aboutsummaryrefslogtreecommitdiff
path: root/aom_dsp/x86/sum_squares_sse2.c
blob: 25be8568a8b329a52d1b70be4a7dba9625945f2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <emmintrin.h>
#include <stdio.h>

#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/sum_squares_sse2.h"
#include "config/aom_dsp_rtcd.h"

static INLINE __m128i xx_loadh_64(__m128i a, const void *b) {
  const __m128d ad = _mm_castsi128_pd(a);
  return _mm_castpd_si128(_mm_loadh_pd(ad, (double *)b));
}

static INLINE uint64_t xx_cvtsi128_si64(__m128i a) {
#if ARCH_X86_64
  return (uint64_t)_mm_cvtsi128_si64(a);
#else
  {
    uint64_t tmp;
    _mm_storel_epi64((__m128i *)&tmp, a);
    return tmp;
  }
#endif
}

static INLINE __m128i sum_squares_i16_4x4_sse2(const int16_t *src, int stride) {
  const __m128i v_val_0_w = xx_loadl_64(src + 0 * stride);
  const __m128i v_val_2_w = xx_loadl_64(src + 2 * stride);
  const __m128i v_val_01_w = xx_loadh_64(v_val_0_w, src + 1 * stride);
  const __m128i v_val_23_w = xx_loadh_64(v_val_2_w, src + 3 * stride);
  const __m128i v_sq_01_d = _mm_madd_epi16(v_val_01_w, v_val_01_w);
  const __m128i v_sq_23_d = _mm_madd_epi16(v_val_23_w, v_val_23_w);

  return _mm_add_epi32(v_sq_01_d, v_sq_23_d);
}

uint64_t aom_sum_squares_2d_i16_4x4_sse2(const int16_t *src, int stride) {
  const __m128i v_sum_0123_d = sum_squares_i16_4x4_sse2(src, stride);
  __m128i v_sum_d =
      _mm_add_epi32(v_sum_0123_d, _mm_srli_epi64(v_sum_0123_d, 32));
  v_sum_d = _mm_add_epi32(v_sum_d, _mm_srli_si128(v_sum_d, 8));
  return (uint64_t)_mm_cvtsi128_si32(v_sum_d);
}

uint64_t aom_sum_sse_2d_i16_4x4_sse2(const int16_t *src, int stride, int *sum) {
  const __m128i one_reg = _mm_set1_epi16(1);
  const __m128i v_val_0_w = xx_loadl_64(src + 0 * stride);
  const __m128i v_val_2_w = xx_loadl_64(src + 2 * stride);
  __m128i v_val_01_w = xx_loadh_64(v_val_0_w, src + 1 * stride);
  __m128i v_val_23_w = xx_loadh_64(v_val_2_w, src + 3 * stride);

  __m128i v_sum_0123_d = _mm_add_epi16(v_val_01_w, v_val_23_w);
  v_sum_0123_d = _mm_madd_epi16(v_sum_0123_d, one_reg);
  v_sum_0123_d = _mm_add_epi32(v_sum_0123_d, _mm_srli_si128(v_sum_0123_d, 8));
  v_sum_0123_d = _mm_add_epi32(v_sum_0123_d, _mm_srli_si128(v_sum_0123_d, 4));
  *sum = _mm_cvtsi128_si32(v_sum_0123_d);

  const __m128i v_sq_01_d = _mm_madd_epi16(v_val_01_w, v_val_01_w);
  const __m128i v_sq_23_d = _mm_madd_epi16(v_val_23_w, v_val_23_w);
  __m128i v_sq_0123_d = _mm_add_epi32(v_sq_01_d, v_sq_23_d);
  v_sq_0123_d = _mm_add_epi32(v_sq_0123_d, _mm_srli_si128(v_sq_0123_d, 8));
  v_sq_0123_d = _mm_add_epi32(v_sq_0123_d, _mm_srli_si128(v_sq_0123_d, 4));
  return (uint64_t)_mm_cvtsi128_si32(v_sq_0123_d);
}

uint64_t aom_sum_squares_2d_i16_4xn_sse2(const int16_t *src, int stride,
                                         int height) {
  int r = 0;
  __m128i v_acc_q = _mm_setzero_si128();
  do {
    const __m128i v_acc_d = sum_squares_i16_4x4_sse2(src, stride);
    v_acc_q = _mm_add_epi32(v_acc_q, v_acc_d);
    src += stride << 2;
    r += 4;
  } while (r < height);
  const __m128i v_zext_mask_q = xx_set1_64_from_32i(~0);
  __m128i v_acc_64 = _mm_add_epi64(_mm_srli_epi64(v_acc_q, 32),
                                   _mm_and_si128(v_acc_q, v_zext_mask_q));
  v_acc_64 = _mm_add_epi64(v_acc_64, _mm_srli_si128(v_acc_64, 8));
  return xx_cvtsi128_si64(v_acc_64);
}

uint64_t aom_sum_sse_2d_i16_4xn_sse2(const int16_t *src, int stride, int height,
                                     int *sum) {
  int r = 0;
  uint64_t sse = 0;
  do {
    int curr_sum = 0;
    sse += aom_sum_sse_2d_i16_4x4_sse2(src, stride, &curr_sum);
    *sum += curr_sum;
    src += stride << 2;
    r += 4;
  } while (r < height);
  return sse;
}

#ifdef __GNUC__
// This prevents GCC/Clang from inlining this function into
// aom_sum_squares_2d_i16_sse2, which in turn saves some stack
// maintenance instructions in the common case of 4x4.
__attribute__((noinline))
#endif
uint64_t
aom_sum_squares_2d_i16_nxn_sse2(const int16_t *src, int stride, int width,
                                int height) {
  int r = 0;

  const __m128i v_zext_mask_q = xx_set1_64_from_32i(~0);
  __m128i v_acc_q = _mm_setzero_si128();

  do {
    __m128i v_acc_d = _mm_setzero_si128();
    int c = 0;
    do {
      const int16_t *b = src + c;

      const __m128i v_val_0_w = xx_load_128(b + 0 * stride);
      const __m128i v_val_1_w = xx_load_128(b + 1 * stride);
      const __m128i v_val_2_w = xx_load_128(b + 2 * stride);
      const __m128i v_val_3_w = xx_load_128(b + 3 * stride);

      const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
      const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
      const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
      const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);

      const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
      const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);

      const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);

      v_acc_d = _mm_add_epi32(v_acc_d, v_sum_0123_d);
      c += 8;
    } while (c < width);

    v_acc_q = _mm_add_epi64(v_acc_q, _mm_and_si128(v_acc_d, v_zext_mask_q));
    v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_epi64(v_acc_d, 32));

    src += 4 * stride;
    r += 4;
  } while (r < height);

  v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8));
  return xx_cvtsi128_si64(v_acc_q);
}

#ifdef __GNUC__
// This prevents GCC/Clang from inlining this function into
// aom_sum_sse_2d_i16_nxn_sse2, which in turn saves some stack
// maintenance instructions in the common case of 4x4.
__attribute__((noinline))
#endif
uint64_t
aom_sum_sse_2d_i16_nxn_sse2(const int16_t *src, int stride, int width,
                            int height, int *sum) {
  int r = 0;
  uint64_t result;
  const __m128i zero_reg = _mm_setzero_si128();
  const __m128i one_reg = _mm_set1_epi16(1);

  __m128i v_sse_total = zero_reg;
  __m128i v_sum_total = zero_reg;

  do {
    int c = 0;
    __m128i v_sse_row = zero_reg;
    do {
      const int16_t *b = src + c;

      __m128i v_val_0_w = xx_load_128(b + 0 * stride);
      __m128i v_val_1_w = xx_load_128(b + 1 * stride);
      __m128i v_val_2_w = xx_load_128(b + 2 * stride);
      __m128i v_val_3_w = xx_load_128(b + 3 * stride);

      const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
      const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
      const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
      const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
      const __m128i v_sq_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
      const __m128i v_sq_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
      const __m128i v_sq_0123_d = _mm_add_epi32(v_sq_01_d, v_sq_23_d);
      v_sse_row = _mm_add_epi32(v_sse_row, v_sq_0123_d);

      const __m128i v_sum_01 = _mm_add_epi16(v_val_0_w, v_val_1_w);
      const __m128i v_sum_23 = _mm_add_epi16(v_val_2_w, v_val_3_w);
      __m128i v_sum_0123_d = _mm_add_epi16(v_sum_01, v_sum_23);
      v_sum_0123_d = _mm_madd_epi16(v_sum_0123_d, one_reg);
      v_sum_total = _mm_add_epi32(v_sum_total, v_sum_0123_d);

      c += 8;
    } while (c < width);

    const __m128i v_sse_row_low = _mm_unpacklo_epi32(v_sse_row, zero_reg);
    const __m128i v_sse_row_hi = _mm_unpackhi_epi32(v_sse_row, zero_reg);
    v_sse_row = _mm_add_epi64(v_sse_row_low, v_sse_row_hi);
    v_sse_total = _mm_add_epi64(v_sse_total, v_sse_row);
    src += 4 * stride;
    r += 4;
  } while (r < height);

  v_sum_total = _mm_add_epi32(v_sum_total, _mm_srli_si128(v_sum_total, 8));
  v_sum_total = _mm_add_epi32(v_sum_total, _mm_srli_si128(v_sum_total, 4));
  *sum += _mm_cvtsi128_si32(v_sum_total);

  v_sse_total = _mm_add_epi64(v_sse_total, _mm_srli_si128(v_sse_total, 8));
  xx_storel_64(&result, v_sse_total);
  return result;
}

uint64_t aom_sum_squares_2d_i16_sse2(const int16_t *src, int stride, int width,
                                     int height) {
  // 4 elements per row only requires half an XMM register, so this
  // must be a special case, but also note that over 75% of all calls
  // are with size == 4, so it is also the common case.
  if (LIKELY(width == 4 && height == 4)) {
    return aom_sum_squares_2d_i16_4x4_sse2(src, stride);
  } else if (LIKELY(width == 4 && (height & 3) == 0)) {
    return aom_sum_squares_2d_i16_4xn_sse2(src, stride, height);
  } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
    // Generic case
    return aom_sum_squares_2d_i16_nxn_sse2(src, stride, width, height);
  } else {
    return aom_sum_squares_2d_i16_c(src, stride, width, height);
  }
}

uint64_t aom_sum_sse_2d_i16_sse2(const int16_t *src, int src_stride, int width,
                                 int height, int *sum) {
  if (LIKELY(width == 4 && height == 4)) {
    return aom_sum_sse_2d_i16_4x4_sse2(src, src_stride, sum);
  } else if (LIKELY(width == 4 && (height & 3) == 0)) {
    return aom_sum_sse_2d_i16_4xn_sse2(src, src_stride, height, sum);
  } else if (LIKELY((width & 7) == 0 && (height & 3) == 0)) {
    // Generic case
    return aom_sum_sse_2d_i16_nxn_sse2(src, src_stride, width, height, sum);
  } else {
    return aom_sum_sse_2d_i16_c(src, src_stride, width, height, sum);
  }
}

//////////////////////////////////////////////////////////////////////////////
// 1D version
//////////////////////////////////////////////////////////////////////////////

static uint64_t aom_sum_squares_i16_64n_sse2(const int16_t *src, uint32_t n) {
  const __m128i v_zext_mask_q = xx_set1_64_from_32i(~0);
  __m128i v_acc0_q = _mm_setzero_si128();
  __m128i v_acc1_q = _mm_setzero_si128();

  const int16_t *const end = src + n;

  assert(n % 64 == 0);

  while (src < end) {
    const __m128i v_val_0_w = xx_load_128(src);
    const __m128i v_val_1_w = xx_load_128(src + 8);
    const __m128i v_val_2_w = xx_load_128(src + 16);
    const __m128i v_val_3_w = xx_load_128(src + 24);
    const __m128i v_val_4_w = xx_load_128(src + 32);
    const __m128i v_val_5_w = xx_load_128(src + 40);
    const __m128i v_val_6_w = xx_load_128(src + 48);
    const __m128i v_val_7_w = xx_load_128(src + 56);

    const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
    const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
    const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
    const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
    const __m128i v_sq_4_d = _mm_madd_epi16(v_val_4_w, v_val_4_w);
    const __m128i v_sq_5_d = _mm_madd_epi16(v_val_5_w, v_val_5_w);
    const __m128i v_sq_6_d = _mm_madd_epi16(v_val_6_w, v_val_6_w);
    const __m128i v_sq_7_d = _mm_madd_epi16(v_val_7_w, v_val_7_w);

    const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
    const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
    const __m128i v_sum_45_d = _mm_add_epi32(v_sq_4_d, v_sq_5_d);
    const __m128i v_sum_67_d = _mm_add_epi32(v_sq_6_d, v_sq_7_d);

    const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);
    const __m128i v_sum_4567_d = _mm_add_epi32(v_sum_45_d, v_sum_67_d);

    const __m128i v_sum_d = _mm_add_epi32(v_sum_0123_d, v_sum_4567_d);

    v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_and_si128(v_sum_d, v_zext_mask_q));
    v_acc1_q = _mm_add_epi64(v_acc1_q, _mm_srli_epi64(v_sum_d, 32));

    src += 64;
  }

  v_acc0_q = _mm_add_epi64(v_acc0_q, v_acc1_q);
  v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_srli_si128(v_acc0_q, 8));
  return xx_cvtsi128_si64(v_acc0_q);
}

uint64_t aom_sum_squares_i16_sse2(const int16_t *src, uint32_t n) {
  if (n % 64 == 0) {
    return aom_sum_squares_i16_64n_sse2(src, n);
  } else if (n > 64) {
    const uint32_t k = n & ~63u;
    return aom_sum_squares_i16_64n_sse2(src, k) +
           aom_sum_squares_i16_c(src + k, n - k);
  } else {
    return aom_sum_squares_i16_c(src, n);
  }
}

// Accumulate sum of 16-bit elements in the vector
static AOM_INLINE int32_t mm_accumulate_epi16(__m128i vec_a) {
  __m128i vtmp = _mm_srli_si128(vec_a, 8);
  vec_a = _mm_add_epi16(vec_a, vtmp);
  vtmp = _mm_srli_si128(vec_a, 4);
  vec_a = _mm_add_epi16(vec_a, vtmp);
  vtmp = _mm_srli_si128(vec_a, 2);
  vec_a = _mm_add_epi16(vec_a, vtmp);
  return _mm_extract_epi16(vec_a, 0);
}

// Accumulate sum of 32-bit elements in the vector
static AOM_INLINE int32_t mm_accumulate_epi32(__m128i vec_a) {
  __m128i vtmp = _mm_srli_si128(vec_a, 8);
  vec_a = _mm_add_epi32(vec_a, vtmp);
  vtmp = _mm_srli_si128(vec_a, 4);
  vec_a = _mm_add_epi32(vec_a, vtmp);
  return _mm_cvtsi128_si32(vec_a);
}

uint64_t aom_var_2d_u8_sse2(uint8_t *src, int src_stride, int width,
                            int height) {
  uint8_t *srcp;
  uint64_t s = 0, ss = 0;
  __m128i vzero = _mm_setzero_si128();
  __m128i v_acc_sum = vzero;
  __m128i v_acc_sqs = vzero;
  int i, j;

  // Process 16 elements in a row
  for (i = 0; i < width - 15; i += 16) {
    srcp = src + i;
    // Process 8 columns at a time
    for (j = 0; j < height - 7; j += 8) {
      __m128i vsrc[8];
      for (int k = 0; k < 8; k++) {
        vsrc[k] = _mm_loadu_si128((__m128i *)srcp);
        srcp += src_stride;
      }
      for (int k = 0; k < 8; k++) {
        __m128i vsrc0 = _mm_unpacklo_epi8(vsrc[k], vzero);
        __m128i vsrc1 = _mm_unpackhi_epi8(vsrc[k], vzero);
        v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc0);
        v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc1);

        __m128i vsqs0 = _mm_madd_epi16(vsrc0, vsrc0);
        __m128i vsqs1 = _mm_madd_epi16(vsrc1, vsrc1);
        v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
        v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs1);
      }

      // Update total sum and clear the vectors
      s += mm_accumulate_epi16(v_acc_sum);
      ss += mm_accumulate_epi32(v_acc_sqs);
      v_acc_sum = vzero;
      v_acc_sqs = vzero;
    }

    // Process remaining rows (height not a multiple of 8)
    for (; j < height; j++) {
      __m128i vsrc = _mm_loadu_si128((__m128i *)srcp);
      __m128i vsrc0 = _mm_unpacklo_epi8(vsrc, vzero);
      __m128i vsrc1 = _mm_unpackhi_epi8(vsrc, vzero);
      v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc0);
      v_acc_sum = _mm_add_epi16(v_acc_sum, vsrc1);

      __m128i vsqs0 = _mm_madd_epi16(vsrc0, vsrc0);
      __m128i vsqs1 = _mm_madd_epi16(vsrc1, vsrc1);
      v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
      v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs1);

      srcp += src_stride;
    }

    // Update total sum and clear the vectors
    s += mm_accumulate_epi16(v_acc_sum);
    ss += mm_accumulate_epi32(v_acc_sqs);
    v_acc_sum = vzero;
    v_acc_sqs = vzero;
  }

  // Process the remaining area using C
  srcp = src;
  for (int k = 0; k < height; k++) {
    for (int m = i; m < width; m++) {
      uint8_t val = srcp[m];
      s += val;
      ss += val * val;
    }
    srcp += src_stride;
  }
  return (ss - s * s / (width * height));
}

uint64_t aom_var_2d_u16_sse2(uint8_t *src, int src_stride, int width,
                             int height) {
  uint16_t *srcp1 = CONVERT_TO_SHORTPTR(src), *srcp;
  uint64_t s = 0, ss = 0;
  __m128i vzero = _mm_setzero_si128();
  __m128i v_acc_sum = vzero;
  __m128i v_acc_sqs = vzero;
  int i, j;

  // Process 8 elements in a row
  for (i = 0; i < width - 8; i += 8) {
    srcp = srcp1 + i;
    // Process 8 columns at a time
    for (j = 0; j < height - 8; j += 8) {
      __m128i vsrc[8];
      for (int k = 0; k < 8; k++) {
        vsrc[k] = _mm_loadu_si128((__m128i *)srcp);
        srcp += src_stride;
      }
      for (int k = 0; k < 8; k++) {
        __m128i vsrc0 = _mm_unpacklo_epi16(vsrc[k], vzero);
        __m128i vsrc1 = _mm_unpackhi_epi16(vsrc[k], vzero);
        v_acc_sum = _mm_add_epi32(vsrc0, v_acc_sum);
        v_acc_sum = _mm_add_epi32(vsrc1, v_acc_sum);

        __m128i vsqs0 = _mm_madd_epi16(vsrc[k], vsrc[k]);
        v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
      }

      // Update total sum and clear the vectors
      s += mm_accumulate_epi32(v_acc_sum);
      ss += mm_accumulate_epi32(v_acc_sqs);
      v_acc_sum = vzero;
      v_acc_sqs = vzero;
    }

    // Process remaining rows (height not a multiple of 8)
    for (; j < height; j++) {
      __m128i vsrc = _mm_loadu_si128((__m128i *)srcp);
      __m128i vsrc0 = _mm_unpacklo_epi16(vsrc, vzero);
      __m128i vsrc1 = _mm_unpackhi_epi16(vsrc, vzero);
      v_acc_sum = _mm_add_epi32(vsrc0, v_acc_sum);
      v_acc_sum = _mm_add_epi32(vsrc1, v_acc_sum);

      __m128i vsqs0 = _mm_madd_epi16(vsrc, vsrc);
      v_acc_sqs = _mm_add_epi32(v_acc_sqs, vsqs0);
      srcp += src_stride;
    }

    // Update total sum and clear the vectors
    s += mm_accumulate_epi32(v_acc_sum);
    ss += mm_accumulate_epi32(v_acc_sqs);
    v_acc_sum = vzero;
    v_acc_sqs = vzero;
  }

  // Process the remaining area using C
  srcp = srcp1;
  for (int k = 0; k < height; k++) {
    for (int m = i; m < width; m++) {
      uint16_t val = srcp[m];
      s += val;
      ss += val * val;
    }
    srcp += src_stride;
  }
  return (ss - s * s / (width * height));
}