/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This is a fast-and-accurate implementation of inverse Discrete Cosine * Transform (IDCT) for ARMv6+. It also performs dequantization of the input * coefficients just like other methods. * * This implementation is based on the scaled 1-D DCT algorithm proposed by * Arai, Agui, and Nakajima. The following code is based on the figure 4-8 * on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients * are (almost) directly mapped into registers. * * The accuracy is achieved by using SMULWy and SMLAWy instructions. Both * multiply 32 bits by 16 bits and store the top 32 bits of the result. It * makes 32-bit fixed-point arithmetic possible without overflow. That is * why jpeg_idct_ifast(), which is written in C, cannot be improved. * * More tricks are used to gain more speed. First of all, we use as many * registers as possible. ARM processor has 16 registers including sp (r13) * and pc (r15), so only 14 registers can be used without limitations. In * general, we let r0 to r7 hold the coefficients; r10 and r11 hold four * 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold * intermediate value. In the second pass, r9 is the loop counter. In the * first pass, r8 to r11 are used to hold quantization values, so the loop * counter is held by sp. Yes, the stack pointer. Since it must be aligned * to 4-byte boundary all the time, we align it to 32-byte boundary and use * bit 3 to bit 5. As the result, we actually use 14.1 registers. :-) * * Second, we rearrange quantization values to access them sequentially. The * table is first transposed, and the new columns are placed in the order of * 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a * time. Rearranging coefficients also helps, but that requires to change a * dozen of files, which seems not worth it. In addition, we choose to scale * up quantization values by 13 bits, so the coefficients are scaled up by * 16 bits after both passes. Then we can pack and saturate them two at a * time using PKHTB and USAT16 instructions. * * Third, we reorder the instructions to avoid bubbles in the pipeline. This * is done by hand accroding to the cycle timings and the interlock behavior * described in the technical reference manual of ARM1136JF-S. We also take * advantage of dual issue processors by interleaving instructions with * dependencies. It has been benchmarked on four devices and all the results * showed distinguishable improvements. Note that PLD instructions actually * slow things down, so they are removed at the last minute. In the future, * this might be futher improved using a system profiler. */ // void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col) .arm .syntax unified .text .align .global armv6_idct armv6_idct: // Push everything except sp (r13) and pc (r15). stmdb sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14} // r12 = quans, r14 = coefs. sub r4, sp, #236 bic sp, r4, #31 add r5, sp, #224 add r12, r1, #256 stm r5, {r2, r3, r4} add r14, r0, #16 pass1_head: // Load quantization values. (q[0, 2, 4, 6]) ldmdb r12!, {r8, r9, r10, r11} // Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7]) ldrsh r4, [r14, #-2] ! ldrsh r1, [r14, #16] ldrsh r2, [r14, #32] ldrsh r3, [r14, #48] ldrsh r0, [r14, #64] ldrsh r5, [r14, #80] ldrsh r6, [r14, #96] ldrsh r7, [r14, #112] // r4 = q[0] * c[0]; mul r4, r8, r4 // Check if ACs are all zero. cmp r0, #0 orrseq r8, r1, r2 orrseq r8, r3, r5 orrseq r8, r6, r7 beq pass1_zero // Step 1: Dequantizations. // r2 = q[2] * c[2]; // r0 = q[4] * c[4] + r4; // r6 = q[6] * c[6] + r2; mul r2, r9, r2 mla r0, r10, r0, r4 mla r6, r11, r6, r2 // Load quantization values. (q[7, 5, 1, 3]) ldmdb r12!, {r8, r9, r10, r11} // r4 = r4 * 2 - r0 = -(r0 - r4 * 2); // r2 = r2 * 2 - r6 = -(r6 - r2 * 2); rsb r4, r0, r4, lsl #1 rsb r2, r6, r2, lsl #1 // r7 = q[7] * c[7]; // r5 = q[5] * c[5]; // r1 = q[1] * c[1] + r7; // r3 = q[3] * c[3] + r5; mul r7, r8, r7 mul r5, r9, r5 mla r1, r10, r1, r7 mla r3, r11, r3, r5 // Load constants to r10, r11. ldrd r10, r11, constants // Step 2: Rotations and Butterflies. // r7 = r1 - r7 * 2; // r1 = r1 - r3; // r5 = r5 * 2 - r3 = -(r3 - r5 * 2); // r3 = r1 + r3 * 2; // r8 = r5 + r7; sub r7, r1, r7, lsl #1 sub r1, r1, r3 rsb r5, r3, r5, lsl #1 add r3, r1, r3, lsl #1 add r8, r5, r7 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2; // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536; // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1; smlawt r2, r2, r10, r2 smulwb r8, r8, r10 smlawt r1, r1, r10, r1 // r0 = r0 + r6; // r2 = r2 - r6; // r6 = r0 - r6 * 2; add r0, r0, r6 sub r2, r2, r6 sub r6, r0, r6, lsl #1 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8; // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8; smlawt r5, r5, r11, r8 smlawb r8, r7, r11, r8 // r4 = r4 + r2; // r0 = r0 + r3; // r2 = r4 - r2 * 2; add r4, r4, r2 add r0, r0, r3 sub r2, r4, r2, lsl #1 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8); // r3 = r0 - r3 * 2; // r1 = r1 - r7; // r4 = r4 + r7; // r5 = r8 * 8 - r1 = -(r1 - r8 * 8); // r7 = r4 - r7 * 2; rsb r7, r3, r5, lsl #3 sub r3, r0, r3, lsl #1 sub r1, r1, r7 add r4, r4, r7 rsb r5, r1, r8, lsl #3 sub r7, r4, r7, lsl #1 // r2 = r2 + r1; // r6 = r6 + r5; // r1 = r2 - r1 * 2; // r5 = r6 - r5 * 2; add r2, r2, r1 add r6, r6, r5 sub r1, r2, r1, lsl #1 sub r5, r6, r5, lsl #1 // Step 3: Reorder and Save. str r0, [sp, #-4] ! str r4, [sp, #32] str r2, [sp, #64] str r6, [sp, #96] str r5, [sp, #128] str r1, [sp, #160] str r7, [sp, #192] str r3, [sp, #224] b pass1_tail // Precomputed 16-bit constants: 27146, 15137, -21407, -8867. // Put them in the middle since LDRD only accepts offsets from -255 to 255. .align 3 constants: .word 0x6a0a3b21 .word 0xac61dd5d pass1_zero: str r4, [sp, #-4] ! str r4, [sp, #32] str r4, [sp, #64] str r4, [sp, #96] str r4, [sp, #128] str r4, [sp, #160] str r4, [sp, #192] str r4, [sp, #224] sub r12, r12, #16 pass1_tail: ands r9, sp, #31 bne pass1_head // r12 = rows, r14 = col. ldr r12, [sp, #256] ldr r14, [sp, #260] // Load constants to r10, r11. ldrd r10, r11, constants pass2_head: // Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7]) ldmia sp!, {r0, r1, r2, r3, r4, r5, r6, r7} // r0 = r0 + 0x00808000; add r0, r0, #0x00800000 add r0, r0, #0x00008000 // Step 1: Analog to the first pass. // r0 = r0 + r4; // r6 = r6 + r2; add r0, r0, r4 add r6, r6, r2 // r4 = r0 - r4 * 2; // r2 = r2 * 2 - r6 = -(r6 - r2 * 2); sub r4, r0, r4, lsl #1 rsb r2, r6, r2, lsl #1 // r1 = r1 + r7; // r3 = r3 + r5; add r1, r1, r7 add r3, r3, r5 // Step 2: Rotations and Butterflies. // r7 = r1 - r7 * 2; // r1 = r1 - r3; // r5 = r5 * 2 - r3 = -(r3 - r5 * 2); // r3 = r1 + r3 * 2; // r8 = r5 + r7; sub r7, r1, r7, lsl #1 sub r1, r1, r3 rsb r5, r3, r5, lsl #1 add r3, r1, r3, lsl #1 add r8, r5, r7 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2; // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536; // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1; smlawt r2, r2, r10, r2 smulwb r8, r8, r10 smlawt r1, r1, r10, r1 // r0 = r0 + r6; // r2 = r2 - r6; // r6 = r0 - r6 * 2; add r0, r0, r6 sub r2, r2, r6 sub r6, r0, r6, lsl #1 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8; // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8; smlawt r5, r5, r11, r8 smlawb r8, r7, r11, r8 // r4 = r4 + r2; // r0 = r0 + r3; // r2 = r4 - r2 * 2; add r4, r4, r2 add r0, r0, r3 sub r2, r4, r2, lsl #1 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8); // r3 = r0 - r3 * 2; // r1 = r1 - r7; // r4 = r4 + r7; // r5 = r8 * 8 - r1 = -(r1 - r8 * 8); // r7 = r4 - r7 * 2; rsb r7, r3, r5, lsl #3 sub r3, r0, r3, lsl #1 sub r1, r1, r7 add r4, r4, r7 rsb r5, r1, r8, lsl #3 sub r7, r4, r7, lsl #1 // r2 = r2 + r1; // r6 = r6 + r5; // r1 = r2 - r1 * 2; // r5 = r6 - r5 * 2; add r2, r2, r1 add r6, r6, r5 sub r1, r2, r1, lsl #1 sub r5, r6, r5, lsl #1 // Step 3: Reorder and Save. // Load output pointer. ldr r8, [r12], #4 // For little endian: r6, r2, r4, r0, r3, r7, r1, r5. pkhtb r6, r6, r4, asr #16 pkhtb r2, r2, r0, asr #16 pkhtb r3, r3, r1, asr #16 pkhtb r7, r7, r5, asr #16 usat16 r6, #8, r6 usat16 r2, #8, r2 usat16 r3, #8, r3 usat16 r7, #8, r7 orr r0, r2, r6, lsl #8 orr r1, r7, r3, lsl #8 #ifdef __ARMEB__ // Reverse bytes for big endian. rev r0, r0 rev r1, r1 #endif // Use STR instead of STRD to support unaligned access. str r0, [r8, r14] ! str r1, [r8, #4] pass2_tail: adds r9, r9, #0x10000000 bpl pass2_head ldr sp, [sp, #8] add sp, sp, #236 ldmia sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14} bx lr