+ }
+
+ /**
+ * Disposes this PolyStack:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ end = 0;
+ numCurves = 0;
+
+ if (DO_STATS) {
+ stat_polystack_types.add(curveTypesUseMark);
+ stat_polystack_curves.add(curvesUseMark);
+ hist_polystack_curves.add(curvesUseMark);
+
+ // reset marks
+ curveTypesUseMark = 0;
+ curvesUseMark = 0;
+ }
+
+ // Return arrays:
+ // curves and curveTypes are kept dirty
+ curves = curves_ref.putArray(curves);
+ curveTypes = curveTypes_ref.putArray(curveTypes);
+ }
+
+ private void ensureSpace(final int n) {
+ // use substraction to avoid integer overflow:
+ if (curves.length - end < n) {
+ if (DO_STATS) {
+ stat_array_polystack_curves.add(end + n);
+ }
+ curves = curves_ref.widenArray(curves, end, end + n);
+ }
+ if (curveTypes.length <= numCurves) {
+ if (DO_STATS) {
+ stat_array_polystack_curveTypes.add(numCurves + 1);
+ }
+ curveTypes = curveTypes_ref.widenArray(curveTypes,
+ numCurves,
+ numCurves + 1);
+ }
+ }
+
+ void pushCubic(float x0, float y0,
+ float x1, float y1,
+ float x2, float y2)
+ {
+ ensureSpace(6);
+ curveTypes[numCurves++] = TYPE_CUBICTO;
+ // we reverse the coordinate order to make popping easier
+ final float[] _curves = curves;
+ int e = end;
+ _curves[e++] = x2; _curves[e++] = y2;
+ _curves[e++] = x1; _curves[e++] = y1;
+ _curves[e++] = x0; _curves[e++] = y0;
+ end = e;
+ }
+
+ void pushQuad(float x0, float y0,
+ float x1, float y1)
+ {
+ ensureSpace(4);
+ curveTypes[numCurves++] = TYPE_QUADTO;
+ final float[] _curves = curves;
+ int e = end;
+ _curves[e++] = x1; _curves[e++] = y1;
+ _curves[e++] = x0; _curves[e++] = y0;
+ end = e;
+ }
+
+ void pushLine(float x, float y) {
+ ensureSpace(2);
+ curveTypes[numCurves++] = TYPE_LINETO;
+ curves[end++] = x; curves[end++] = y;
+ }
+
+ void pullAll(final PathConsumer2D io) {
+ final int nc = numCurves;
+ if (nc == 0) {
+ return;
+ }
+ if (DO_STATS) {
+ // update used marks:
+ if (numCurves > curveTypesUseMark) {
+ curveTypesUseMark = numCurves;
+ }
+ if (end > curvesUseMark) {
+ curvesUseMark = end;
+ }
+ }
+ final byte[] _curveTypes = curveTypes;
+ final float[] _curves = curves;
+ int e = 0;
+
+ for (int i = 0; i < nc; i++) {
+ switch(_curveTypes[i]) {
+ case TYPE_LINETO:
+ io.lineTo(_curves[e], _curves[e+1]);
+ e += 2;
+ continue;
+ case TYPE_QUADTO:
+ io.quadTo(_curves[e], _curves[e+1],
+ _curves[e+2], _curves[e+3]);
+ e += 4;
+ continue;
+ case TYPE_CUBICTO:
+ io.curveTo(_curves[e], _curves[e+1],
+ _curves[e+2], _curves[e+3],
+ _curves[e+4], _curves[e+5]);
+ e += 6;
+ continue;
+ default:
+ }
+ }
+ numCurves = 0;
+ end = 0;
+ }
+
+ void popAll(final PathConsumer2D io) {
+ int nc = numCurves;
+ if (nc == 0) {
+ return;
+ }
+ if (DO_STATS) {
+ // update used marks:
+ if (numCurves > curveTypesUseMark) {
+ curveTypesUseMark = numCurves;
+ }
+ if (end > curvesUseMark) {
+ curvesUseMark = end;
+ }
+ }
+ final byte[] _curveTypes = curveTypes;
+ final float[] _curves = curves;
+ int e = end;
+
+ while (nc != 0) {
+ switch(_curveTypes[--nc]) {
+ case TYPE_LINETO:
+ e -= 2;
+ io.lineTo(_curves[e], _curves[e+1]);
+ continue;
+ case TYPE_QUADTO:
+ e -= 4;
+ io.quadTo(_curves[e], _curves[e+1],
+ _curves[e+2], _curves[e+3]);
+ continue;
+ case TYPE_CUBICTO:
+ e -= 6;
+ io.curveTo(_curves[e], _curves[e+1],
+ _curves[e+2], _curves[e+3],
+ _curves[e+4], _curves[e+5]);
+ continue;
+ default:
+ }
+ }
+ numCurves = 0;
+ end = 0;
+ }
+
+ @Override
+ public String toString() {
+ String ret = "";
+ int nc = numCurves;
+ int last = end;
+ int len;
+ while (nc != 0) {
+ switch(curveTypes[--nc]) {
+ case TYPE_LINETO:
+ len = 2;
+ ret += "line: ";
+ break;
+ case TYPE_QUADTO:
+ len = 4;
+ ret += "quad: ";
+ break;
+ case TYPE_CUBICTO:
+ len = 6;
+ ret += "cubic: ";
+ break;
+ default:
+ len = 0;
+ }
+ last -= len;
+ ret += Arrays.toString(Arrays.copyOfRange(curves, last, last+len))
+ + "\n";
+ }
+ return ret;
+ }
+ }
+
+ // a stack of integer indices
+ static final class IndexStack {
+
+ // integer capacity = edges count / 4 ~ 1024
+ private static final int INITIAL_COUNT = INITIAL_EDGES_COUNT >> 2;
+
+ private int end;
+ private int[] indices;
+
+ // indices ref (dirty)
+ private final IntArrayCache.Reference indices_ref;
+
+ // used marks (stats only)
+ private int indicesUseMark;
+
+ private final StatLong stat_idxstack_indices;
+ private final Histogram hist_idxstack_indices;
+ private final StatLong stat_array_idxstack_indices;
+
+ IndexStack(final RendererContext rdrCtx) {
+ this(rdrCtx, null, null, null);
+ }
+
+ IndexStack(final RendererContext rdrCtx,
+ final StatLong stat_idxstack_indices,
+ final Histogram hist_idxstack_indices,
+ final StatLong stat_array_idxstack_indices)
+ {
+ indices_ref = rdrCtx.newDirtyIntArrayRef(INITIAL_COUNT); // 4K
+ indices = indices_ref.initial;
+ end = 0;
+
+ if (DO_STATS) {
+ indicesUseMark = 0;
+ }
+ this.stat_idxstack_indices = stat_idxstack_indices;
+ this.hist_idxstack_indices = hist_idxstack_indices;
+ this.stat_array_idxstack_indices = stat_array_idxstack_indices;
+ }
+
+ /**
+ * Disposes this PolyStack:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ end = 0;
+
+ if (DO_STATS) {
+ stat_idxstack_indices.add(indicesUseMark);
+ hist_idxstack_indices.add(indicesUseMark);
+
+ // reset marks
+ indicesUseMark = 0;
+ }
+
+ // Return arrays:
+ // values is kept dirty
+ indices = indices_ref.putArray(indices);
+ }
+
+ boolean isEmpty() {
+ return (end == 0);
+ }
+
+ void reset() {
+ end = 0;
+ }
+
+ void push(final int v) {
+ // remove redundant values (reverse order):
+ int[] _values = indices;
+ final int nc = end;
+ if (nc != 0) {
+ if (_values[nc - 1] == v) {
+ // remove both duplicated values:
+ end--;
+ return;
+ }
+ }
+ if (_values.length <= nc) {
+ if (DO_STATS) {
+ stat_array_idxstack_indices.add(nc + 1);
+ }
+ indices = _values = indices_ref.widenArray(_values, nc, nc + 1);
+ }
+ _values[end++] = v;
+
+ if (DO_STATS) {
+ // update used marks:
+ if (end > indicesUseMark) {
+ indicesUseMark = end;
+ }
+ }
+ }
+
+ void pullAll(final float[] points, final PathConsumer2D io) {
+ final int nc = end;
+ if (nc == 0) {
+ return;
+ }
+ final int[] _values = indices;
+
+ for (int i = 0, j; i < nc; i++) {
+ j = _values[i] << 1;
+ io.lineTo(points[j], points[j + 1]);
+ }
+ end = 0;
}
}
}