aboutsummaryrefslogtreecommitdiff
path: root/engine/src/android/jme3tools/android/Fixed.java
diff options
context:
space:
mode:
Diffstat (limited to 'engine/src/android/jme3tools/android/Fixed.java')
-rw-r--r--engine/src/android/jme3tools/android/Fixed.java431
1 files changed, 431 insertions, 0 deletions
diff --git a/engine/src/android/jme3tools/android/Fixed.java b/engine/src/android/jme3tools/android/Fixed.java
new file mode 100644
index 0000000..4420999
--- /dev/null
+++ b/engine/src/android/jme3tools/android/Fixed.java
@@ -0,0 +1,431 @@
+package jme3tools.android;
+
+import java.util.Random;
+
+/**
+ * Fixed point maths class. This can be tailored for specific needs by
+ * changing the bits allocated to the 'fraction' part (see <code>FIXED_POINT
+ * </code>, which would also require <code>SIN_PRECALC</code> and <code>
+ * COS_PRECALC</code> updating).
+ *
+ * <p><a href="http://blog.numfum.com/2007/09/java-fixed-point-maths.html">
+ * http://blog.numfum.com/2007/09/java-fixed-point-maths.html</a></p>
+ *
+ * @version 1.0
+ * @author CW
+ *
+ * @deprecated Most devices with OpenGL ES 2.0 have an FPU. Please use
+ * floats instead of this class for decimal math.
+ */
+@Deprecated
+public final class Fixed {
+
+ /**
+ * Number of bits used for 'fraction'.
+ */
+ public static final int FIXED_POINT = 16;
+ /**
+ * Decimal one as represented by the Fixed class.
+ */
+ public static final int ONE = 1 << FIXED_POINT;
+ /**
+ * Half in fixed point.
+ */
+ public static final int HALF = ONE >> 1;
+ /**
+ * Quarter circle resolution for trig functions (should be a power of
+ * two). This is the number of discrete steps in 90 degrees.
+ */
+ public static final int QUARTER_CIRCLE = 64;
+ /**
+ * Mask used to limit angles to one revolution. If a quarter circle is 64
+ * (i.e. 90 degrees is broken into 64 steps) then the mask is 255.
+ */
+ public static final int FULL_CIRCLE_MASK = QUARTER_CIRCLE * 4 - 1;
+ /**
+ * The trig table is generated at a higher precision than the typical
+ * 16.16 format used for the rest of the fixed point maths. The table
+ * values are then shifted to match the actual fixed point used.
+ */
+ private static final int TABLE_SHIFT = 30;
+ /**
+ * Equivalent to: sin((2 * PI) / (QUARTER_CIRCLE * 4))
+ * <p>
+ * Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
+ * will need recalculating (put the above formular into a calculator set
+ * radians, then shift the result by <code>TABLE_SHIFT</code>).
+ */
+ private static final int SIN_PRECALC = 26350943;
+ /**
+ * Equivalent to: cos((2 * PI) / (QUARTER_CIRCLE * 4)) * 2
+ *
+ * Note: if either QUARTER_CIRCLE or TABLE_SHIFT is changed this value
+ * will need recalculating ((put the above formular into a calculator set
+ * radians, then shift the result by <code>TABLE_SHIFT</code>).
+ */
+ private static final int COS_PRECALC = 2146836866;
+ /**
+ * One quarter sine wave as fixed point values.
+ */
+ private static final int[] SINE_TABLE = new int[QUARTER_CIRCLE + 1];
+ /**
+ * Scale value for indexing ATAN_TABLE[].
+ */
+ private static final int ATAN_SHIFT;
+ /**
+ * Reverse atan lookup table.
+ */
+ private static final byte[] ATAN_TABLE;
+ /**
+ * ATAN_TABLE.length
+ */
+ private static final int ATAN_TABLE_LEN;
+
+ /*
+ * Generates the tables and fills in any remaining static ints.
+ */
+ static {
+ // Generate the sine table using recursive synthesis.
+ SINE_TABLE[0] = 0;
+ SINE_TABLE[1] = SIN_PRECALC;
+ for (int n = 2; n < QUARTER_CIRCLE + 1; n++) {
+ SINE_TABLE[n] = (int) (((long) SINE_TABLE[n - 1] * COS_PRECALC) >> TABLE_SHIFT) - SINE_TABLE[n - 2];
+ }
+ // Scale the values to the fixed point format used.
+ for (int n = 0; n < QUARTER_CIRCLE + 1; n++) {
+ SINE_TABLE[n] = SINE_TABLE[n] + (1 << (TABLE_SHIFT - FIXED_POINT - 1)) >> TABLE_SHIFT - FIXED_POINT;
+ }
+
+ // Calculate a shift used to scale atan lookups
+ int rotl = 0;
+ int tan0 = tan(0);
+ int tan1 = tan(1);
+ while (rotl < 32) {
+ if ((tan1 >>= 1) > (tan0 >>= 1)) {
+ rotl++;
+ } else {
+ break;
+ }
+ }
+ ATAN_SHIFT = rotl;
+ // Create the a table of tan values
+ int[] lut = new int[QUARTER_CIRCLE];
+ for (int n = 0; n < QUARTER_CIRCLE; n++) {
+ lut[n] = tan(n) >> rotl;
+ }
+ ATAN_TABLE_LEN = lut[QUARTER_CIRCLE - 1];
+ // Then from the tan values create a reverse lookup
+ ATAN_TABLE = new byte[ATAN_TABLE_LEN];
+ for (byte n = 0; n < QUARTER_CIRCLE - 1; n++) {
+ int min = lut[n];
+ int max = lut[n + 1];
+ for (int i = min; i < max; i++) {
+ ATAN_TABLE[i] = n;
+ }
+ }
+ }
+ /**
+ * How many decimal places to use when converting a fixed point value to
+ * a decimal string.
+ *
+ * @see #toString
+ */
+ private static final int STRING_DECIMAL_PLACES = 2;
+ /**
+ * Value to add in order to round down a fixed point number when
+ * converting to a string.
+ */
+ private static final int STRING_DECIMAL_PLACES_ROUND;
+
+ static {
+ int i = 10;
+ for (int n = 1; n < STRING_DECIMAL_PLACES; n++) {
+ i *= i;
+ }
+ if (STRING_DECIMAL_PLACES == 0) {
+ STRING_DECIMAL_PLACES_ROUND = ONE / 2;
+ } else {
+ STRING_DECIMAL_PLACES_ROUND = ONE / (2 * i);
+ }
+ }
+ /**
+ * Random number generator. The standard <code>java.utll.Random</code> is
+ * used since it is available to both J2ME and J2SE. If a guaranteed
+ * sequence is required this would not be adequate.
+ */
+ private static Random rng = null;
+
+ /**
+ * Fixed can't be instantiated.
+ */
+ private Fixed() {
+ }
+
+ /**
+ * Returns an integer as a fixed point value.
+ */
+ public static int intToFixed(int n) {
+ return n << FIXED_POINT;
+ }
+
+ /**
+ * Returns a fixed point value as a float.
+ */
+ public static float fixedToFloat(int i) {
+ float fp = i;
+ fp = fp / ((float) ONE);
+ return fp;
+ }
+
+ /**
+ * Returns a float as a fixed point value.
+ */
+ public static int floatToFixed(float fp) {
+ return (int) (fp * ((float) ONE));
+ }
+
+ /**
+ * Converts a fixed point value into a decimal string.
+ */
+ public static String toString(int n) {
+ StringBuffer sb = new StringBuffer(16);
+ sb.append((n += STRING_DECIMAL_PLACES_ROUND) >> FIXED_POINT);
+ sb.append('.');
+ n &= ONE - 1;
+ for (int i = 0; i < STRING_DECIMAL_PLACES; i++) {
+ n *= 10;
+ sb.append((n / ONE) % 10);
+ }
+ return sb.toString();
+ }
+
+ /**
+ * Multiplies two fixed point values and returns the result.
+ */
+ public static int mul(int a, int b) {
+ return (int) ((long) a * (long) b >> FIXED_POINT);
+ }
+
+ /**
+ * Divides two fixed point values and returns the result.
+ */
+ public static int div(int a, int b) {
+ return (int) (((long) a << FIXED_POINT * 2) / (long) b >> FIXED_POINT);
+ }
+
+ /**
+ * Sine of an angle.
+ *
+ * @see #QUARTER_CIRCLE
+ */
+ public static int sin(int n) {
+ n &= FULL_CIRCLE_MASK;
+ if (n < QUARTER_CIRCLE * 2) {
+ if (n < QUARTER_CIRCLE) {
+ return SINE_TABLE[n];
+ } else {
+ return SINE_TABLE[QUARTER_CIRCLE * 2 - n];
+ }
+ } else {
+ if (n < QUARTER_CIRCLE * 3) {
+ return -SINE_TABLE[n - QUARTER_CIRCLE * 2];
+ } else {
+ return -SINE_TABLE[QUARTER_CIRCLE * 4 - n];
+ }
+ }
+ }
+
+ /**
+ * Cosine of an angle.
+ *
+ * @see #QUARTER_CIRCLE
+ */
+ public static int cos(int n) {
+ n &= FULL_CIRCLE_MASK;
+ if (n < QUARTER_CIRCLE * 2) {
+ if (n < QUARTER_CIRCLE) {
+ return SINE_TABLE[QUARTER_CIRCLE - n];
+ } else {
+ return -SINE_TABLE[n - QUARTER_CIRCLE];
+ }
+ } else {
+ if (n < QUARTER_CIRCLE * 3) {
+ return -SINE_TABLE[QUARTER_CIRCLE * 3 - n];
+ } else {
+ return SINE_TABLE[n - QUARTER_CIRCLE * 3];
+ }
+ }
+ }
+
+ /**
+ * Tangent of an angle.
+ *
+ * @see #QUARTER_CIRCLE
+ */
+ public static int tan(int n) {
+ return div(sin(n), cos(n));
+ }
+
+ /**
+ * Returns the arc tangent of an angle.
+ */
+ public static int atan(int n) {
+ n = n + (1 << (ATAN_SHIFT - 1)) >> ATAN_SHIFT;
+ if (n < 0) {
+ if (n <= -ATAN_TABLE_LEN) {
+ return -(QUARTER_CIRCLE - 1);
+ }
+ return -ATAN_TABLE[-n];
+ } else {
+ if (n >= ATAN_TABLE_LEN) {
+ return QUARTER_CIRCLE - 1;
+ }
+ return ATAN_TABLE[n];
+ }
+ }
+
+ /**
+ * Returns the polar angle of a rectangular coordinate.
+ */
+ public static int atan(int x, int y) {
+ int n = atan(div(x, abs(y) + 1)); // kludge to prevent ArithmeticException
+ if (y > 0) {
+ return n;
+ }
+ if (y < 0) {
+ if (x < 0) {
+ return -QUARTER_CIRCLE * 2 - n;
+ }
+ if (x > 0) {
+ return QUARTER_CIRCLE * 2 - n;
+ }
+ return QUARTER_CIRCLE * 2;
+ }
+ if (x > 0) {
+ return QUARTER_CIRCLE;
+ }
+ return -QUARTER_CIRCLE;
+ }
+
+ /**
+ * Rough calculation of the hypotenuse. Whilst not accurate it is very fast.
+ * <p>
+ * Derived from a piece in Graphics Gems.
+ */
+ public static int hyp(int x1, int y1, int x2, int y2) {
+ if ((x2 -= x1) < 0) {
+ x2 = -x2;
+ }
+ if ((y2 -= y1) < 0) {
+ y2 = -y2;
+ }
+ return x2 + y2 - (((x2 > y2) ? y2 : x2) >> 1);
+ }
+
+ /**
+ * Fixed point square root.
+ * <p>
+ * Derived from a 1993 Usenet algorithm posted by Christophe Meessen.
+ */
+ public static int sqrt(int n) {
+ if (n <= 0) {
+ return 0;
+ }
+ long sum = 0;
+ int bit = 0x40000000;
+ while (bit >= 0x100) { // lower values give more accurate results
+ long tmp = sum | bit;
+ if (n >= tmp) {
+ n -= tmp;
+ sum = tmp + bit;
+ }
+ bit >>= 1;
+ n <<= 1;
+ }
+ return (int) (sum >> 16 - (FIXED_POINT / 2));
+ }
+
+ /**
+ * Returns the absolute value.
+ */
+ public static int abs(int n) {
+ return (n < 0) ? -n : n;
+ }
+
+ /**
+ * Returns the sign of a value, -1 for negative numbers, otherwise 1.
+ */
+ public static int sgn(int n) {
+ return (n < 0) ? -1 : 1;
+ }
+
+ /**
+ * Returns the minimum of two values.
+ */
+ public static int min(int a, int b) {
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Returns the maximum of two values.
+ */
+ public static int max(int a, int b) {
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Clamps the value n between min and max.
+ */
+ public static int clamp(int n, int min, int max) {
+ return (n < min) ? min : (n > max) ? max : n;
+ }
+
+ /**
+ * Wraps the value n between 0 and the required limit.
+ */
+ public static int wrap(int n, int limit) {
+ return ((n %= limit) < 0) ? limit + n : n;
+ }
+
+ /**
+ * Returns the nearest int to a fixed point value. Equivalent to <code>
+ * Math.round()</code> in the standard library.
+ */
+ public static int round(int n) {
+ return n + HALF >> FIXED_POINT;
+ }
+
+ /**
+ * Returns the nearest int rounded down from a fixed point value.
+ * Equivalent to <code>Math.floor()</code> in the standard library.
+ */
+ public static int floor(int n) {
+ return n >> FIXED_POINT;
+ }
+
+ /**
+ * Returns the nearest int rounded up from a fixed point value.
+ * Equivalent to <code>Math.ceil()</code> in the standard library.
+ */
+ public static int ceil(int n) {
+ return n + (ONE - 1) >> FIXED_POINT;
+ }
+
+ /**
+ * Returns a fixed point value greater than or equal to decimal 0.0 and
+ * less than 1.0 (in 16.16 format this would be 0 to 65535 inclusive).
+ */
+ public static int rand() {
+ if (rng == null) {
+ rng = new Random();
+ }
+ return rng.nextInt() >>> (32 - FIXED_POINT);
+ }
+
+ /**
+ * Returns a random number between 0 and <code>n</code> (exclusive).
+ */
+ public static int rand(int n) {
+ return (rand() * n) >> FIXED_POINT;
+ }
+} \ No newline at end of file