aboutsummaryrefslogtreecommitdiff
path: root/src/share/classes/sun/java2d/marlin/DCurve.java
blob: 2aaa55147a13b1e6f17e4d9ecd0f6686a5916f76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
 * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.java2d.marlin;

final class DCurve {

    double ax, ay, bx, by, cx, cy, dx, dy;
    double dax, day, dbx, dby;

    DCurve() {
    }

    void set(final double[] points, final int type) {
        // if instead of switch (perf + most probable cases first)
        if (type == 8) {
            set(points[0], points[1],
                points[2], points[3],
                points[4], points[5],
                points[6], points[7]);
        } else if (type == 4) {
            set(points[0], points[1],
                points[2], points[3]);
        } else {
            set(points[0], points[1],
                points[2], points[3],
                points[4], points[5]);
        }
    }

    void set(final double x1, final double y1,
             final double x2, final double y2,
             final double x3, final double y3,
             final double x4, final double y4)
    {
        final double dx32 = 3.0d * (x3 - x2);
        final double dy32 = 3.0d * (y3 - y2);
        final double dx21 = 3.0d * (x2 - x1);
        final double dy21 = 3.0d * (y2 - y1);
        ax = (x4 - x1) - dx32;  // A = P3 - P0 - 3 (P2 - P1) = (P3 - P0) + 3 (P1 - P2)
        ay = (y4 - y1) - dy32;
        bx = (dx32 - dx21);     // B = 3 (P2 - P1) - 3(P1 - P0) = 3 (P2 + P0) - 6 P1
        by = (dy32 - dy21);
        cx = dx21;              // C = 3 (P1 - P0)
        cy = dy21;
        dx = x1;                // D = P0
        dy = y1;
        dax = 3.0d * ax;
        day = 3.0d * ay;
        dbx = 2.0d * bx;
        dby = 2.0d * by;
    }

    void set(final double x1, final double y1,
             final double x2, final double y2,
             final double x3, final double y3)
    {
        final double dx21 = (x2 - x1);
        final double dy21 = (y2 - y1);
        ax = 0.0d;              // A = 0
        ay = 0.0d;
        bx = (x3 - x2) - dx21;  // B = P3 - P0 - 2 P2
        by = (y3 - y2) - dy21;
        cx = 2.0d * dx21;       // C = 2 (P2 - P1)
        cy = 2.0d * dy21;
        dx = x1;                // D = P1
        dy = y1;
        dax = 0.0d;
        day = 0.0d;
        dbx = 2.0d * bx;
        dby = 2.0d * by;
    }

    void set(final double x1, final double y1,
             final double x2, final double y2)
    {
        final double dx21 = (x2 - x1);
        final double dy21 = (y2 - y1);
        ax = 0.0d;              // A = 0
        ay = 0.0d;
        bx = 0.0d;              // B = 0
        by = 0.0d;
        cx = dx21;              // C = (P2 - P1)
        cy = dy21;
        dx = x1;                // D = P1
        dy = y1;
        if (false) {
            dax = 0.0d;
            day = 0.0d;
            dbx = 0.0d;
            dby = 0.0d;
        }
    }

    int dxRoots(final double[] roots, final int off) {
        return DHelpers.quadraticRoots(dax, dbx, cx, roots, off);
    }

    int dyRoots(final double[] roots, final int off) {
        return DHelpers.quadraticRoots(day, dby, cy, roots, off);
    }

    int infPoints(final double[] pts, final int off) {
        // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
        // Fortunately, this turns out to be quadratic, so there are at
        // most 2 inflection points.
        final double a = dax * dby - dbx * day;
        final double b = 2.0d * (cy * dax - day * cx);
        final double c = cy * dbx - cx * dby;

        return DHelpers.quadraticRoots(a, b, c, pts, off);
    }

    int xPoints(final double[] ts, final int off, final double x)
    {
        return DHelpers.cubicRootsInAB(ax, bx, cx, dx - x, ts, off, 0.0d, 1.0d);
    }

    int yPoints(final double[] ts, final int off, final double y)
    {
        return DHelpers.cubicRootsInAB(ay, by, cy, dy - y, ts, off, 0.0d, 1.0d);
    }

    // finds points where the first and second derivative are
    // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
    // * is a dot product). Unfortunately, we have to solve a cubic.
    private int perpendiculardfddf(final double[] pts, final int off) {
        assert pts.length >= off + 4;

        // these are the coefficients of some multiple of g(t) (not g(t),
        // because the roots of a polynomial are not changed after multiplication
        // by a constant, and this way we save a few multiplications).
        final double a = 2.0d * (dax * dax + day * day);
        final double b = 3.0d * (dax * dbx + day * dby);
        final double c = 2.0d * (dax * cx + day * cy) + dbx * dbx + dby * dby;
        final double d = dbx * cx + dby * cy;

        return DHelpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0d, 1.0d);
    }

    // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
    // a variant of the false position algorithm to find the roots. False
    // position requires that 2 initial values x0,x1 be given, and that the
    // function must have opposite signs at those values. To find such
    // values, we need the local extrema of the ROC function, for which we
    // need the roots of its derivative; however, it's harder to find the
    // roots of the derivative in this case than it is to find the roots
    // of the original function. So, we find all points where this curve's
    // first and second derivative are perpendicular, and we pretend these
    // are our local extrema. There are at most 3 of these, so we will check
    // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
    // points, so roc-w can have at least 6 roots. This shouldn't be a
    // problem for what we're trying to do (draw a nice looking curve).
    int rootsOfROCMinusW(final double[] roots, final int off, final double w2, final double err) {
        // no OOB exception, because by now off<=6, and roots.length >= 10
        assert off <= 6 && roots.length >= 10;

        int ret = off;
        final int end = off + perpendiculardfddf(roots, off);
        roots[end] = 1.0d; // always check interval end points

        double t0 = 0.0d, ft0 = ROCsq(t0) - w2;

        for (int i = off; i <= end; i++) {
            double t1 = roots[i], ft1 = ROCsq(t1) - w2;
            if (ft0 == 0.0d) {
                roots[ret++] = t0;
            } else if (ft1 * ft0 < 0.0d) { // have opposite signs
                // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
                // ROC(t) >= 0 for all t.
                roots[ret++] = falsePositionROCsqMinusX(t0, t1, w2, err);
            }
            t0 = t1;
            ft0 = ft1;
        }

        return ret - off;
    }

    private static double eliminateInf(final double x) {
        return (x == Double.POSITIVE_INFINITY ? Double.MAX_VALUE :
               (x == Double.NEGATIVE_INFINITY ? Double.MIN_VALUE : x));
    }

    // A slight modification of the false position algorithm on wikipedia.
    // This only works for the ROCsq-x functions. It might be nice to have
    // the function as an argument, but that would be awkward in java6.
    // TODO: It is something to consider for java8 (or whenever lambda
    // expressions make it into the language), depending on how closures
    // and turn out. Same goes for the newton's method
    // algorithm in DHelpers.java
    private double falsePositionROCsqMinusX(final double t0, final double t1,
                                            final double w2, final double err)
    {
        final int iterLimit = 100;
        int side = 0;
        double t = t1, ft = eliminateInf(ROCsq(t) - w2);
        double s = t0, fs = eliminateInf(ROCsq(s) - w2);
        double r = s, fr;

        for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
            r = (fs * t - ft * s) / (fs - ft);
            fr = ROCsq(r) - w2;
            if (sameSign(fr, ft)) {
                ft = fr; t = r;
                if (side < 0) {
                    fs /= (1 << (-side));
                    side--;
                } else {
                    side = -1;
                }
            } else if (fr * fs > 0.0d) {
                fs = fr; s = r;
                if (side > 0) {
                    ft /= (1 << side);
                    side++;
                } else {
                    side = 1;
                }
            } else {
                break;
            }
        }
        return r;
    }

    private static boolean sameSign(final double x, final double y) {
        // another way is to test if x*y > 0. This is bad for small x, y.
        return (x < 0.0d && y < 0.0d) || (x > 0.0d && y > 0.0d);
    }

    // returns the radius of curvature squared at t of this curve
    // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
    private double ROCsq(final double t) {
        final double dx = t * (t * dax + dbx) + cx;
        final double dy = t * (t * day + dby) + cy;
        final double ddx = 2.0d * dax * t + dbx;
        final double ddy = 2.0d * day * t + dby;
        final double dx2dy2 = dx * dx + dy * dy;
        final double ddx2ddy2 = ddx * ddx + ddy * ddy;
        final double ddxdxddydy = ddx * dx + ddy * dy;
        return dx2dy2 * ((dx2dy2 * dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy * ddxdxddydy));
    }
}