aboutsummaryrefslogtreecommitdiff
path: root/engine/src/core/com/jme3/math/Matrix4f.java
diff options
context:
space:
mode:
Diffstat (limited to 'engine/src/core/com/jme3/math/Matrix4f.java')
-rw-r--r--engine/src/core/com/jme3/math/Matrix4f.java2305
1 files changed, 2305 insertions, 0 deletions
diff --git a/engine/src/core/com/jme3/math/Matrix4f.java b/engine/src/core/com/jme3/math/Matrix4f.java
new file mode 100644
index 0000000..8521eab
--- /dev/null
+++ b/engine/src/core/com/jme3/math/Matrix4f.java
@@ -0,0 +1,2305 @@
+/*
+ * Copyright (c) 2009-2010 jMonkeyEngine
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+package com.jme3.math;
+
+import com.jme3.export.*;
+import com.jme3.util.BufferUtils;
+import com.jme3.util.TempVars;
+import java.io.IOException;
+import java.nio.FloatBuffer;
+import java.util.logging.Logger;
+
+/**
+ * <code>Matrix4f</code> defines and maintains a 4x4 matrix in row major order.
+ * This matrix is intended for use in a translation and rotational capacity.
+ * It provides convenience methods for creating the matrix from a multitude
+ * of sources.
+ *
+ * Matrices are stored assuming column vectors on the right, with the translation
+ * in the rightmost column. Element numbering is row,column, so m03 is the zeroth
+ * row, third column, which is the "x" translation part. This means that the implicit
+ * storage order is column major. However, the get() and set() functions on float
+ * arrays default to row major order!
+ *
+ * @author Mark Powell
+ * @author Joshua Slack
+ */
+public final class Matrix4f implements Savable, Cloneable, java.io.Serializable {
+
+ static final long serialVersionUID = 1;
+
+ private static final Logger logger = Logger.getLogger(Matrix4f.class.getName());
+ public float m00, m01, m02, m03;
+ public float m10, m11, m12, m13;
+ public float m20, m21, m22, m23;
+ public float m30, m31, m32, m33;
+ public static final Matrix4f ZERO = new Matrix4f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+ public static final Matrix4f IDENTITY = new Matrix4f();
+
+ /**
+ * Constructor instantiates a new <code>Matrix</code> that is set to the
+ * identity matrix.
+ *
+ */
+ public Matrix4f() {
+ loadIdentity();
+ }
+
+ /**
+ * constructs a matrix with the given values.
+ */
+ public Matrix4f(float m00, float m01, float m02, float m03,
+ float m10, float m11, float m12, float m13,
+ float m20, float m21, float m22, float m23,
+ float m30, float m31, float m32, float m33) {
+
+ this.m00 = m00;
+ this.m01 = m01;
+ this.m02 = m02;
+ this.m03 = m03;
+ this.m10 = m10;
+ this.m11 = m11;
+ this.m12 = m12;
+ this.m13 = m13;
+ this.m20 = m20;
+ this.m21 = m21;
+ this.m22 = m22;
+ this.m23 = m23;
+ this.m30 = m30;
+ this.m31 = m31;
+ this.m32 = m32;
+ this.m33 = m33;
+ }
+
+ /**
+ * Create a new Matrix4f, given data in column-major format.
+ *
+ * @param array
+ * An array of 16 floats in column-major format (translation in elements 12, 13 and 14).
+ */
+ public Matrix4f(float[] array) {
+ set(array, false);
+ }
+
+ /**
+ * Constructor instantiates a new <code>Matrix</code> that is set to the
+ * provided matrix. This constructor copies a given Matrix. If the provided
+ * matrix is null, the constructor sets the matrix to the identity.
+ *
+ * @param mat
+ * the matrix to copy.
+ */
+ public Matrix4f(Matrix4f mat) {
+ copy(mat);
+ }
+
+ /**
+ * <code>copy</code> transfers the contents of a given matrix to this
+ * matrix. If a null matrix is supplied, this matrix is set to the identity
+ * matrix.
+ *
+ * @param matrix
+ * the matrix to copy.
+ */
+ public void copy(Matrix4f matrix) {
+ if (null == matrix) {
+ loadIdentity();
+ } else {
+ m00 = matrix.m00;
+ m01 = matrix.m01;
+ m02 = matrix.m02;
+ m03 = matrix.m03;
+ m10 = matrix.m10;
+ m11 = matrix.m11;
+ m12 = matrix.m12;
+ m13 = matrix.m13;
+ m20 = matrix.m20;
+ m21 = matrix.m21;
+ m22 = matrix.m22;
+ m23 = matrix.m23;
+ m30 = matrix.m30;
+ m31 = matrix.m31;
+ m32 = matrix.m32;
+ m33 = matrix.m33;
+ }
+ }
+
+ public void fromFrame(Vector3f location, Vector3f direction, Vector3f up, Vector3f left) {
+ loadIdentity();
+
+ TempVars vars = TempVars.get();
+
+ Vector3f f = vars.vect1.set(direction);
+ Vector3f s = vars.vect2.set(f).crossLocal(up);
+ Vector3f u = vars.vect3.set(s).crossLocal(f);
+// s.normalizeLocal();
+// u.normalizeLocal();
+
+ m00 = s.x;
+ m01 = s.y;
+ m02 = s.z;
+
+ m10 = u.x;
+ m11 = u.y;
+ m12 = u.z;
+
+ m20 = -f.x;
+ m21 = -f.y;
+ m22 = -f.z;
+
+// m00 = -left.x;
+// m10 = -left.y;
+// m20 = -left.z;
+//
+// m01 = up.x;
+// m11 = up.y;
+// m21 = up.z;
+//
+// m02 = -direction.x;
+// m12 = -direction.y;
+// m22 = -direction.z;
+//
+
+ Matrix4f transMatrix = vars.tempMat4;
+ transMatrix.loadIdentity();
+ transMatrix.m03 = -location.x;
+ transMatrix.m13 = -location.y;
+ transMatrix.m23 = -location.z;
+ this.multLocal(transMatrix);
+
+ vars.release();
+
+// transMatrix.multLocal(this);
+
+// set(transMatrix);
+ }
+
+ /**
+ * <code>get</code> retrieves the values of this object into
+ * a float array in row-major order.
+ *
+ * @param matrix
+ * the matrix to set the values into.
+ */
+ public void get(float[] matrix) {
+ get(matrix, true);
+ }
+
+ /**
+ * <code>set</code> retrieves the values of this object into
+ * a float array.
+ *
+ * @param matrix
+ * the matrix to set the values into.
+ * @param rowMajor
+ * whether the outgoing data is in row or column major order.
+ */
+ public void get(float[] matrix, boolean rowMajor) {
+ if (matrix.length != 16) {
+ throw new IllegalArgumentException(
+ "Array must be of size 16.");
+ }
+
+ if (rowMajor) {
+ matrix[0] = m00;
+ matrix[1] = m01;
+ matrix[2] = m02;
+ matrix[3] = m03;
+ matrix[4] = m10;
+ matrix[5] = m11;
+ matrix[6] = m12;
+ matrix[7] = m13;
+ matrix[8] = m20;
+ matrix[9] = m21;
+ matrix[10] = m22;
+ matrix[11] = m23;
+ matrix[12] = m30;
+ matrix[13] = m31;
+ matrix[14] = m32;
+ matrix[15] = m33;
+ } else {
+ matrix[0] = m00;
+ matrix[4] = m01;
+ matrix[8] = m02;
+ matrix[12] = m03;
+ matrix[1] = m10;
+ matrix[5] = m11;
+ matrix[9] = m12;
+ matrix[13] = m13;
+ matrix[2] = m20;
+ matrix[6] = m21;
+ matrix[10] = m22;
+ matrix[14] = m23;
+ matrix[3] = m30;
+ matrix[7] = m31;
+ matrix[11] = m32;
+ matrix[15] = m33;
+ }
+ }
+
+ /**
+ * <code>get</code> retrieves a value from the matrix at the given
+ * position. If the position is invalid a <code>JmeException</code> is
+ * thrown.
+ *
+ * @param i
+ * the row index.
+ * @param j
+ * the colum index.
+ * @return the value at (i, j).
+ */
+ @SuppressWarnings("fallthrough")
+ public float get(int i, int j) {
+ switch (i) {
+ case 0:
+ switch (j) {
+ case 0:
+ return m00;
+ case 1:
+ return m01;
+ case 2:
+ return m02;
+ case 3:
+ return m03;
+ }
+ case 1:
+ switch (j) {
+ case 0:
+ return m10;
+ case 1:
+ return m11;
+ case 2:
+ return m12;
+ case 3:
+ return m13;
+ }
+ case 2:
+ switch (j) {
+ case 0:
+ return m20;
+ case 1:
+ return m21;
+ case 2:
+ return m22;
+ case 3:
+ return m23;
+ }
+ case 3:
+ switch (j) {
+ case 0:
+ return m30;
+ case 1:
+ return m31;
+ case 2:
+ return m32;
+ case 3:
+ return m33;
+ }
+ }
+
+ logger.warning("Invalid matrix index.");
+ throw new IllegalArgumentException("Invalid indices into matrix.");
+ }
+
+ /**
+ * <code>getColumn</code> returns one of three columns specified by the
+ * parameter. This column is returned as a float array of length 4.
+ *
+ * @param i
+ * the column to retrieve. Must be between 0 and 3.
+ * @return the column specified by the index.
+ */
+ public float[] getColumn(int i) {
+ return getColumn(i, null);
+ }
+
+ /**
+ * <code>getColumn</code> returns one of three columns specified by the
+ * parameter. This column is returned as a float[4].
+ *
+ * @param i
+ * the column to retrieve. Must be between 0 and 3.
+ * @param store
+ * the float array to store the result in. if null, a new one
+ * is created.
+ * @return the column specified by the index.
+ */
+ public float[] getColumn(int i, float[] store) {
+ if (store == null) {
+ store = new float[4];
+ }
+ switch (i) {
+ case 0:
+ store[0] = m00;
+ store[1] = m10;
+ store[2] = m20;
+ store[3] = m30;
+ break;
+ case 1:
+ store[0] = m01;
+ store[1] = m11;
+ store[2] = m21;
+ store[3] = m31;
+ break;
+ case 2:
+ store[0] = m02;
+ store[1] = m12;
+ store[2] = m22;
+ store[3] = m32;
+ break;
+ case 3:
+ store[0] = m03;
+ store[1] = m13;
+ store[2] = m23;
+ store[3] = m33;
+ break;
+ default:
+ logger.warning("Invalid column index.");
+ throw new IllegalArgumentException("Invalid column index. " + i);
+ }
+ return store;
+ }
+
+ /**
+ *
+ * <code>setColumn</code> sets a particular column of this matrix to that
+ * represented by the provided vector.
+ *
+ * @param i
+ * the column to set.
+ * @param column
+ * the data to set.
+ */
+ public void setColumn(int i, float[] column) {
+
+ if (column == null) {
+ logger.warning("Column is null. Ignoring.");
+ return;
+ }
+ switch (i) {
+ case 0:
+ m00 = column[0];
+ m10 = column[1];
+ m20 = column[2];
+ m30 = column[3];
+ break;
+ case 1:
+ m01 = column[0];
+ m11 = column[1];
+ m21 = column[2];
+ m31 = column[3];
+ break;
+ case 2:
+ m02 = column[0];
+ m12 = column[1];
+ m22 = column[2];
+ m32 = column[3];
+ break;
+ case 3:
+ m03 = column[0];
+ m13 = column[1];
+ m23 = column[2];
+ m33 = column[3];
+ break;
+ default:
+ logger.warning("Invalid column index.");
+ throw new IllegalArgumentException("Invalid column index. " + i);
+ }
+ }
+
+ /**
+ * <code>set</code> places a given value into the matrix at the given
+ * position. If the position is invalid a <code>JmeException</code> is
+ * thrown.
+ *
+ * @param i
+ * the row index.
+ * @param j
+ * the colum index.
+ * @param value
+ * the value for (i, j).
+ */
+ @SuppressWarnings("fallthrough")
+ public void set(int i, int j, float value) {
+ switch (i) {
+ case 0:
+ switch (j) {
+ case 0:
+ m00 = value;
+ return;
+ case 1:
+ m01 = value;
+ return;
+ case 2:
+ m02 = value;
+ return;
+ case 3:
+ m03 = value;
+ return;
+ }
+ case 1:
+ switch (j) {
+ case 0:
+ m10 = value;
+ return;
+ case 1:
+ m11 = value;
+ return;
+ case 2:
+ m12 = value;
+ return;
+ case 3:
+ m13 = value;
+ return;
+ }
+ case 2:
+ switch (j) {
+ case 0:
+ m20 = value;
+ return;
+ case 1:
+ m21 = value;
+ return;
+ case 2:
+ m22 = value;
+ return;
+ case 3:
+ m23 = value;
+ return;
+ }
+ case 3:
+ switch (j) {
+ case 0:
+ m30 = value;
+ return;
+ case 1:
+ m31 = value;
+ return;
+ case 2:
+ m32 = value;
+ return;
+ case 3:
+ m33 = value;
+ return;
+ }
+ }
+
+ logger.warning("Invalid matrix index.");
+ throw new IllegalArgumentException("Invalid indices into matrix.");
+ }
+
+ /**
+ * <code>set</code> sets the values of this matrix from an array of
+ * values.
+ *
+ * @param matrix
+ * the matrix to set the value to.
+ * @throws JmeException
+ * if the array is not of size 16.
+ */
+ public void set(float[][] matrix) {
+ if (matrix.length != 4 || matrix[0].length != 4) {
+ throw new IllegalArgumentException(
+ "Array must be of size 16.");
+ }
+
+ m00 = matrix[0][0];
+ m01 = matrix[0][1];
+ m02 = matrix[0][2];
+ m03 = matrix[0][3];
+ m10 = matrix[1][0];
+ m11 = matrix[1][1];
+ m12 = matrix[1][2];
+ m13 = matrix[1][3];
+ m20 = matrix[2][0];
+ m21 = matrix[2][1];
+ m22 = matrix[2][2];
+ m23 = matrix[2][3];
+ m30 = matrix[3][0];
+ m31 = matrix[3][1];
+ m32 = matrix[3][2];
+ m33 = matrix[3][3];
+ }
+
+ /**
+ * <code>set</code> sets the values of this matrix from another matrix.
+ *
+ * @param matrix
+ * the matrix to read the value from.
+ */
+ public Matrix4f set(Matrix4f matrix) {
+ m00 = matrix.m00;
+ m01 = matrix.m01;
+ m02 = matrix.m02;
+ m03 = matrix.m03;
+ m10 = matrix.m10;
+ m11 = matrix.m11;
+ m12 = matrix.m12;
+ m13 = matrix.m13;
+ m20 = matrix.m20;
+ m21 = matrix.m21;
+ m22 = matrix.m22;
+ m23 = matrix.m23;
+ m30 = matrix.m30;
+ m31 = matrix.m31;
+ m32 = matrix.m32;
+ m33 = matrix.m33;
+ return this;
+ }
+
+ /**
+ * <code>set</code> sets the values of this matrix from an array of
+ * values assuming that the data is rowMajor order;
+ *
+ * @param matrix
+ * the matrix to set the value to.
+ */
+ public void set(float[] matrix) {
+ set(matrix, true);
+ }
+
+ /**
+ * <code>set</code> sets the values of this matrix from an array of
+ * values;
+ *
+ * @param matrix
+ * the matrix to set the value to.
+ * @param rowMajor
+ * whether the incoming data is in row or column major order.
+ */
+ public void set(float[] matrix, boolean rowMajor) {
+ if (matrix.length != 16) {
+ throw new IllegalArgumentException(
+ "Array must be of size 16.");
+ }
+
+ if (rowMajor) {
+ m00 = matrix[0];
+ m01 = matrix[1];
+ m02 = matrix[2];
+ m03 = matrix[3];
+ m10 = matrix[4];
+ m11 = matrix[5];
+ m12 = matrix[6];
+ m13 = matrix[7];
+ m20 = matrix[8];
+ m21 = matrix[9];
+ m22 = matrix[10];
+ m23 = matrix[11];
+ m30 = matrix[12];
+ m31 = matrix[13];
+ m32 = matrix[14];
+ m33 = matrix[15];
+ } else {
+ m00 = matrix[0];
+ m01 = matrix[4];
+ m02 = matrix[8];
+ m03 = matrix[12];
+ m10 = matrix[1];
+ m11 = matrix[5];
+ m12 = matrix[9];
+ m13 = matrix[13];
+ m20 = matrix[2];
+ m21 = matrix[6];
+ m22 = matrix[10];
+ m23 = matrix[14];
+ m30 = matrix[3];
+ m31 = matrix[7];
+ m32 = matrix[11];
+ m33 = matrix[15];
+ }
+ }
+
+ public Matrix4f transpose() {
+ float[] tmp = new float[16];
+ get(tmp, true);
+ Matrix4f mat = new Matrix4f(tmp);
+ return mat;
+ }
+
+ /**
+ * <code>transpose</code> locally transposes this Matrix.
+ *
+ * @return this object for chaining.
+ */
+ public Matrix4f transposeLocal() {
+ float tmp = m01;
+ m01 = m10;
+ m10 = tmp;
+
+ tmp = m02;
+ m02 = m20;
+ m20 = tmp;
+
+ tmp = m03;
+ m03 = m30;
+ m30 = tmp;
+
+ tmp = m12;
+ m12 = m21;
+ m21 = tmp;
+
+ tmp = m13;
+ m13 = m31;
+ m31 = tmp;
+
+ tmp = m23;
+ m23 = m32;
+ m32 = tmp;
+
+ return this;
+ }
+
+ /**
+ * <code>toFloatBuffer</code> returns a FloatBuffer object that contains
+ * the matrix data.
+ *
+ * @return matrix data as a FloatBuffer.
+ */
+ public FloatBuffer toFloatBuffer() {
+ return toFloatBuffer(false);
+ }
+
+ /**
+ * <code>toFloatBuffer</code> returns a FloatBuffer object that contains the
+ * matrix data.
+ *
+ * @param columnMajor
+ * if true, this buffer should be filled with column major data,
+ * otherwise it will be filled row major.
+ * @return matrix data as a FloatBuffer. The position is set to 0 for
+ * convenience.
+ */
+ public FloatBuffer toFloatBuffer(boolean columnMajor) {
+ FloatBuffer fb = BufferUtils.createFloatBuffer(16);
+ fillFloatBuffer(fb, columnMajor);
+ fb.rewind();
+ return fb;
+ }
+
+ /**
+ * <code>fillFloatBuffer</code> fills a FloatBuffer object with
+ * the matrix data.
+ * @param fb the buffer to fill, must be correct size
+ * @return matrix data as a FloatBuffer.
+ */
+ public FloatBuffer fillFloatBuffer(FloatBuffer fb) {
+ return fillFloatBuffer(fb, false);
+ }
+
+ /**
+ * <code>fillFloatBuffer</code> fills a FloatBuffer object with the matrix
+ * data.
+ *
+ * @param fb
+ * the buffer to fill, starting at current position. Must have
+ * room for 16 more floats.
+ * @param columnMajor
+ * if true, this buffer should be filled with column major data,
+ * otherwise it will be filled row major.
+ * @return matrix data as a FloatBuffer. (position is advanced by 16 and any
+ * limit set is not changed).
+ */
+ public FloatBuffer fillFloatBuffer(FloatBuffer fb, boolean columnMajor) {
+// if (columnMajor) {
+// fb.put(m00).put(m10).put(m20).put(m30);
+// fb.put(m01).put(m11).put(m21).put(m31);
+// fb.put(m02).put(m12).put(m22).put(m32);
+// fb.put(m03).put(m13).put(m23).put(m33);
+// } else {
+// fb.put(m00).put(m01).put(m02).put(m03);
+// fb.put(m10).put(m11).put(m12).put(m13);
+// fb.put(m20).put(m21).put(m22).put(m23);
+// fb.put(m30).put(m31).put(m32).put(m33);
+// }
+
+ TempVars vars = TempVars.get();
+
+
+ fillFloatArray(vars.matrixWrite, columnMajor);
+ fb.put(vars.matrixWrite, 0, 16);
+
+ vars.release();
+
+ return fb;
+ }
+
+ public void fillFloatArray(float[] f, boolean columnMajor) {
+ if (columnMajor) {
+ f[ 0] = m00;
+ f[ 1] = m10;
+ f[ 2] = m20;
+ f[ 3] = m30;
+ f[ 4] = m01;
+ f[ 5] = m11;
+ f[ 6] = m21;
+ f[ 7] = m31;
+ f[ 8] = m02;
+ f[ 9] = m12;
+ f[10] = m22;
+ f[11] = m32;
+ f[12] = m03;
+ f[13] = m13;
+ f[14] = m23;
+ f[15] = m33;
+ } else {
+ f[ 0] = m00;
+ f[ 1] = m01;
+ f[ 2] = m02;
+ f[ 3] = m03;
+ f[ 4] = m10;
+ f[ 5] = m11;
+ f[ 6] = m12;
+ f[ 7] = m13;
+ f[ 8] = m20;
+ f[ 9] = m21;
+ f[10] = m22;
+ f[11] = m23;
+ f[12] = m30;
+ f[13] = m31;
+ f[14] = m32;
+ f[15] = m33;
+ }
+ }
+
+ /**
+ * <code>readFloatBuffer</code> reads value for this matrix from a FloatBuffer.
+ * @param fb the buffer to read from, must be correct size
+ * @return this data as a FloatBuffer.
+ */
+ public Matrix4f readFloatBuffer(FloatBuffer fb) {
+ return readFloatBuffer(fb, false);
+ }
+
+ /**
+ * <code>readFloatBuffer</code> reads value for this matrix from a FloatBuffer.
+ * @param fb the buffer to read from, must be correct size
+ * @param columnMajor if true, this buffer should be filled with column
+ * major data, otherwise it will be filled row major.
+ * @return this data as a FloatBuffer.
+ */
+ public Matrix4f readFloatBuffer(FloatBuffer fb, boolean columnMajor) {
+
+ if (columnMajor) {
+ m00 = fb.get();
+ m10 = fb.get();
+ m20 = fb.get();
+ m30 = fb.get();
+ m01 = fb.get();
+ m11 = fb.get();
+ m21 = fb.get();
+ m31 = fb.get();
+ m02 = fb.get();
+ m12 = fb.get();
+ m22 = fb.get();
+ m32 = fb.get();
+ m03 = fb.get();
+ m13 = fb.get();
+ m23 = fb.get();
+ m33 = fb.get();
+ } else {
+ m00 = fb.get();
+ m01 = fb.get();
+ m02 = fb.get();
+ m03 = fb.get();
+ m10 = fb.get();
+ m11 = fb.get();
+ m12 = fb.get();
+ m13 = fb.get();
+ m20 = fb.get();
+ m21 = fb.get();
+ m22 = fb.get();
+ m23 = fb.get();
+ m30 = fb.get();
+ m31 = fb.get();
+ m32 = fb.get();
+ m33 = fb.get();
+ }
+ return this;
+ }
+
+ /**
+ * <code>loadIdentity</code> sets this matrix to the identity matrix,
+ * namely all zeros with ones along the diagonal.
+ *
+ */
+ public void loadIdentity() {
+ m01 = m02 = m03 = 0.0f;
+ m10 = m12 = m13 = 0.0f;
+ m20 = m21 = m23 = 0.0f;
+ m30 = m31 = m32 = 0.0f;
+ m00 = m11 = m22 = m33 = 1.0f;
+ }
+
+ public void fromFrustum(float near, float far, float left, float right, float top, float bottom, boolean parallel) {
+ loadIdentity();
+ if (parallel) {
+ // scale
+ m00 = 2.0f / (right - left);
+ //m11 = 2.0f / (bottom - top);
+ m11 = 2.0f / (top - bottom);
+ m22 = -2.0f / (far - near);
+ m33 = 1f;
+
+ // translation
+ m03 = -(right + left) / (right - left);
+ //m31 = -(bottom + top) / (bottom - top);
+ m13 = -(top + bottom) / (top - bottom);
+ m23 = -(far + near) / (far - near);
+ } else {
+ m00 = (2.0f * near) / (right - left);
+ m11 = (2.0f * near) / (top - bottom);
+ m32 = -1.0f;
+ m33 = -0.0f;
+
+ // A
+ m02 = (right + left) / (right - left);
+
+ // B
+ m12 = (top + bottom) / (top - bottom);
+
+ // C
+ m22 = -(far + near) / (far - near);
+
+ // D
+ m23 = -(2.0f * far * near) / (far - near);
+ }
+ }
+
+ /**
+ * <code>fromAngleAxis</code> sets this matrix4f to the values specified
+ * by an angle and an axis of rotation. This method creates an object, so
+ * use fromAngleNormalAxis if your axis is already normalized.
+ *
+ * @param angle
+ * the angle to rotate (in radians).
+ * @param axis
+ * the axis of rotation.
+ */
+ public void fromAngleAxis(float angle, Vector3f axis) {
+ Vector3f normAxis = axis.normalize();
+ fromAngleNormalAxis(angle, normAxis);
+ }
+
+ /**
+ * <code>fromAngleNormalAxis</code> sets this matrix4f to the values
+ * specified by an angle and a normalized axis of rotation.
+ *
+ * @param angle
+ * the angle to rotate (in radians).
+ * @param axis
+ * the axis of rotation (already normalized).
+ */
+ public void fromAngleNormalAxis(float angle, Vector3f axis) {
+ zero();
+ m33 = 1;
+
+ float fCos = FastMath.cos(angle);
+ float fSin = FastMath.sin(angle);
+ float fOneMinusCos = ((float) 1.0) - fCos;
+ float fX2 = axis.x * axis.x;
+ float fY2 = axis.y * axis.y;
+ float fZ2 = axis.z * axis.z;
+ float fXYM = axis.x * axis.y * fOneMinusCos;
+ float fXZM = axis.x * axis.z * fOneMinusCos;
+ float fYZM = axis.y * axis.z * fOneMinusCos;
+ float fXSin = axis.x * fSin;
+ float fYSin = axis.y * fSin;
+ float fZSin = axis.z * fSin;
+
+ m00 = fX2 * fOneMinusCos + fCos;
+ m01 = fXYM - fZSin;
+ m02 = fXZM + fYSin;
+ m10 = fXYM + fZSin;
+ m11 = fY2 * fOneMinusCos + fCos;
+ m12 = fYZM - fXSin;
+ m20 = fXZM - fYSin;
+ m21 = fYZM + fXSin;
+ m22 = fZ2 * fOneMinusCos + fCos;
+ }
+
+ /**
+ * <code>mult</code> multiplies this matrix by a scalar.
+ *
+ * @param scalar
+ * the scalar to multiply this matrix by.
+ */
+ public void multLocal(float scalar) {
+ m00 *= scalar;
+ m01 *= scalar;
+ m02 *= scalar;
+ m03 *= scalar;
+ m10 *= scalar;
+ m11 *= scalar;
+ m12 *= scalar;
+ m13 *= scalar;
+ m20 *= scalar;
+ m21 *= scalar;
+ m22 *= scalar;
+ m23 *= scalar;
+ m30 *= scalar;
+ m31 *= scalar;
+ m32 *= scalar;
+ m33 *= scalar;
+ }
+
+ public Matrix4f mult(float scalar) {
+ Matrix4f out = new Matrix4f();
+ out.set(this);
+ out.multLocal(scalar);
+ return out;
+ }
+
+ public Matrix4f mult(float scalar, Matrix4f store) {
+ store.set(this);
+ store.multLocal(scalar);
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies this matrix with another matrix. The
+ * result matrix will then be returned. This matrix will be on the left hand
+ * side, while the parameter matrix will be on the right.
+ *
+ * @param in2
+ * the matrix to multiply this matrix by.
+ * @return the resultant matrix
+ */
+ public Matrix4f mult(Matrix4f in2) {
+ return mult(in2, null);
+ }
+
+ /**
+ * <code>mult</code> multiplies this matrix with another matrix. The
+ * result matrix will then be returned. This matrix will be on the left hand
+ * side, while the parameter matrix will be on the right.
+ *
+ * @param in2
+ * the matrix to multiply this matrix by.
+ * @param store
+ * where to store the result. It is safe for in2 and store to be
+ * the same object.
+ * @return the resultant matrix
+ */
+ public Matrix4f mult(Matrix4f in2, Matrix4f store) {
+ if (store == null) {
+ store = new Matrix4f();
+ }
+
+ float temp00, temp01, temp02, temp03;
+ float temp10, temp11, temp12, temp13;
+ float temp20, temp21, temp22, temp23;
+ float temp30, temp31, temp32, temp33;
+
+ temp00 = m00 * in2.m00
+ + m01 * in2.m10
+ + m02 * in2.m20
+ + m03 * in2.m30;
+ temp01 = m00 * in2.m01
+ + m01 * in2.m11
+ + m02 * in2.m21
+ + m03 * in2.m31;
+ temp02 = m00 * in2.m02
+ + m01 * in2.m12
+ + m02 * in2.m22
+ + m03 * in2.m32;
+ temp03 = m00 * in2.m03
+ + m01 * in2.m13
+ + m02 * in2.m23
+ + m03 * in2.m33;
+
+ temp10 = m10 * in2.m00
+ + m11 * in2.m10
+ + m12 * in2.m20
+ + m13 * in2.m30;
+ temp11 = m10 * in2.m01
+ + m11 * in2.m11
+ + m12 * in2.m21
+ + m13 * in2.m31;
+ temp12 = m10 * in2.m02
+ + m11 * in2.m12
+ + m12 * in2.m22
+ + m13 * in2.m32;
+ temp13 = m10 * in2.m03
+ + m11 * in2.m13
+ + m12 * in2.m23
+ + m13 * in2.m33;
+
+ temp20 = m20 * in2.m00
+ + m21 * in2.m10
+ + m22 * in2.m20
+ + m23 * in2.m30;
+ temp21 = m20 * in2.m01
+ + m21 * in2.m11
+ + m22 * in2.m21
+ + m23 * in2.m31;
+ temp22 = m20 * in2.m02
+ + m21 * in2.m12
+ + m22 * in2.m22
+ + m23 * in2.m32;
+ temp23 = m20 * in2.m03
+ + m21 * in2.m13
+ + m22 * in2.m23
+ + m23 * in2.m33;
+
+ temp30 = m30 * in2.m00
+ + m31 * in2.m10
+ + m32 * in2.m20
+ + m33 * in2.m30;
+ temp31 = m30 * in2.m01
+ + m31 * in2.m11
+ + m32 * in2.m21
+ + m33 * in2.m31;
+ temp32 = m30 * in2.m02
+ + m31 * in2.m12
+ + m32 * in2.m22
+ + m33 * in2.m32;
+ temp33 = m30 * in2.m03
+ + m31 * in2.m13
+ + m32 * in2.m23
+ + m33 * in2.m33;
+
+ store.m00 = temp00;
+ store.m01 = temp01;
+ store.m02 = temp02;
+ store.m03 = temp03;
+ store.m10 = temp10;
+ store.m11 = temp11;
+ store.m12 = temp12;
+ store.m13 = temp13;
+ store.m20 = temp20;
+ store.m21 = temp21;
+ store.m22 = temp22;
+ store.m23 = temp23;
+ store.m30 = temp30;
+ store.m31 = temp31;
+ store.m32 = temp32;
+ store.m33 = temp33;
+
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies this matrix with another matrix. The
+ * results are stored internally and a handle to this matrix will
+ * then be returned. This matrix will be on the left hand
+ * side, while the parameter matrix will be on the right.
+ *
+ * @param in2
+ * the matrix to multiply this matrix by.
+ * @return the resultant matrix
+ */
+ public Matrix4f multLocal(Matrix4f in2) {
+ return mult(in2, this);
+ }
+
+ /**
+ * <code>mult</code> multiplies a vector about a rotation matrix. The
+ * resulting vector is returned as a new Vector3f.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @return the rotated vector.
+ */
+ public Vector3f mult(Vector3f vec) {
+ return mult(vec, null);
+ }
+
+ /**
+ * <code>mult</code> multiplies a vector about a rotation matrix and adds
+ * translation. The resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in. Created if null is passed.
+ * @return the rotated vector.
+ */
+ public Vector3f mult(Vector3f vec, Vector3f store) {
+ if (store == null) {
+ store = new Vector3f();
+ }
+
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+ store.x = m00 * vx + m01 * vy + m02 * vz + m03;
+ store.y = m10 * vx + m11 * vy + m12 * vz + m13;
+ store.z = m20 * vx + m21 * vy + m22 * vz + m23;
+
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies a <code>Vector4f</code> about a rotation
+ * matrix. The resulting vector is returned as a new <code>Vector4f</code>.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @return the rotated vector.
+ */
+ public Vector4f mult(Vector4f vec) {
+ return mult(vec, null);
+ }
+
+ /**
+ * <code>mult</code> multiplies a <code>Vector4f</code> about a rotation
+ * matrix. The resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in. Created if null is passed.
+ * @return the rotated vector.
+ */
+ public Vector4f mult(Vector4f vec, Vector4f store) {
+ if (null == vec) {
+ logger.info("Source vector is null, null result returned.");
+ return null;
+ }
+ if (store == null) {
+ store = new Vector4f();
+ }
+
+ float vx = vec.x, vy = vec.y, vz = vec.z, vw = vec.w;
+ store.x = m00 * vx + m01 * vy + m02 * vz + m03 * vw;
+ store.y = m10 * vx + m11 * vy + m12 * vz + m13 * vw;
+ store.z = m20 * vx + m21 * vy + m22 * vz + m23 * vw;
+ store.w = m30 * vx + m31 * vy + m32 * vz + m33 * vw;
+
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies a vector about a rotation matrix. The
+ * resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ *
+ * @return the rotated vector.
+ */
+ public Vector4f multAcross(Vector4f vec) {
+ return multAcross(vec, null);
+ }
+
+ /**
+ * <code>mult</code> multiplies a vector about a rotation matrix. The
+ * resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in. created if null is passed.
+ * @return the rotated vector.
+ */
+ public Vector4f multAcross(Vector4f vec, Vector4f store) {
+ if (null == vec) {
+ logger.info("Source vector is null, null result returned.");
+ return null;
+ }
+ if (store == null) {
+ store = new Vector4f();
+ }
+
+ float vx = vec.x, vy = vec.y, vz = vec.z, vw = vec.w;
+ store.x = m00 * vx + m10 * vy + m20 * vz + m30 * vw;
+ store.y = m01 * vx + m11 * vy + m21 * vz + m31 * vw;
+ store.z = m02 * vx + m12 * vy + m22 * vz + m32 * vw;
+ store.z = m03 * vx + m13 * vy + m23 * vz + m33 * vw;
+
+ return store;
+ }
+
+ /**
+ * <code>multNormal</code> multiplies a vector about a rotation matrix, but
+ * does not add translation. The resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in. Created if null is passed.
+ * @return the rotated vector.
+ */
+ public Vector3f multNormal(Vector3f vec, Vector3f store) {
+ if (store == null) {
+ store = new Vector3f();
+ }
+
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+ store.x = m00 * vx + m01 * vy + m02 * vz;
+ store.y = m10 * vx + m11 * vy + m12 * vz;
+ store.z = m20 * vx + m21 * vy + m22 * vz;
+
+ return store;
+ }
+
+ /**
+ * <code>multNormal</code> multiplies a vector about a rotation matrix, but
+ * does not add translation. The resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in. Created if null is passed.
+ * @return the rotated vector.
+ */
+ public Vector3f multNormalAcross(Vector3f vec, Vector3f store) {
+ if (store == null) {
+ store = new Vector3f();
+ }
+
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+ store.x = m00 * vx + m10 * vy + m20 * vz;
+ store.y = m01 * vx + m11 * vy + m21 * vz;
+ store.z = m02 * vx + m12 * vy + m22 * vz;
+
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies a vector about a rotation matrix and adds
+ * translation. The w value is returned as a result of
+ * multiplying the last column of the matrix by 1.0
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in.
+ * @return the W value
+ */
+ public float multProj(Vector3f vec, Vector3f store) {
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+ store.x = m00 * vx + m01 * vy + m02 * vz + m03;
+ store.y = m10 * vx + m11 * vy + m12 * vz + m13;
+ store.z = m20 * vx + m21 * vy + m22 * vz + m23;
+ return m30 * vx + m31 * vy + m32 * vz + m33;
+ }
+
+ /**
+ * <code>mult</code> multiplies a vector about a rotation matrix. The
+ * resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a vector to store the result in. created if null is passed.
+ * @return the rotated vector.
+ */
+ public Vector3f multAcross(Vector3f vec, Vector3f store) {
+ if (null == vec) {
+ logger.info("Source vector is null, null result returned.");
+ return null;
+ }
+ if (store == null) {
+ store = new Vector3f();
+ }
+
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+ store.x = m00 * vx + m10 * vy + m20 * vz + m30 * 1;
+ store.y = m01 * vx + m11 * vy + m21 * vz + m31 * 1;
+ store.z = m02 * vx + m12 * vy + m22 * vz + m32 * 1;
+
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies a quaternion about a matrix. The
+ * resulting vector is returned.
+ *
+ * @param vec
+ * vec to multiply against.
+ * @param store
+ * a quaternion to store the result in. created if null is passed.
+ * @return store = this * vec
+ */
+ public Quaternion mult(Quaternion vec, Quaternion store) {
+
+ if (null == vec) {
+ logger.warning("Source vector is null, null result returned.");
+ return null;
+ }
+ if (store == null) {
+ store = new Quaternion();
+ }
+
+ float x = m00 * vec.x + m10 * vec.y + m20 * vec.z + m30 * vec.w;
+ float y = m01 * vec.x + m11 * vec.y + m21 * vec.z + m31 * vec.w;
+ float z = m02 * vec.x + m12 * vec.y + m22 * vec.z + m32 * vec.w;
+ float w = m03 * vec.x + m13 * vec.y + m23 * vec.z + m33 * vec.w;
+ store.x = x;
+ store.y = y;
+ store.z = z;
+ store.w = w;
+
+ return store;
+ }
+
+ /**
+ * <code>mult</code> multiplies an array of 4 floats against this rotation
+ * matrix. The results are stored directly in the array. (vec4f x mat4f)
+ *
+ * @param vec4f
+ * float array (size 4) to multiply against the matrix.
+ * @return the vec4f for chaining.
+ */
+ public float[] mult(float[] vec4f) {
+ if (null == vec4f || vec4f.length != 4) {
+ logger.warning("invalid array given, must be nonnull and length 4");
+ return null;
+ }
+
+ float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
+
+ vec4f[0] = m00 * x + m01 * y + m02 * z + m03 * w;
+ vec4f[1] = m10 * x + m11 * y + m12 * z + m13 * w;
+ vec4f[2] = m20 * x + m21 * y + m22 * z + m23 * w;
+ vec4f[3] = m30 * x + m31 * y + m32 * z + m33 * w;
+
+ return vec4f;
+ }
+
+ /**
+ * <code>mult</code> multiplies an array of 4 floats against this rotation
+ * matrix. The results are stored directly in the array. (vec4f x mat4f)
+ *
+ * @param vec4f
+ * float array (size 4) to multiply against the matrix.
+ * @return the vec4f for chaining.
+ */
+ public float[] multAcross(float[] vec4f) {
+ if (null == vec4f || vec4f.length != 4) {
+ logger.warning("invalid array given, must be nonnull and length 4");
+ return null;
+ }
+
+ float x = vec4f[0], y = vec4f[1], z = vec4f[2], w = vec4f[3];
+
+ vec4f[0] = m00 * x + m10 * y + m20 * z + m30 * w;
+ vec4f[1] = m01 * x + m11 * y + m21 * z + m31 * w;
+ vec4f[2] = m02 * x + m12 * y + m22 * z + m32 * w;
+ vec4f[3] = m03 * x + m13 * y + m23 * z + m33 * w;
+
+ return vec4f;
+ }
+
+ /**
+ * Inverts this matrix as a new Matrix4f.
+ *
+ * @return The new inverse matrix
+ */
+ public Matrix4f invert() {
+ return invert(null);
+ }
+
+ /**
+ * Inverts this matrix and stores it in the given store.
+ *
+ * @return The store
+ */
+ public Matrix4f invert(Matrix4f store) {
+ if (store == null) {
+ store = new Matrix4f();
+ }
+
+ float fA0 = m00 * m11 - m01 * m10;
+ float fA1 = m00 * m12 - m02 * m10;
+ float fA2 = m00 * m13 - m03 * m10;
+ float fA3 = m01 * m12 - m02 * m11;
+ float fA4 = m01 * m13 - m03 * m11;
+ float fA5 = m02 * m13 - m03 * m12;
+ float fB0 = m20 * m31 - m21 * m30;
+ float fB1 = m20 * m32 - m22 * m30;
+ float fB2 = m20 * m33 - m23 * m30;
+ float fB3 = m21 * m32 - m22 * m31;
+ float fB4 = m21 * m33 - m23 * m31;
+ float fB5 = m22 * m33 - m23 * m32;
+ float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
+
+ if (FastMath.abs(fDet) <= 0f) {
+ throw new ArithmeticException("This matrix cannot be inverted");
+ }
+
+ store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
+ store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
+ store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
+ store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
+ store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
+ store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
+ store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
+ store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
+ store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
+ store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
+ store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
+ store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
+ store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
+ store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
+ store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
+ store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
+
+ float fInvDet = 1.0f / fDet;
+ store.multLocal(fInvDet);
+
+ return store;
+ }
+
+ /**
+ * Inverts this matrix locally.
+ *
+ * @return this
+ */
+ public Matrix4f invertLocal() {
+
+ float fA0 = m00 * m11 - m01 * m10;
+ float fA1 = m00 * m12 - m02 * m10;
+ float fA2 = m00 * m13 - m03 * m10;
+ float fA3 = m01 * m12 - m02 * m11;
+ float fA4 = m01 * m13 - m03 * m11;
+ float fA5 = m02 * m13 - m03 * m12;
+ float fB0 = m20 * m31 - m21 * m30;
+ float fB1 = m20 * m32 - m22 * m30;
+ float fB2 = m20 * m33 - m23 * m30;
+ float fB3 = m21 * m32 - m22 * m31;
+ float fB4 = m21 * m33 - m23 * m31;
+ float fB5 = m22 * m33 - m23 * m32;
+ float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
+
+ if (FastMath.abs(fDet) <= 0f) {
+ return zero();
+ }
+
+ float f00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
+ float f10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
+ float f20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
+ float f30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
+ float f01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
+ float f11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
+ float f21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
+ float f31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
+ float f02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
+ float f12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
+ float f22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
+ float f32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
+ float f03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
+ float f13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
+ float f23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
+ float f33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
+
+ m00 = f00;
+ m01 = f01;
+ m02 = f02;
+ m03 = f03;
+ m10 = f10;
+ m11 = f11;
+ m12 = f12;
+ m13 = f13;
+ m20 = f20;
+ m21 = f21;
+ m22 = f22;
+ m23 = f23;
+ m30 = f30;
+ m31 = f31;
+ m32 = f32;
+ m33 = f33;
+
+ float fInvDet = 1.0f / fDet;
+ multLocal(fInvDet);
+
+ return this;
+ }
+
+ /**
+ * Returns a new matrix representing the adjoint of this matrix.
+ *
+ * @return The adjoint matrix
+ */
+ public Matrix4f adjoint() {
+ return adjoint(null);
+ }
+
+ public void setTransform(Vector3f position, Vector3f scale, Matrix3f rotMat) {
+ // Ordering:
+ // 1. Scale
+ // 2. Rotate
+ // 3. Translate
+
+ // Set up final matrix with scale, rotation and translation
+ m00 = scale.x * rotMat.m00;
+ m01 = scale.y * rotMat.m01;
+ m02 = scale.z * rotMat.m02;
+ m03 = position.x;
+ m10 = scale.x * rotMat.m10;
+ m11 = scale.y * rotMat.m11;
+ m12 = scale.z * rotMat.m12;
+ m13 = position.y;
+ m20 = scale.x * rotMat.m20;
+ m21 = scale.y * rotMat.m21;
+ m22 = scale.z * rotMat.m22;
+ m23 = position.z;
+
+ // No projection term
+ m30 = 0;
+ m31 = 0;
+ m32 = 0;
+ m33 = 1;
+ }
+
+ /**
+ * Places the adjoint of this matrix in store (creates store if null.)
+ *
+ * @param store
+ * The matrix to store the result in. If null, a new matrix is created.
+ * @return store
+ */
+ public Matrix4f adjoint(Matrix4f store) {
+ if (store == null) {
+ store = new Matrix4f();
+ }
+
+ float fA0 = m00 * m11 - m01 * m10;
+ float fA1 = m00 * m12 - m02 * m10;
+ float fA2 = m00 * m13 - m03 * m10;
+ float fA3 = m01 * m12 - m02 * m11;
+ float fA4 = m01 * m13 - m03 * m11;
+ float fA5 = m02 * m13 - m03 * m12;
+ float fB0 = m20 * m31 - m21 * m30;
+ float fB1 = m20 * m32 - m22 * m30;
+ float fB2 = m20 * m33 - m23 * m30;
+ float fB3 = m21 * m32 - m22 * m31;
+ float fB4 = m21 * m33 - m23 * m31;
+ float fB5 = m22 * m33 - m23 * m32;
+
+ store.m00 = +m11 * fB5 - m12 * fB4 + m13 * fB3;
+ store.m10 = -m10 * fB5 + m12 * fB2 - m13 * fB1;
+ store.m20 = +m10 * fB4 - m11 * fB2 + m13 * fB0;
+ store.m30 = -m10 * fB3 + m11 * fB1 - m12 * fB0;
+ store.m01 = -m01 * fB5 + m02 * fB4 - m03 * fB3;
+ store.m11 = +m00 * fB5 - m02 * fB2 + m03 * fB1;
+ store.m21 = -m00 * fB4 + m01 * fB2 - m03 * fB0;
+ store.m31 = +m00 * fB3 - m01 * fB1 + m02 * fB0;
+ store.m02 = +m31 * fA5 - m32 * fA4 + m33 * fA3;
+ store.m12 = -m30 * fA5 + m32 * fA2 - m33 * fA1;
+ store.m22 = +m30 * fA4 - m31 * fA2 + m33 * fA0;
+ store.m32 = -m30 * fA3 + m31 * fA1 - m32 * fA0;
+ store.m03 = -m21 * fA5 + m22 * fA4 - m23 * fA3;
+ store.m13 = +m20 * fA5 - m22 * fA2 + m23 * fA1;
+ store.m23 = -m20 * fA4 + m21 * fA2 - m23 * fA0;
+ store.m33 = +m20 * fA3 - m21 * fA1 + m22 * fA0;
+
+ return store;
+ }
+
+ /**
+ * <code>determinant</code> generates the determinate of this matrix.
+ *
+ * @return the determinate
+ */
+ public float determinant() {
+ float fA0 = m00 * m11 - m01 * m10;
+ float fA1 = m00 * m12 - m02 * m10;
+ float fA2 = m00 * m13 - m03 * m10;
+ float fA3 = m01 * m12 - m02 * m11;
+ float fA4 = m01 * m13 - m03 * m11;
+ float fA5 = m02 * m13 - m03 * m12;
+ float fB0 = m20 * m31 - m21 * m30;
+ float fB1 = m20 * m32 - m22 * m30;
+ float fB2 = m20 * m33 - m23 * m30;
+ float fB3 = m21 * m32 - m22 * m31;
+ float fB4 = m21 * m33 - m23 * m31;
+ float fB5 = m22 * m33 - m23 * m32;
+ float fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
+ return fDet;
+ }
+
+ /**
+ * Sets all of the values in this matrix to zero.
+ *
+ * @return this matrix
+ */
+ public Matrix4f zero() {
+ m00 = m01 = m02 = m03 = 0.0f;
+ m10 = m11 = m12 = m13 = 0.0f;
+ m20 = m21 = m22 = m23 = 0.0f;
+ m30 = m31 = m32 = m33 = 0.0f;
+ return this;
+ }
+
+ public Matrix4f add(Matrix4f mat) {
+ Matrix4f result = new Matrix4f();
+ result.m00 = this.m00 + mat.m00;
+ result.m01 = this.m01 + mat.m01;
+ result.m02 = this.m02 + mat.m02;
+ result.m03 = this.m03 + mat.m03;
+ result.m10 = this.m10 + mat.m10;
+ result.m11 = this.m11 + mat.m11;
+ result.m12 = this.m12 + mat.m12;
+ result.m13 = this.m13 + mat.m13;
+ result.m20 = this.m20 + mat.m20;
+ result.m21 = this.m21 + mat.m21;
+ result.m22 = this.m22 + mat.m22;
+ result.m23 = this.m23 + mat.m23;
+ result.m30 = this.m30 + mat.m30;
+ result.m31 = this.m31 + mat.m31;
+ result.m32 = this.m32 + mat.m32;
+ result.m33 = this.m33 + mat.m33;
+ return result;
+ }
+
+ /**
+ * <code>add</code> adds the values of a parameter matrix to this matrix.
+ *
+ * @param mat
+ * the matrix to add to this.
+ */
+ public void addLocal(Matrix4f mat) {
+ m00 += mat.m00;
+ m01 += mat.m01;
+ m02 += mat.m02;
+ m03 += mat.m03;
+ m10 += mat.m10;
+ m11 += mat.m11;
+ m12 += mat.m12;
+ m13 += mat.m13;
+ m20 += mat.m20;
+ m21 += mat.m21;
+ m22 += mat.m22;
+ m23 += mat.m23;
+ m30 += mat.m30;
+ m31 += mat.m31;
+ m32 += mat.m32;
+ m33 += mat.m33;
+ }
+
+ public Vector3f toTranslationVector() {
+ return new Vector3f(m03, m13, m23);
+ }
+
+ public void toTranslationVector(Vector3f vector) {
+ vector.set(m03, m13, m23);
+ }
+
+ public Quaternion toRotationQuat() {
+ Quaternion quat = new Quaternion();
+ quat.fromRotationMatrix(toRotationMatrix());
+ return quat;
+ }
+
+ public void toRotationQuat(Quaternion q) {
+ q.fromRotationMatrix(toRotationMatrix());
+ }
+
+ public Matrix3f toRotationMatrix() {
+ return new Matrix3f(m00, m01, m02, m10, m11, m12, m20, m21, m22);
+
+ }
+
+ public void toRotationMatrix(Matrix3f mat) {
+ mat.m00 = m00;
+ mat.m01 = m01;
+ mat.m02 = m02;
+ mat.m10 = m10;
+ mat.m11 = m11;
+ mat.m12 = m12;
+ mat.m20 = m20;
+ mat.m21 = m21;
+ mat.m22 = m22;
+
+ }
+
+ public void setScale(float x, float y, float z) {
+ m00 *= x;
+ m11 *= y;
+ m22 *= z;
+ }
+
+ public void setScale(Vector3f scale) {
+ m00 *= scale.x;
+ m11 *= scale.y;
+ m22 *= scale.z;
+ }
+
+ /**
+ * <code>setTranslation</code> will set the matrix's translation values.
+ *
+ * @param translation
+ * the new values for the translation.
+ * @throws JmeException
+ * if translation is not size 3.
+ */
+ public void setTranslation(float[] translation) {
+ if (translation.length != 3) {
+ throw new IllegalArgumentException(
+ "Translation size must be 3.");
+ }
+ m03 = translation[0];
+ m13 = translation[1];
+ m23 = translation[2];
+ }
+
+ /**
+ * <code>setTranslation</code> will set the matrix's translation values.
+ *
+ * @param x
+ * value of the translation on the x axis
+ * @param y
+ * value of the translation on the y axis
+ * @param z
+ * value of the translation on the z axis
+ */
+ public void setTranslation(float x, float y, float z) {
+ m03 = x;
+ m13 = y;
+ m23 = z;
+ }
+
+ /**
+ * <code>setTranslation</code> will set the matrix's translation values.
+ *
+ * @param translation
+ * the new values for the translation.
+ */
+ public void setTranslation(Vector3f translation) {
+ m03 = translation.x;
+ m13 = translation.y;
+ m23 = translation.z;
+ }
+
+ /**
+ * <code>setInverseTranslation</code> will set the matrix's inverse
+ * translation values.
+ *
+ * @param translation
+ * the new values for the inverse translation.
+ * @throws JmeException
+ * if translation is not size 3.
+ */
+ public void setInverseTranslation(float[] translation) {
+ if (translation.length != 3) {
+ throw new IllegalArgumentException(
+ "Translation size must be 3.");
+ }
+ m03 = -translation[0];
+ m13 = -translation[1];
+ m23 = -translation[2];
+ }
+
+ /**
+ * <code>angleRotation</code> sets this matrix to that of a rotation about
+ * three axes (x, y, z). Where each axis has a specified rotation in
+ * degrees. These rotations are expressed in a single <code>Vector3f</code>
+ * object.
+ *
+ * @param angles
+ * the angles to rotate.
+ */
+ public void angleRotation(Vector3f angles) {
+ float angle;
+ float sr, sp, sy, cr, cp, cy;
+
+ angle = (angles.z * FastMath.DEG_TO_RAD);
+ sy = FastMath.sin(angle);
+ cy = FastMath.cos(angle);
+ angle = (angles.y * FastMath.DEG_TO_RAD);
+ sp = FastMath.sin(angle);
+ cp = FastMath.cos(angle);
+ angle = (angles.x * FastMath.DEG_TO_RAD);
+ sr = FastMath.sin(angle);
+ cr = FastMath.cos(angle);
+
+ // matrix = (Z * Y) * X
+ m00 = cp * cy;
+ m10 = cp * sy;
+ m20 = -sp;
+ m01 = sr * sp * cy + cr * -sy;
+ m11 = sr * sp * sy + cr * cy;
+ m21 = sr * cp;
+ m02 = (cr * sp * cy + -sr * -sy);
+ m12 = (cr * sp * sy + -sr * cy);
+ m22 = cr * cp;
+ m03 = 0.0f;
+ m13 = 0.0f;
+ m23 = 0.0f;
+ }
+
+ /**
+ * <code>setRotationQuaternion</code> builds a rotation from a
+ * <code>Quaternion</code>.
+ *
+ * @param quat
+ * the quaternion to build the rotation from.
+ * @throws NullPointerException
+ * if quat is null.
+ */
+ public void setRotationQuaternion(Quaternion quat) {
+ quat.toRotationMatrix(this);
+ }
+
+ /**
+ * <code>setInverseRotationRadians</code> builds an inverted rotation from
+ * Euler angles that are in radians.
+ *
+ * @param angles
+ * the Euler angles in radians.
+ * @throws JmeException
+ * if angles is not size 3.
+ */
+ public void setInverseRotationRadians(float[] angles) {
+ if (angles.length != 3) {
+ throw new IllegalArgumentException(
+ "Angles must be of size 3.");
+ }
+ double cr = FastMath.cos(angles[0]);
+ double sr = FastMath.sin(angles[0]);
+ double cp = FastMath.cos(angles[1]);
+ double sp = FastMath.sin(angles[1]);
+ double cy = FastMath.cos(angles[2]);
+ double sy = FastMath.sin(angles[2]);
+
+ m00 = (float) (cp * cy);
+ m10 = (float) (cp * sy);
+ m20 = (float) (-sp);
+
+ double srsp = sr * sp;
+ double crsp = cr * sp;
+
+ m01 = (float) (srsp * cy - cr * sy);
+ m11 = (float) (srsp * sy + cr * cy);
+ m21 = (float) (sr * cp);
+
+ m02 = (float) (crsp * cy + sr * sy);
+ m12 = (float) (crsp * sy - sr * cy);
+ m22 = (float) (cr * cp);
+ }
+
+ /**
+ * <code>setInverseRotationDegrees</code> builds an inverted rotation from
+ * Euler angles that are in degrees.
+ *
+ * @param angles
+ * the Euler angles in degrees.
+ * @throws JmeException
+ * if angles is not size 3.
+ */
+ public void setInverseRotationDegrees(float[] angles) {
+ if (angles.length != 3) {
+ throw new IllegalArgumentException(
+ "Angles must be of size 3.");
+ }
+ float vec[] = new float[3];
+ vec[0] = (angles[0] * FastMath.RAD_TO_DEG);
+ vec[1] = (angles[1] * FastMath.RAD_TO_DEG);
+ vec[2] = (angles[2] * FastMath.RAD_TO_DEG);
+ setInverseRotationRadians(vec);
+ }
+
+ /**
+ *
+ * <code>inverseTranslateVect</code> translates a given Vector3f by the
+ * translation part of this matrix.
+ *
+ * @param vec
+ * the Vector3f data to be translated.
+ * @throws JmeException
+ * if the size of the Vector3f is not 3.
+ */
+ public void inverseTranslateVect(float[] vec) {
+ if (vec.length != 3) {
+ throw new IllegalArgumentException(
+ "vec must be of size 3.");
+ }
+
+ vec[0] = vec[0] - m03;
+ vec[1] = vec[1] - m13;
+ vec[2] = vec[2] - m23;
+ }
+
+ /**
+ *
+ * <code>inverseTranslateVect</code> translates a given Vector3f by the
+ * translation part of this matrix.
+ *
+ * @param data
+ * the Vector3f to be translated.
+ * @throws JmeException
+ * if the size of the Vector3f is not 3.
+ */
+ public void inverseTranslateVect(Vector3f data) {
+ data.x -= m03;
+ data.y -= m13;
+ data.z -= m23;
+ }
+
+ /**
+ *
+ * <code>inverseTranslateVect</code> translates a given Vector3f by the
+ * translation part of this matrix.
+ *
+ * @param data
+ * the Vector3f to be translated.
+ * @throws JmeException
+ * if the size of the Vector3f is not 3.
+ */
+ public void translateVect(Vector3f data) {
+ data.x += m03;
+ data.y += m13;
+ data.z += m23;
+ }
+
+ /**
+ *
+ * <code>inverseRotateVect</code> rotates a given Vector3f by the rotation
+ * part of this matrix.
+ *
+ * @param vec
+ * the Vector3f to be rotated.
+ */
+ public void inverseRotateVect(Vector3f vec) {
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+
+ vec.x = vx * m00 + vy * m10 + vz * m20;
+ vec.y = vx * m01 + vy * m11 + vz * m21;
+ vec.z = vx * m02 + vy * m12 + vz * m22;
+ }
+
+ public void rotateVect(Vector3f vec) {
+ float vx = vec.x, vy = vec.y, vz = vec.z;
+
+ vec.x = vx * m00 + vy * m01 + vz * m02;
+ vec.y = vx * m10 + vy * m11 + vz * m12;
+ vec.z = vx * m20 + vy * m21 + vz * m22;
+ }
+
+ /**
+ * <code>toString</code> returns the string representation of this object.
+ * It is in a format of a 4x4 matrix. For example, an identity matrix would
+ * be represented by the following string. com.jme.math.Matrix3f <br>[<br>
+ * 1.0 0.0 0.0 0.0 <br>
+ * 0.0 1.0 0.0 0.0 <br>
+ * 0.0 0.0 1.0 0.0 <br>
+ * 0.0 0.0 0.0 1.0 <br>]<br>
+ *
+ * @return the string representation of this object.
+ */
+ @Override
+ public String toString() {
+ StringBuilder result = new StringBuilder("Matrix4f\n[\n");
+ result.append(" ");
+ result.append(m00);
+ result.append(" ");
+ result.append(m01);
+ result.append(" ");
+ result.append(m02);
+ result.append(" ");
+ result.append(m03);
+ result.append(" \n");
+ result.append(" ");
+ result.append(m10);
+ result.append(" ");
+ result.append(m11);
+ result.append(" ");
+ result.append(m12);
+ result.append(" ");
+ result.append(m13);
+ result.append(" \n");
+ result.append(" ");
+ result.append(m20);
+ result.append(" ");
+ result.append(m21);
+ result.append(" ");
+ result.append(m22);
+ result.append(" ");
+ result.append(m23);
+ result.append(" \n");
+ result.append(" ");
+ result.append(m30);
+ result.append(" ");
+ result.append(m31);
+ result.append(" ");
+ result.append(m32);
+ result.append(" ");
+ result.append(m33);
+ result.append(" \n]");
+ return result.toString();
+ }
+
+ /**
+ *
+ * <code>hashCode</code> returns the hash code value as an integer and is
+ * supported for the benefit of hashing based collection classes such as
+ * Hashtable, HashMap, HashSet etc.
+ *
+ * @return the hashcode for this instance of Matrix4f.
+ * @see java.lang.Object#hashCode()
+ */
+ @Override
+ public int hashCode() {
+ int hash = 37;
+ hash = 37 * hash + Float.floatToIntBits(m00);
+ hash = 37 * hash + Float.floatToIntBits(m01);
+ hash = 37 * hash + Float.floatToIntBits(m02);
+ hash = 37 * hash + Float.floatToIntBits(m03);
+
+ hash = 37 * hash + Float.floatToIntBits(m10);
+ hash = 37 * hash + Float.floatToIntBits(m11);
+ hash = 37 * hash + Float.floatToIntBits(m12);
+ hash = 37 * hash + Float.floatToIntBits(m13);
+
+ hash = 37 * hash + Float.floatToIntBits(m20);
+ hash = 37 * hash + Float.floatToIntBits(m21);
+ hash = 37 * hash + Float.floatToIntBits(m22);
+ hash = 37 * hash + Float.floatToIntBits(m23);
+
+ hash = 37 * hash + Float.floatToIntBits(m30);
+ hash = 37 * hash + Float.floatToIntBits(m31);
+ hash = 37 * hash + Float.floatToIntBits(m32);
+ hash = 37 * hash + Float.floatToIntBits(m33);
+
+ return hash;
+ }
+
+ /**
+ * are these two matrices the same? they are is they both have the same mXX values.
+ *
+ * @param o
+ * the object to compare for equality
+ * @return true if they are equal
+ */
+ @Override
+ public boolean equals(Object o) {
+ if (!(o instanceof Matrix4f) || o == null) {
+ return false;
+ }
+
+ if (this == o) {
+ return true;
+ }
+
+ Matrix4f comp = (Matrix4f) o;
+ if (Float.compare(m00, comp.m00) != 0) {
+ return false;
+ }
+ if (Float.compare(m01, comp.m01) != 0) {
+ return false;
+ }
+ if (Float.compare(m02, comp.m02) != 0) {
+ return false;
+ }
+ if (Float.compare(m03, comp.m03) != 0) {
+ return false;
+ }
+
+ if (Float.compare(m10, comp.m10) != 0) {
+ return false;
+ }
+ if (Float.compare(m11, comp.m11) != 0) {
+ return false;
+ }
+ if (Float.compare(m12, comp.m12) != 0) {
+ return false;
+ }
+ if (Float.compare(m13, comp.m13) != 0) {
+ return false;
+ }
+
+ if (Float.compare(m20, comp.m20) != 0) {
+ return false;
+ }
+ if (Float.compare(m21, comp.m21) != 0) {
+ return false;
+ }
+ if (Float.compare(m22, comp.m22) != 0) {
+ return false;
+ }
+ if (Float.compare(m23, comp.m23) != 0) {
+ return false;
+ }
+
+ if (Float.compare(m30, comp.m30) != 0) {
+ return false;
+ }
+ if (Float.compare(m31, comp.m31) != 0) {
+ return false;
+ }
+ if (Float.compare(m32, comp.m32) != 0) {
+ return false;
+ }
+ if (Float.compare(m33, comp.m33) != 0) {
+ return false;
+ }
+
+ return true;
+ }
+
+ public void write(JmeExporter e) throws IOException {
+ OutputCapsule cap = e.getCapsule(this);
+ cap.write(m00, "m00", 1);
+ cap.write(m01, "m01", 0);
+ cap.write(m02, "m02", 0);
+ cap.write(m03, "m03", 0);
+ cap.write(m10, "m10", 0);
+ cap.write(m11, "m11", 1);
+ cap.write(m12, "m12", 0);
+ cap.write(m13, "m13", 0);
+ cap.write(m20, "m20", 0);
+ cap.write(m21, "m21", 0);
+ cap.write(m22, "m22", 1);
+ cap.write(m23, "m23", 0);
+ cap.write(m30, "m30", 0);
+ cap.write(m31, "m31", 0);
+ cap.write(m32, "m32", 0);
+ cap.write(m33, "m33", 1);
+ }
+
+ public void read(JmeImporter e) throws IOException {
+ InputCapsule cap = e.getCapsule(this);
+ m00 = cap.readFloat("m00", 1);
+ m01 = cap.readFloat("m01", 0);
+ m02 = cap.readFloat("m02", 0);
+ m03 = cap.readFloat("m03", 0);
+ m10 = cap.readFloat("m10", 0);
+ m11 = cap.readFloat("m11", 1);
+ m12 = cap.readFloat("m12", 0);
+ m13 = cap.readFloat("m13", 0);
+ m20 = cap.readFloat("m20", 0);
+ m21 = cap.readFloat("m21", 0);
+ m22 = cap.readFloat("m22", 1);
+ m23 = cap.readFloat("m23", 0);
+ m30 = cap.readFloat("m30", 0);
+ m31 = cap.readFloat("m31", 0);
+ m32 = cap.readFloat("m32", 0);
+ m33 = cap.readFloat("m33", 1);
+ }
+
+ /**
+ * @return true if this matrix is identity
+ */
+ public boolean isIdentity() {
+ return (m00 == 1 && m01 == 0 && m02 == 0 && m03 == 0)
+ && (m10 == 0 && m11 == 1 && m12 == 0 && m13 == 0)
+ && (m20 == 0 && m21 == 0 && m22 == 1 && m23 == 0)
+ && (m30 == 0 && m31 == 0 && m32 == 0 && m33 == 1);
+ }
+
+ /**
+ * Apply a scale to this matrix.
+ *
+ * @param scale
+ * the scale to apply
+ */
+ public void scale(Vector3f scale) {
+ m00 *= scale.getX();
+ m10 *= scale.getX();
+ m20 *= scale.getX();
+ m30 *= scale.getX();
+ m01 *= scale.getY();
+ m11 *= scale.getY();
+ m21 *= scale.getY();
+ m31 *= scale.getY();
+ m02 *= scale.getZ();
+ m12 *= scale.getZ();
+ m22 *= scale.getZ();
+ m32 *= scale.getZ();
+ }
+
+ static boolean equalIdentity(Matrix4f mat) {
+ if (Math.abs(mat.m00 - 1) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m11 - 1) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m22 - 1) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m33 - 1) > 1e-4) {
+ return false;
+ }
+
+ if (Math.abs(mat.m01) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m02) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m03) > 1e-4) {
+ return false;
+ }
+
+ if (Math.abs(mat.m10) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m12) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m13) > 1e-4) {
+ return false;
+ }
+
+ if (Math.abs(mat.m20) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m21) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m23) > 1e-4) {
+ return false;
+ }
+
+ if (Math.abs(mat.m30) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m31) > 1e-4) {
+ return false;
+ }
+ if (Math.abs(mat.m32) > 1e-4) {
+ return false;
+ }
+
+ return true;
+ }
+
+ // XXX: This tests more solid than converting the q to a matrix and multiplying... why?
+ public void multLocal(Quaternion rotation) {
+ Vector3f axis = new Vector3f();
+ float angle = rotation.toAngleAxis(axis);
+ Matrix4f matrix4f = new Matrix4f();
+ matrix4f.fromAngleAxis(angle, axis);
+ multLocal(matrix4f);
+ }
+
+ @Override
+ public Matrix4f clone() {
+ try {
+ return (Matrix4f) super.clone();
+ } catch (CloneNotSupportedException e) {
+ throw new AssertionError(); // can not happen
+ }
+ }
+}