aboutsummaryrefslogtreecommitdiff
path: root/engine/src/core/com/jme3/scene/shape/Surface.java
blob: 77d259bd5e1594961d830a09fceeb1cc047e8605 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
package com.jme3.scene.shape;

import com.jme3.math.CurveAndSurfaceMath;
import com.jme3.math.FastMath;
import com.jme3.math.Spline.SplineType;
import com.jme3.math.Vector3f;
import com.jme3.math.Vector4f;
import com.jme3.scene.Mesh;
import com.jme3.scene.VertexBuffer;
import com.jme3.util.BufferUtils;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * This class represents a surface described by knots, weights and control points.
 * Currently the following types are supported:
 * a) NURBS
 * @author Marcin Roguski (Kealthas)
 */
public class Surface extends Mesh {

    private SplineType type;						//the type of the surface
    private List<List<Vector4f>> controlPoints;		//space control points and their weights
    private List<Float>[] knots;					//knots of the surface
    private int basisUFunctionDegree;				//the degree of basis U function
    private int basisVFunctionDegree;				//the degree of basis V function
    private int uSegments;							//the amount of U segments
    private int vSegments;							//the amount of V segments

    /**
     * Constructor. Constructs required surface.
     * @param controlPoints space control points
     * @param nurbKnots knots of the surface
     * @param uSegments the amount of U segments
     * @param vSegments the amount of V segments
     * @param basisUFunctionDegree the degree of basis U function
     * @param basisVFunctionDegree the degree of basis V function
     */
    private Surface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots,
            int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree) {
        this.validateInputData(controlPoints, nurbKnots, uSegments, vSegments);
        this.type = SplineType.Nurb;
        this.uSegments = uSegments;
        this.vSegments = vSegments;
        this.controlPoints = controlPoints;
        this.knots = nurbKnots;
        this.basisUFunctionDegree = basisUFunctionDegree;
        CurveAndSurfaceMath.prepareNurbsKnots(nurbKnots[0], basisUFunctionDegree);
        if (nurbKnots[1] != null) {
            this.basisVFunctionDegree = basisVFunctionDegree;
            CurveAndSurfaceMath.prepareNurbsKnots(nurbKnots[1], basisVFunctionDegree);
        }

        this.buildSurface();
    }

    /**
     * This method creates a NURBS surface.
     * @param controlPoints space control points
     * @param nurbKnots knots of the surface
     * @param uSegments the amount of U segments
     * @param vSegments the amount of V segments
     * @param basisUFunctionDegree the degree of basis U function
     * @param basisVFunctionDegree the degree of basis V function
     * @return an instance of NURBS surface
     */
    public static final Surface createNurbsSurface(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots,
            int uSegments, int vSegments, int basisUFunctionDegree, int basisVFunctionDegree) {
        Surface result = new Surface(controlPoints, nurbKnots, uSegments, vSegments, basisUFunctionDegree, basisVFunctionDegree);
        result.type = SplineType.Nurb;
        return result;
    }

    /**
     * This method creates the surface.
     */
    private void buildSurface() {
        boolean smooth = true;//TODO: take smoothing into consideration
        float minUKnot = this.getMinUNurbKnot();
        float maxUKnot = this.getMaxUNurbKnot();
        float deltaU = (maxUKnot - minUKnot) / uSegments;

        float minVKnot = this.getMinVNurbKnot();
        float maxVKnot = this.getMaxVNurbKnot();
        float deltaV = (maxVKnot - minVKnot) / vSegments;

        Vector3f[] vertices = new Vector3f[(uSegments + 1) * (vSegments + 1)];

        float u = minUKnot, v = minVKnot;
        int arrayIndex = 0;

        for (int i = 0; i <= vSegments; ++i) {
            for (int j = 0; j <= uSegments; ++j) {
                Vector3f interpolationResult = new Vector3f();
                CurveAndSurfaceMath.interpolate(u, v, controlPoints, knots, basisUFunctionDegree, basisVFunctionDegree, interpolationResult);
                vertices[arrayIndex++] = interpolationResult;
                u += deltaU;
            }
            u = minUKnot;
            v += deltaV;
        }

        //adding indexes
        int uVerticesAmount = uSegments + 1;
        int[] indices = new int[uSegments * vSegments * 6];
        arrayIndex = 0;
        for (int i = 0; i < vSegments; ++i) {
            for (int j = 0; j < uSegments; ++j) {
                indices[arrayIndex++] = j + i * uVerticesAmount;
                indices[arrayIndex++] = j + i * uVerticesAmount + 1;
                indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount;
                indices[arrayIndex++] = j + i * uVerticesAmount + 1;
                indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount + 1;
                indices[arrayIndex++] = j + i * uVerticesAmount + uVerticesAmount;
            }
        }

        //normalMap merges normals of faces that will be rendered smooth
        Map<Vector3f, Vector3f> normalMap = new HashMap<Vector3f, Vector3f>(vertices.length);
        for (int i = 0; i < indices.length; i += 3) {
            Vector3f n = FastMath.computeNormal(vertices[indices[i]], vertices[indices[i + 1]], vertices[indices[i + 2]]);
            this.addNormal(n, normalMap, smooth, vertices[indices[i]], vertices[indices[i + 1]], vertices[indices[i + 2]]);
        }
        //preparing normal list (the order of normals must match the order of vertices)
        float[] normals = new float[vertices.length * 3];
        arrayIndex = 0;
        for (int i = 0; i < vertices.length; ++i) {
            Vector3f n = normalMap.get(vertices[i]);
            normals[arrayIndex++] = n.x;
            normals[arrayIndex++] = n.y;
            normals[arrayIndex++] = n.z;
        }

        this.setBuffer(VertexBuffer.Type.Position, 3, BufferUtils.createFloatBuffer(vertices));
        this.setBuffer(VertexBuffer.Type.Index, 3, indices);
        this.setBuffer(VertexBuffer.Type.Normal, 3, normals);
        this.updateBound();
        this.updateCounts();
    }

    public List<List<Vector4f>> getControlPoints() {
        return controlPoints;
    }

    /**
     * This method returns the amount of U control points.
     * @return the amount of U control points
     */
    public int getUControlPointsAmount() {
        return controlPoints.size();
    }

    /**
     * This method returns the amount of V control points.
     * @return the amount of V control points
     */
    public int getVControlPointsAmount() {
        return controlPoints.get(0) == null ? 0 : controlPoints.get(0).size();
    }

    /**
     * This method returns the degree of basis U function.
     * @return the degree of basis U function
     */
    public int getBasisUFunctionDegree() {
        return basisUFunctionDegree;
    }

    /**
     * This method returns the degree of basis V function.
     * @return the degree of basis V function
     */
    public int getBasisVFunctionDegree() {
        return basisVFunctionDegree;
    }

    /**
     * This method returns the knots for specified dimension (U knots - value: '0',
     * V knots - value: '1').
     * @param dim an integer specifying if the U or V knots are required
     * @return an array of knots
     */
    public List<Float> getKnots(int dim) {
        return knots[dim];
    }

    /**
     * This method returns the type of the surface.
     * @return the type of the surface
     */
    public SplineType getType() {
        return type;
    }

    /**
     * This method returns the minimum nurb curve U knot value.
     * @return the minimum nurb curve knot value
     */
    private float getMinUNurbKnot() {
        return knots[0].get(basisUFunctionDegree - 1);
    }

    /**
     * This method returns the maximum nurb curve U knot value.
     * @return the maximum nurb curve knot value
     */
    private float getMaxUNurbKnot() {
        return knots[0].get(knots[0].size() - basisUFunctionDegree);
    }

    /**
     * This method returns the minimum nurb curve U knot value.
     * @return the minimum nurb curve knot value
     */
    private float getMinVNurbKnot() {
        return knots[1].get(basisVFunctionDegree - 1);
    }

    /**
     * This method returns the maximum nurb curve U knot value.
     * @return the maximum nurb curve knot value
     */
    private float getMaxVNurbKnot() {
        return knots[1].get(knots[1].size() - basisVFunctionDegree);
    }

    /**
     * This method adds a normal to a normals' map. This map is used to merge normals of a vertor that should be rendered smooth.
     * @param normalToAdd
     *            a normal to be added
     * @param normalMap
     *            merges normals of faces that will be rendered smooth; the key is the vertex and the value - its normal vector
     * @param smooth
     *            the variable that indicates wheather to merge normals (creating the smooth mesh) or not
     * @param vertices
     *            a list of vertices read from the blender file
     */
    private void addNormal(Vector3f normalToAdd, Map<Vector3f, Vector3f> normalMap, boolean smooth, Vector3f... vertices) {
        for (Vector3f v : vertices) {
            Vector3f n = normalMap.get(v);
            if (!smooth || n == null) {
                normalMap.put(v, normalToAdd.clone());
            } else {
                n.addLocal(normalToAdd).normalizeLocal();
            }
        }
    }

    /**
     * This method validates the input data. It throws {@link IllegalArgumentException} if
     * the data is invalid.
     * @param controlPoints space control points
     * @param nurbKnots knots of the surface
     * @param uSegments the amount of U segments
     * @param vSegments the amount of V segments
     */
    private void validateInputData(List<List<Vector4f>> controlPoints, List<Float>[] nurbKnots,
            int uSegments, int vSegments) {
        int uPointsAmount = controlPoints.get(0).size();
        for (int i = 1; i < controlPoints.size(); ++i) {
            if (controlPoints.get(i).size() != uPointsAmount) {
                throw new IllegalArgumentException("The amount of 'U' control points is invalid!");
            }
        }
        if (uSegments <= 0) {
            throw new IllegalArgumentException("U segments amount should be positive!");
        }
        if (vSegments < 0) {
            throw new IllegalArgumentException("V segments amount cannot be negative!");
        }
        if (nurbKnots.length != 2) {
            throw new IllegalArgumentException("Nurb surface should have two rows of knots!");
        }
        for (int i = 0; i < nurbKnots.length; ++i) {
            for (int j = 0; j < nurbKnots[i].size() - 1; ++j) {
                if (nurbKnots[i].get(j) > nurbKnots[i].get(j + 1)) {
                    throw new IllegalArgumentException("The knots' values cannot decrease!");
                }
            }
        }
    }
}