aboutsummaryrefslogtreecommitdiff
path: root/engine/src/core/com/jme3/math/Ray.java
diff options
context:
space:
mode:
Diffstat (limited to 'engine/src/core/com/jme3/math/Ray.java')
-rw-r--r--engine/src/core/com/jme3/math/Ray.java521
1 files changed, 521 insertions, 0 deletions
diff --git a/engine/src/core/com/jme3/math/Ray.java b/engine/src/core/com/jme3/math/Ray.java
new file mode 100644
index 0000000..f363613
--- /dev/null
+++ b/engine/src/core/com/jme3/math/Ray.java
@@ -0,0 +1,521 @@
+/*
+ * Copyright (c) 2009-2010 jMonkeyEngine
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * * Neither the name of 'jMonkeyEngine' nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+package com.jme3.math;
+
+import com.jme3.bounding.BoundingVolume;
+import com.jme3.collision.Collidable;
+import com.jme3.collision.CollisionResult;
+import com.jme3.collision.CollisionResults;
+import com.jme3.collision.UnsupportedCollisionException;
+import com.jme3.export.*;
+import com.jme3.util.TempVars;
+import java.io.IOException;
+
+/**
+ * <code>Ray</code> defines a line segment which has an origin and a direction.
+ * That is, a point and an infinite ray is cast from this point. The ray is
+ * defined by the following equation: R(t) = origin + t*direction for t >= 0.
+ *
+ * @author Mark Powell
+ * @author Joshua Slack
+ */
+public final class Ray implements Savable, Cloneable, Collidable, java.io.Serializable {
+
+ static final long serialVersionUID = 1;
+
+ /**
+ * The ray's begining point.
+ */
+ public Vector3f origin = new Vector3f();
+
+ /**
+ * The direction of the ray.
+ */
+ public Vector3f direction = new Vector3f(0, 0, 1);
+
+
+ public float limit = Float.POSITIVE_INFINITY;
+
+ /**
+ * Constructor instantiates a new <code>Ray</code> object. As default, the
+ * origin is (0,0,0) and the direction is (0,0,1).
+ *
+ */
+ public Ray() {
+ }
+
+ /**
+ * Constructor instantiates a new <code>Ray</code> object. The origin and
+ * direction are given.
+ * @param origin the origin of the ray.
+ * @param direction the direction the ray travels in.
+ */
+ public Ray(Vector3f origin, Vector3f direction) {
+ setOrigin(origin);
+ setDirection(direction);
+ }
+
+ /**
+ * <code>intersect</code> determines if the Ray intersects a triangle.
+ * @param t the Triangle to test against.
+ * @return true if the ray collides.
+ */
+// public boolean intersect(Triangle t) {
+// return intersect(t.get(0), t.get(1), t.get(2));
+// }
+ /**
+ * <code>intersect</code> determines if the Ray intersects a triangle
+ * defined by the specified points.
+ *
+ * @param v0
+ * first point of the triangle.
+ * @param v1
+ * second point of the triangle.
+ * @param v2
+ * third point of the triangle.
+ * @return true if the ray collides.
+ */
+// public boolean intersect(Vector3f v0,Vector3f v1,Vector3f v2){
+// return intersectWhere(v0, v1, v2, null);
+// }
+ /**
+ * <code>intersectWhere</code> determines if the Ray intersects a triangle. It then
+ * stores the point of intersection in the given loc vector
+ * @param t the Triangle to test against.
+ * @param loc
+ * storage vector to save the collision point in (if the ray
+ * collides)
+ * @return true if the ray collides.
+ */
+ public boolean intersectWhere(Triangle t, Vector3f loc) {
+ return intersectWhere(t.get(0), t.get(1), t.get(2), loc);
+ }
+
+ /**
+ * <code>intersectWhere</code> determines if the Ray intersects a triangle
+ * defined by the specified points and if so it stores the point of
+ * intersection in the given loc vector.
+ *
+ * @param v0
+ * first point of the triangle.
+ * @param v1
+ * second point of the triangle.
+ * @param v2
+ * third point of the triangle.
+ * @param loc
+ * storage vector to save the collision point in (if the ray
+ * collides) if null, only boolean is calculated.
+ * @return true if the ray collides.
+ */
+ public boolean intersectWhere(Vector3f v0, Vector3f v1, Vector3f v2,
+ Vector3f loc) {
+ return intersects(v0, v1, v2, loc, false, false);
+ }
+
+ /**
+ * <code>intersectWherePlanar</code> determines if the Ray intersects a
+ * triangle and if so it stores the point of
+ * intersection in the given loc vector as t, u, v where t is the distance
+ * from the origin to the point of intersection and u,v is the intersection
+ * point in terms of the triangle plane.
+ *
+ * @param t the Triangle to test against.
+ * @param loc
+ * storage vector to save the collision point in (if the ray
+ * collides) as t, u, v
+ * @return true if the ray collides.
+ */
+ public boolean intersectWherePlanar(Triangle t, Vector3f loc) {
+ return intersectWherePlanar(t.get(0), t.get(1), t.get(2), loc);
+ }
+
+ /**
+ * <code>intersectWherePlanar</code> determines if the Ray intersects a
+ * triangle defined by the specified points and if so it stores the point of
+ * intersection in the given loc vector as t, u, v where t is the distance
+ * from the origin to the point of intersection and u,v is the intersection
+ * point in terms of the triangle plane.
+ *
+ * @param v0
+ * first point of the triangle.
+ * @param v1
+ * second point of the triangle.
+ * @param v2
+ * third point of the triangle.
+ * @param loc
+ * storage vector to save the collision point in (if the ray
+ * collides) as t, u, v
+ * @return true if the ray collides.
+ */
+ public boolean intersectWherePlanar(Vector3f v0, Vector3f v1, Vector3f v2,
+ Vector3f loc) {
+ return intersects(v0, v1, v2, loc, true, false);
+ }
+
+ /**
+ * <code>intersects</code> does the actual intersection work.
+ *
+ * @param v0
+ * first point of the triangle.
+ * @param v1
+ * second point of the triangle.
+ * @param v2
+ * third point of the triangle.
+ * @param store
+ * storage vector - if null, no intersection is calc'd
+ * @param doPlanar
+ * true if we are calcing planar results.
+ * @param quad
+ * @return true if ray intersects triangle
+ */
+ private boolean intersects(Vector3f v0, Vector3f v1, Vector3f v2,
+ Vector3f store, boolean doPlanar, boolean quad) {
+ TempVars vars = TempVars.get();
+
+ Vector3f tempVa = vars.vect1,
+ tempVb = vars.vect2,
+ tempVc = vars.vect3,
+ tempVd = vars.vect4;
+
+ Vector3f diff = origin.subtract(v0, tempVa);
+ Vector3f edge1 = v1.subtract(v0, tempVb);
+ Vector3f edge2 = v2.subtract(v0, tempVc);
+ Vector3f norm = edge1.cross(edge2, tempVd);
+
+ float dirDotNorm = direction.dot(norm);
+ float sign;
+ if (dirDotNorm > FastMath.FLT_EPSILON) {
+ sign = 1;
+ } else if (dirDotNorm < -FastMath.FLT_EPSILON) {
+ sign = -1f;
+ dirDotNorm = -dirDotNorm;
+ } else {
+ // ray and triangle/quad are parallel
+ vars.release();
+ return false;
+ }
+
+ float dirDotDiffxEdge2 = sign * direction.dot(diff.cross(edge2, edge2));
+ if (dirDotDiffxEdge2 >= 0.0f) {
+ float dirDotEdge1xDiff = sign
+ * direction.dot(edge1.crossLocal(diff));
+
+ if (dirDotEdge1xDiff >= 0.0f) {
+ if (!quad ? dirDotDiffxEdge2 + dirDotEdge1xDiff <= dirDotNorm : dirDotEdge1xDiff <= dirDotNorm) {
+ float diffDotNorm = -sign * diff.dot(norm);
+ if (diffDotNorm >= 0.0f) {
+ // this method always returns
+ vars.release();
+
+ // ray intersects triangle
+ // if storage vector is null, just return true,
+ if (store == null) {
+ return true;
+ }
+
+ // else fill in.
+ float inv = 1f / dirDotNorm;
+ float t = diffDotNorm * inv;
+ if (!doPlanar) {
+ store.set(origin).addLocal(direction.x * t,
+ direction.y * t, direction.z * t);
+ } else {
+ // these weights can be used to determine
+ // interpolated values, such as texture coord.
+ // eg. texcoord s,t at intersection point:
+ // s = w0*s0 + w1*s1 + w2*s2;
+ // t = w0*t0 + w1*t1 + w2*t2;
+ float w1 = dirDotDiffxEdge2 * inv;
+ float w2 = dirDotEdge1xDiff * inv;
+ //float w0 = 1.0f - w1 - w2;
+ store.set(t, w1, w2);
+ }
+ return true;
+ }
+ }
+ }
+ }
+ vars.release();
+ return false;
+ }
+
+ public float intersects(Vector3f v0, Vector3f v1, Vector3f v2) {
+ float edge1X = v1.x - v0.x;
+ float edge1Y = v1.y - v0.y;
+ float edge1Z = v1.z - v0.z;
+
+ float edge2X = v2.x - v0.x;
+ float edge2Y = v2.y - v0.y;
+ float edge2Z = v2.z - v0.z;
+
+ float normX = ((edge1Y * edge2Z) - (edge1Z * edge2Y));
+ float normY = ((edge1Z * edge2X) - (edge1X * edge2Z));
+ float normZ = ((edge1X * edge2Y) - (edge1Y * edge2X));
+
+ float dirDotNorm = direction.x * normX + direction.y * normY + direction.z * normZ;
+
+ float diffX = origin.x - v0.x;
+ float diffY = origin.y - v0.y;
+ float diffZ = origin.z - v0.z;
+
+ float sign;
+ if (dirDotNorm > FastMath.FLT_EPSILON) {
+ sign = 1;
+ } else if (dirDotNorm < -FastMath.FLT_EPSILON) {
+ sign = -1f;
+ dirDotNorm = -dirDotNorm;
+ } else {
+ // ray and triangle/quad are parallel
+ return Float.POSITIVE_INFINITY;
+ }
+
+ float diffEdge2X = ((diffY * edge2Z) - (diffZ * edge2Y));
+ float diffEdge2Y = ((diffZ * edge2X) - (diffX * edge2Z));
+ float diffEdge2Z = ((diffX * edge2Y) - (diffY * edge2X));
+
+ float dirDotDiffxEdge2 = sign * (direction.x * diffEdge2X
+ + direction.y * diffEdge2Y
+ + direction.z * diffEdge2Z);
+
+ if (dirDotDiffxEdge2 >= 0.0f) {
+ diffEdge2X = ((edge1Y * diffZ) - (edge1Z * diffY));
+ diffEdge2Y = ((edge1Z * diffX) - (edge1X * diffZ));
+ diffEdge2Z = ((edge1X * diffY) - (edge1Y * diffX));
+
+ float dirDotEdge1xDiff = sign * (direction.x * diffEdge2X
+ + direction.y * diffEdge2Y
+ + direction.z * diffEdge2Z);
+
+ if (dirDotEdge1xDiff >= 0.0f) {
+ if (dirDotDiffxEdge2 + dirDotEdge1xDiff <= dirDotNorm) {
+ float diffDotNorm = -sign * (diffX * normX + diffY * normY + diffZ * normZ);
+ if (diffDotNorm >= 0.0f) {
+ // ray intersects triangle
+ // fill in.
+ float inv = 1f / dirDotNorm;
+ float t = diffDotNorm * inv;
+ return t;
+ }
+ }
+ }
+ }
+
+ return Float.POSITIVE_INFINITY;
+ }
+
+ /**
+ * <code>intersectWherePlanar</code> determines if the Ray intersects a
+ * quad defined by the specified points and if so it stores the point of
+ * intersection in the given loc vector as t, u, v where t is the distance
+ * from the origin to the point of intersection and u,v is the intersection
+ * point in terms of the quad plane.
+ * One edge of the quad is [v0,v1], another one [v0,v2]. The behaviour thus is like
+ * {@link #intersectWherePlanar(Vector3f, Vector3f, Vector3f, Vector3f)} except for
+ * the extended area, which is equivalent to the union of the triangles [v0,v1,v2]
+ * and [-v0+v1+v2,v1,v2].
+ *
+ * @param v0
+ * top left point of the quad.
+ * @param v1
+ * top right point of the quad.
+ * @param v2
+ * bottom left point of the quad.
+ * @param loc
+ * storage vector to save the collision point in (if the ray
+ * collides) as t, u, v
+ * @return true if the ray collides with the quad.
+ */
+ public boolean intersectWherePlanarQuad(Vector3f v0, Vector3f v1, Vector3f v2,
+ Vector3f loc) {
+ return intersects(v0, v1, v2, loc, true, true);
+ }
+
+ /**
+ *
+ * @param p
+ * @param loc
+ * @return true if the ray collides with the given Plane
+ */
+ public boolean intersectsWherePlane(Plane p, Vector3f loc) {
+ float denominator = p.getNormal().dot(direction);
+
+ if (denominator > -FastMath.FLT_EPSILON && denominator < FastMath.FLT_EPSILON) {
+ return false; // coplanar
+ }
+ float numerator = -(p.getNormal().dot(origin) - p.getConstant());
+ float ratio = numerator / denominator;
+
+ if (ratio < FastMath.FLT_EPSILON) {
+ return false; // intersects behind origin
+ }
+ loc.set(direction).multLocal(ratio).addLocal(origin);
+
+ return true;
+ }
+
+ public int collideWith(Collidable other, CollisionResults results) {
+ if (other instanceof BoundingVolume) {
+ BoundingVolume bv = (BoundingVolume) other;
+ return bv.collideWith(this, results);
+ } else if (other instanceof AbstractTriangle) {
+ AbstractTriangle tri = (AbstractTriangle) other;
+ float d = intersects(tri.get1(), tri.get2(), tri.get3());
+ if (Float.isInfinite(d) || Float.isNaN(d)) {
+ return 0;
+ }
+
+ Vector3f point = new Vector3f(direction).multLocal(d).addLocal(origin);
+ results.addCollision(new CollisionResult(point, d));
+ return 1;
+ } else {
+ throw new UnsupportedCollisionException();
+ }
+ }
+
+ public float distanceSquared(Vector3f point) {
+ TempVars vars = TempVars.get();
+
+ Vector3f tempVa = vars.vect1,
+ tempVb = vars.vect2;
+
+ point.subtract(origin, tempVa);
+ float rayParam = direction.dot(tempVa);
+ if (rayParam > 0) {
+ origin.add(direction.mult(rayParam, tempVb), tempVb);
+ } else {
+ tempVb.set(origin);
+ rayParam = 0.0f;
+ }
+
+ tempVb.subtract(point, tempVa);
+ float len = tempVa.lengthSquared();
+ vars.release();
+ return len;
+ }
+
+ /**
+ *
+ * <code>getOrigin</code> retrieves the origin point of the ray.
+ *
+ * @return the origin of the ray.
+ */
+ public Vector3f getOrigin() {
+ return origin;
+ }
+
+ /**
+ *
+ * <code>setOrigin</code> sets the origin of the ray.
+ * @param origin the origin of the ray.
+ */
+ public void setOrigin(Vector3f origin) {
+ this.origin.set(origin);
+ }
+
+ /**
+ * <code>getLimit</code> returns the limit of the ray, aka the length.
+ * If the limit is not infinity, then this ray is a line with length <code>
+ * limit</code>.
+ *
+ * @return the limit of the ray, aka the length.
+ */
+ public float getLimit() {
+ return limit;
+ }
+
+ /**
+ * <code>setLimit</code> sets the limit of the ray.
+ * @param limit the limit of the ray.
+ * @see Ray#getLimit()
+ */
+ public void setLimit(float limit) {
+ this.limit = limit;
+ }
+
+ /**
+ *
+ * <code>getDirection</code> retrieves the direction vector of the ray.
+ * @return the direction of the ray.
+ */
+ public Vector3f getDirection() {
+ return direction;
+ }
+
+ /**
+ *
+ * <code>setDirection</code> sets the direction vector of the ray.
+ * @param direction the direction of the ray.
+ */
+ public void setDirection(Vector3f direction) {
+ assert direction.isUnitVector();
+ this.direction.set(direction);
+ }
+
+ /**
+ * Copies information from a source ray into this ray.
+ *
+ * @param source
+ * the ray to copy information from
+ */
+ public void set(Ray source) {
+ origin.set(source.getOrigin());
+ direction.set(source.getDirection());
+ }
+
+ public String toString() {
+ return getClass().getSimpleName() + " [Origin: " + origin + ", Direction: " + direction + "]";
+ }
+
+ public void write(JmeExporter e) throws IOException {
+ OutputCapsule capsule = e.getCapsule(this);
+ capsule.write(origin, "origin", Vector3f.ZERO);
+ capsule.write(direction, "direction", Vector3f.ZERO);
+ }
+
+ public void read(JmeImporter e) throws IOException {
+ InputCapsule capsule = e.getCapsule(this);
+ origin = (Vector3f) capsule.readSavable("origin", Vector3f.ZERO.clone());
+ direction = (Vector3f) capsule.readSavable("direction", Vector3f.ZERO.clone());
+ }
+
+ @Override
+ public Ray clone() {
+ try {
+ Ray r = (Ray) super.clone();
+ r.direction = direction.clone();
+ r.origin = origin.clone();
+ return r;
+ } catch (CloneNotSupportedException e) {
+ throw new AssertionError();
+ }
+ }
+}