aboutsummaryrefslogtreecommitdiff
path: root/av1/common/reconinter.c
blob: 5dc1de228ad3aa8ae533c7faad5fc03c5ccbe20b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <stdio.h>
#include <limits.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"

#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "aom_ports/aom_once.h"

#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"

// This function will determine whether or not to create a warped
// prediction.
int av1_allow_warp(const MB_MODE_INFO *const mbmi,
                   const WarpTypesAllowed *const warp_types,
                   const WarpedMotionParams *const gm_params,
                   int build_for_obmc, const struct scale_factors *const sf,
                   WarpedMotionParams *final_warp_params) {
  // Note: As per the spec, we must test the fixed point scales here, which are
  // at a higher precision (1 << 14) than the xs and ys in subpel_params (that
  // have 1 << 10 precision).
  if (av1_is_scaled(sf)) return 0;

  if (final_warp_params != NULL) *final_warp_params = default_warp_params;

  if (build_for_obmc) return 0;

  if (warp_types->local_warp_allowed && !mbmi->wm_params.invalid) {
    if (final_warp_params != NULL)
      memcpy(final_warp_params, &mbmi->wm_params, sizeof(*final_warp_params));
    return 1;
  } else if (warp_types->global_warp_allowed && !gm_params->invalid) {
    if (final_warp_params != NULL)
      memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
    return 1;
  }

  return 0;
}

void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width,
                           int block_height, int pix_row, int pix_col,
                           int subsampling_x, int subsampling_y, int bit_depth,
                           int use_hbd_buf, int is_intrabc,
                           const struct scale_factors *sf,
                           const struct buf_2d *ref_buf,
                           int_interpfilters interp_filters) {
  inter_pred_params->block_width = block_width;
  inter_pred_params->block_height = block_height;
  inter_pred_params->pix_row = pix_row;
  inter_pred_params->pix_col = pix_col;
  inter_pred_params->subsampling_x = subsampling_x;
  inter_pred_params->subsampling_y = subsampling_y;
  inter_pred_params->bit_depth = bit_depth;
  inter_pred_params->use_hbd_buf = use_hbd_buf;
  inter_pred_params->is_intrabc = is_intrabc;
  inter_pred_params->scale_factors = sf;
  inter_pred_params->ref_frame_buf = *ref_buf;
  inter_pred_params->mode = TRANSLATION_PRED;
  inter_pred_params->comp_mode = UNIFORM_SINGLE;

  if (is_intrabc) {
    inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params;
    inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params;
  } else {
    inter_pred_params->interp_filter_params[0] =
        av1_get_interp_filter_params_with_block_size(
            interp_filters.as_filters.x_filter, block_width);
    inter_pred_params->interp_filter_params[1] =
        av1_get_interp_filter_params_with_block_size(
            interp_filters.as_filters.y_filter, block_height);
  }
}

void av1_init_comp_mode(InterPredParams *inter_pred_params) {
  inter_pred_params->comp_mode = UNIFORM_COMP;
}

void av1_init_warp_params(InterPredParams *inter_pred_params,
                          const WarpTypesAllowed *warp_types, int ref,
                          const MACROBLOCKD *xd, const MB_MODE_INFO *mi) {
  if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8)
    return;

  if (xd->cur_frame_force_integer_mv) return;

  if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]], 0,
                     inter_pred_params->scale_factors,
                     &inter_pred_params->warp_params)) {
    inter_pred_params->mode = WARP_PRED;
  }
}

void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
                              int dst_stride,
                              InterPredParams *inter_pred_params,
                              const SubpelParams *subpel_params) {
  assert(IMPLIES(inter_pred_params->conv_params.is_compound,
                 inter_pred_params->conv_params.dst != NULL));

  if (inter_pred_params->mode == TRANSLATION_PRED) {
#if CONFIG_AV1_HIGHBITDEPTH
    if (inter_pred_params->use_hbd_buf) {
      highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_params,
                             inter_pred_params->block_width,
                             inter_pred_params->block_height,
                             &inter_pred_params->conv_params,
                             inter_pred_params->interp_filter_params,
                             inter_pred_params->bit_depth);
    } else {
      inter_predictor(src, src_stride, dst, dst_stride, subpel_params,
                      inter_pred_params->block_width,
                      inter_pred_params->block_height,
                      &inter_pred_params->conv_params,
                      inter_pred_params->interp_filter_params);
    }
#else
    inter_predictor(src, src_stride, dst, dst_stride, subpel_params,
                    inter_pred_params->block_width,
                    inter_pred_params->block_height,
                    &inter_pred_params->conv_params,
                    inter_pred_params->interp_filter_params);
#endif
  }
  // TODO(jingning): av1_warp_plane() can be further cleaned up.
  else if (inter_pred_params->mode == WARP_PRED) {
    av1_warp_plane(
        &inter_pred_params->warp_params, inter_pred_params->use_hbd_buf,
        inter_pred_params->bit_depth, inter_pred_params->ref_frame_buf.buf0,
        inter_pred_params->ref_frame_buf.width,
        inter_pred_params->ref_frame_buf.height,
        inter_pred_params->ref_frame_buf.stride, dst,
        inter_pred_params->pix_col, inter_pred_params->pix_row,
        inter_pred_params->block_width, inter_pred_params->block_height,
        dst_stride, inter_pred_params->subsampling_x,
        inter_pred_params->subsampling_y, &inter_pred_params->conv_params);
  } else {
    assert(0 && "Unsupported inter_pred_params->mode");
  }
}

static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = {
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  6,  18,
  37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
  64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = {
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  4,  11, 27,
  46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
  64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = {
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  2,  7,  21,
  43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
  64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};

static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift,
                                  int width) {
  if (shift >= 0) {
    memcpy(dst + shift, src, width - shift);
    memset(dst, src[0], shift);
  } else {
    shift = -shift;
    memcpy(dst, src + shift, width - shift);
    memset(dst + width - shift, src[width - 1], shift);
  }
}

/* clang-format off */
DECLARE_ALIGNED(16, static uint8_t,
                wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = {
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, },
  { 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, },
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, },  // not used
};
/* clang-format on */

// [negative][direction]
DECLARE_ALIGNED(
    16, static uint8_t,
    wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);

// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
DECLARE_ALIGNED(16, static uint8_t,
                wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);

DECLARE_ALIGNED(16, static uint8_t,
                smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL]
                                          [MAX_WEDGE_SQUARE]);

static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];

static const wedge_code_type wedge_codebook_16_hgtw[16] = {
  { WEDGE_OBLIQUE27, 4, 4 },  { WEDGE_OBLIQUE63, 4, 4 },
  { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
  { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
  { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
  { WEDGE_OBLIQUE27, 4, 2 },  { WEDGE_OBLIQUE27, 4, 6 },
  { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
  { WEDGE_OBLIQUE63, 2, 4 },  { WEDGE_OBLIQUE63, 6, 4 },
  { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};

static const wedge_code_type wedge_codebook_16_hltw[16] = {
  { WEDGE_OBLIQUE27, 4, 4 },  { WEDGE_OBLIQUE63, 4, 4 },
  { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
  { WEDGE_VERTICAL, 2, 4 },   { WEDGE_VERTICAL, 4, 4 },
  { WEDGE_VERTICAL, 6, 4 },   { WEDGE_HORIZONTAL, 4, 4 },
  { WEDGE_OBLIQUE27, 4, 2 },  { WEDGE_OBLIQUE27, 4, 6 },
  { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
  { WEDGE_OBLIQUE63, 2, 4 },  { WEDGE_OBLIQUE63, 6, 4 },
  { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};

static const wedge_code_type wedge_codebook_16_heqw[16] = {
  { WEDGE_OBLIQUE27, 4, 4 },  { WEDGE_OBLIQUE63, 4, 4 },
  { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
  { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
  { WEDGE_VERTICAL, 2, 4 },   { WEDGE_VERTICAL, 6, 4 },
  { WEDGE_OBLIQUE27, 4, 2 },  { WEDGE_OBLIQUE27, 4, 6 },
  { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
  { WEDGE_OBLIQUE63, 2, 4 },  { WEDGE_OBLIQUE63, 6, 4 },
  { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};

const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
    wedge_masks[BLOCK_8X8] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
    wedge_masks[BLOCK_8X16] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
    wedge_masks[BLOCK_16X8] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
    wedge_masks[BLOCK_16X16] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
    wedge_masks[BLOCK_16X32] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
    wedge_masks[BLOCK_32X16] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
    wedge_masks[BLOCK_32X32] },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
  { MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
    wedge_masks[BLOCK_8X32] },
  { MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
    wedge_masks[BLOCK_32X8] },
  { 0, NULL, NULL, NULL },
  { 0, NULL, NULL, NULL },
};

static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
                                             BLOCK_SIZE sb_type) {
  const uint8_t *master;
  const int bh = block_size_high[sb_type];
  const int bw = block_size_wide[sb_type];
  const wedge_code_type *a =
      av1_wedge_params_lookup[sb_type].codebook + wedge_index;
  int woff, hoff;
  const uint8_t wsignflip =
      av1_wedge_params_lookup[sb_type].signflip[wedge_index];

  assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
  woff = (a->x_offset * bw) >> 3;
  hoff = (a->y_offset * bh) >> 3;
  master = wedge_mask_obl[neg ^ wsignflip][a->direction] +
           MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
           MASK_MASTER_SIZE / 2 - woff;
  return master;
}

const uint8_t *av1_get_compound_type_mask(
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
  (void)sb_type;
  switch (comp_data->type) {
    case COMPOUND_WEDGE:
      return av1_get_contiguous_soft_mask(comp_data->wedge_index,
                                          comp_data->wedge_sign, sb_type);
    default: return comp_data->seg_mask;
  }
}

static AOM_INLINE void diffwtd_mask_d16(
    uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0,
    int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
    ConvolveParams *conv_params, int bd) {
  int round =
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
  int i, j, m, diff;
  for (i = 0; i < h; ++i) {
    for (j = 0; j < w; ++j) {
      diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
      diff = ROUND_POWER_OF_TWO(diff, round);
      m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
      mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
    }
  }
}

void av1_build_compound_diffwtd_mask_d16_c(
    uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
    int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
    ConvolveParams *conv_params, int bd) {
  switch (mask_type) {
    case DIFFWTD_38:
      diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
                       conv_params, bd);
      break;
    case DIFFWTD_38_INV:
      diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
                       conv_params, bd);
      break;
    default: assert(0);
  }
}

static AOM_INLINE void diffwtd_mask(uint8_t *mask, int which_inverse,
                                    int mask_base, const uint8_t *src0,
                                    int src0_stride, const uint8_t *src1,
                                    int src1_stride, int h, int w) {
  int i, j, m, diff;
  for (i = 0; i < h; ++i) {
    for (j = 0; j < w; ++j) {
      diff =
          abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]);
      m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
      mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
    }
  }
}

void av1_build_compound_diffwtd_mask_c(uint8_t *mask,
                                       DIFFWTD_MASK_TYPE mask_type,
                                       const uint8_t *src0, int src0_stride,
                                       const uint8_t *src1, int src1_stride,
                                       int h, int w) {
  switch (mask_type) {
    case DIFFWTD_38:
      diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w);
      break;
    case DIFFWTD_38_INV:
      diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w);
      break;
    default: assert(0);
  }
}

static AOM_FORCE_INLINE void diffwtd_mask_highbd(
    uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
    int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
    const unsigned int bd) {
  assert(bd >= 8);
  if (bd == 8) {
    if (which_inverse) {
      for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
          int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
          unsigned int m = negative_to_zero(mask_base + diff);
          m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
          mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
        }
        src0 += src0_stride;
        src1 += src1_stride;
        mask += w;
      }
    } else {
      for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
          int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
          unsigned int m = negative_to_zero(mask_base + diff);
          m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
          mask[j] = m;
        }
        src0 += src0_stride;
        src1 += src1_stride;
        mask += w;
      }
    }
  } else {
    const unsigned int bd_shift = bd - 8;
    if (which_inverse) {
      for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
          int diff =
              (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
          unsigned int m = negative_to_zero(mask_base + diff);
          m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
          mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
        }
        src0 += src0_stride;
        src1 += src1_stride;
        mask += w;
      }
    } else {
      for (int i = 0; i < h; ++i) {
        for (int j = 0; j < w; ++j) {
          int diff =
              (abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
          unsigned int m = negative_to_zero(mask_base + diff);
          m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
          mask[j] = m;
        }
        src0 += src0_stride;
        src1 += src1_stride;
        mask += w;
      }
    }
  }
}

void av1_build_compound_diffwtd_mask_highbd_c(
    uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint8_t *src0,
    int src0_stride, const uint8_t *src1, int src1_stride, int h, int w,
    int bd) {
  switch (mask_type) {
    case DIFFWTD_38:
      diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
                          CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
      break;
    case DIFFWTD_38_INV:
      diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
                          CONVERT_TO_SHORTPTR(src1), src1_stride, h, w, bd);
      break;
    default: assert(0);
  }
}

static AOM_INLINE void init_wedge_master_masks(void) {
  int i, j;
  const int w = MASK_MASTER_SIZE;
  const int h = MASK_MASTER_SIZE;
  const int stride = MASK_MASTER_STRIDE;
  // Note: index [0] stores the masters, and [1] its complement.
  // Generate prototype by shifting the masters
  int shift = h / 4;
  for (i = 0; i < h; i += 2) {
    shift_copy(wedge_master_oblique_even,
               &wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift,
               MASK_MASTER_SIZE);
    shift--;
    shift_copy(wedge_master_oblique_odd,
               &wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift,
               MASK_MASTER_SIZE);
    memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride],
           wedge_master_vertical,
           MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
    memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride],
           wedge_master_vertical,
           MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
  }

  for (i = 0; i < h; ++i) {
    for (j = 0; j < w; ++j) {
      const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j];
      wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk;
      wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
          wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
              (1 << WEDGE_WEIGHT_BITS) - msk;
      wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] =
          wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] =
              (1 << WEDGE_WEIGHT_BITS) - msk;
      wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
          wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk;
      const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j];
      wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
      wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] =
          wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] =
              (1 << WEDGE_WEIGHT_BITS) - mskx;
    }
  }
}

static AOM_INLINE void init_wedge_masks(void) {
  uint8_t *dst = wedge_mask_buf;
  BLOCK_SIZE bsize;
  memset(wedge_masks, 0, sizeof(wedge_masks));
  for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
    const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize];
    const int wtypes = wedge_params->wedge_types;
    if (wtypes == 0) continue;
    const uint8_t *mask;
    const int bw = block_size_wide[bsize];
    const int bh = block_size_high[bsize];
    int w;
    for (w = 0; w < wtypes; ++w) {
      mask = get_wedge_mask_inplace(w, 0, bsize);
      aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
                        bh);
      wedge_params->masks[0][w] = dst;
      dst += bw * bh;

      mask = get_wedge_mask_inplace(w, 1, bsize);
      aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
                        bh);
      wedge_params->masks[1][w] = dst;
      dst += bw * bh;
    }
    assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
  }
}

/* clang-format off */
static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
  60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
  31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
  16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10,  9,  9,  9,  8,
  8,  8,  8,  7,  7,  7,  7,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  4,  4,
  4,  4,  4,  4,  4,  4,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2,  2,  2,  2,
  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  1,  1,  1,  1,  1,  1,  1,  1,
  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
};
static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
    32, 16, 16, 16, 8, 8, 8, 4,
    4,  4,  2,  2,  2, 1, 1, 1,
    8,  8,  4,  4,  2, 2
};
/* clang-format on */

static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride,
                                                    BLOCK_SIZE plane_bsize,
                                                    INTERINTRA_MODE mode) {
  int i, j;
  const int bw = block_size_wide[plane_bsize];
  const int bh = block_size_high[plane_bsize];
  const int size_scale = ii_size_scales[plane_bsize];

  switch (mode) {
    case II_V_PRED:
      for (i = 0; i < bh; ++i) {
        memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
        mask += stride;
      }
      break;

    case II_H_PRED:
      for (i = 0; i < bh; ++i) {
        for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
        mask += stride;
      }
      break;

    case II_SMOOTH_PRED:
      for (i = 0; i < bh; ++i) {
        for (j = 0; j < bw; ++j)
          mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
        mask += stride;
      }
      break;

    case II_DC_PRED:
    default:
      for (i = 0; i < bh; ++i) {
        memset(mask, 32, bw * sizeof(mask[0]));
        mask += stride;
      }
      break;
  }
}

static AOM_INLINE void init_smooth_interintra_masks(void) {
  for (int m = 0; m < INTERINTRA_MODES; ++m) {
    for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) {
      const int bw = block_size_wide[bs];
      const int bh = block_size_high[bs];
      if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue;
      build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs,
                                   m);
    }
  }
}

// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
static void init_all_wedge_masks(void) {
  init_wedge_master_masks();
  init_wedge_masks();
  init_smooth_interintra_masks();
}

void av1_init_wedge_masks(void) { aom_once(init_all_wedge_masks); }

static AOM_INLINE void build_masked_compound_no_round(
    uint8_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
    const CONV_BUF_TYPE *src1, int src1_stride,
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
    int w, InterPredParams *inter_pred_params) {
  const int ssy = inter_pred_params->subsampling_y;
  const int ssx = inter_pred_params->subsampling_x;
  const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
  const int mask_stride = block_size_wide[sb_type];
#if CONFIG_AV1_HIGHBITDEPTH
  if (inter_pred_params->use_hbd_buf) {
    aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
                                  src1_stride, mask, mask_stride, w, h, ssx,
                                  ssy, &inter_pred_params->conv_params,
                                  inter_pred_params->bit_depth);
  } else {
    aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
                                 src1_stride, mask, mask_stride, w, h, ssx, ssy,
                                 &inter_pred_params->conv_params);
  }
#else
  aom_lowbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
                               src1_stride, mask, mask_stride, w, h, ssx, ssy,
                               &inter_pred_params->conv_params);
#endif
}

static void make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
                                        uint8_t *dst, int dst_stride,
                                        InterPredParams *inter_pred_params,
                                        const SubpelParams *subpel_params) {
  const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp;
  BLOCK_SIZE sb_type = inter_pred_params->sb_type;

  // We're going to call av1_make_inter_predictor to generate a prediction into
  // a temporary buffer, then will blend that temporary buffer with that from
  // the other reference.
  DECLARE_ALIGNED(32, uint8_t, tmp_buf[2 * MAX_SB_SQUARE]);
  uint8_t *tmp_dst =
      inter_pred_params->use_hbd_buf ? CONVERT_TO_BYTEPTR(tmp_buf) : tmp_buf;

  const int tmp_buf_stride = MAX_SB_SIZE;
  CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst;
  int org_dst_stride = inter_pred_params->conv_params.dst_stride;
  CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
  inter_pred_params->conv_params.dst = tmp_buf16;
  inter_pred_params->conv_params.dst_stride = tmp_buf_stride;
  assert(inter_pred_params->conv_params.do_average == 0);

  // This will generate a prediction in tmp_buf for the second reference
  av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE,
                           inter_pred_params, subpel_params);

  if (!inter_pred_params->conv_params.plane &&
      comp_data->type == COMPOUND_DIFFWTD) {
    av1_build_compound_diffwtd_mask_d16(
        comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
        tmp_buf16, tmp_buf_stride, inter_pred_params->block_height,
        inter_pred_params->block_width, &inter_pred_params->conv_params,
        inter_pred_params->bit_depth);
  }
  build_masked_compound_no_round(
      dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride,
      comp_data, sb_type, inter_pred_params->block_height,
      inter_pred_params->block_width, inter_pred_params);
}

void av1_build_one_inter_predictor(
    uint8_t *dst, int dst_stride, const MV *const src_mv,
    InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
    int ref, uint8_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) {
  SubpelParams subpel_params;
  uint8_t *src;
  int src_stride;
  calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref,
                          mc_buf, &src, &subpel_params, &src_stride);

  if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
      inter_pred_params->comp_mode == UNIFORM_COMP) {
    av1_make_inter_predictor(src, src_stride, dst, dst_stride,
                             inter_pred_params, &subpel_params);
  } else {
    make_masked_inter_predictor(src, src_stride, dst, dst_stride,
                                inter_pred_params, &subpel_params);
  }
}

void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm,
                                     const MB_MODE_INFO *mbmi, int *fwd_offset,
                                     int *bck_offset,
                                     int *use_dist_wtd_comp_avg,
                                     int is_compound) {
  assert(fwd_offset != NULL && bck_offset != NULL);
  if (!is_compound || mbmi->compound_idx) {
    *fwd_offset = 8;
    *bck_offset = 8;
    *use_dist_wtd_comp_avg = 0;
    return;
  }

  *use_dist_wtd_comp_avg = 1;
  const RefCntBuffer *const bck_buf = get_ref_frame_buf(cm, mbmi->ref_frame[0]);
  const RefCntBuffer *const fwd_buf = get_ref_frame_buf(cm, mbmi->ref_frame[1]);
  const int cur_frame_index = cm->cur_frame->order_hint;
  int bck_frame_index = 0, fwd_frame_index = 0;

  if (bck_buf != NULL) bck_frame_index = bck_buf->order_hint;
  if (fwd_buf != NULL) fwd_frame_index = fwd_buf->order_hint;

  int d0 = clamp(abs(get_relative_dist(&cm->seq_params->order_hint_info,
                                       fwd_frame_index, cur_frame_index)),
                 0, MAX_FRAME_DISTANCE);
  int d1 = clamp(abs(get_relative_dist(&cm->seq_params->order_hint_info,
                                       cur_frame_index, bck_frame_index)),
                 0, MAX_FRAME_DISTANCE);

  const int order = d0 <= d1;

  if (d0 == 0 || d1 == 0) {
    *fwd_offset = quant_dist_lookup_table[3][order];
    *bck_offset = quant_dist_lookup_table[3][1 - order];
    return;
  }

  int i;
  for (i = 0; i < 3; ++i) {
    int c0 = quant_dist_weight[i][order];
    int c1 = quant_dist_weight[i][!order];
    int d0_c0 = d0 * c0;
    int d1_c1 = d1 * c1;
    if ((d0 > d1 && d0_c0 < d1_c1) || (d0 <= d1 && d0_c0 > d1_c1)) break;
  }

  *fwd_offset = quant_dist_lookup_table[i][order];
  *bck_offset = quant_dist_lookup_table[i][1 - order];
}

// True if the following hold:
//  1. Not intrabc and not build_for_obmc
//  2. At least one dimension is size 4 with subsampling
//  3. If sub-sampled, none of the previous blocks around the sub-sample
//     are intrabc or inter-blocks
static bool is_sub8x8_inter(const MACROBLOCKD *xd, int plane, BLOCK_SIZE bsize,
                            int is_intrabc, int build_for_obmc) {
  if (is_intrabc || build_for_obmc) {
    return false;
  }

  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int ss_x = pd->subsampling_x;
  const int ss_y = pd->subsampling_y;
  const int is_sub4_x = (block_size_wide[bsize] == 4) && ss_x;
  const int is_sub4_y = (block_size_high[bsize] == 4) && ss_y;
  if (!is_sub4_x && !is_sub4_y) {
    return false;
  }

  // For sub8x8 chroma blocks, we may be covering more than one luma block's
  // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
  // the top-left corner of the prediction source - the correct top-left corner
  // is at (pre_x, pre_y).
  const int row_start = is_sub4_y ? -1 : 0;
  const int col_start = is_sub4_x ? -1 : 0;

  for (int row = row_start; row <= 0; ++row) {
    for (int col = col_start; col <= 0; ++col) {
      const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
      if (!is_inter_block(this_mbmi)) return false;
      if (is_intrabc_block(this_mbmi)) return false;
    }
  }
  return true;
}

static void build_inter_predictors_sub8x8(
    const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
    int mi_x, int mi_y, uint8_t **mc_buf,
    CalcSubpelParamsFunc calc_subpel_params_func) {
  const BLOCK_SIZE bsize = mi->bsize;
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const bool ss_x = pd->subsampling_x;
  const bool ss_y = pd->subsampling_y;
  const int b4_w = block_size_wide[bsize] >> ss_x;
  const int b4_h = block_size_high[bsize] >> ss_y;
  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
  const int b8_w = block_size_wide[plane_bsize];
  const int b8_h = block_size_high[plane_bsize];
  const int is_compound = has_second_ref(mi);
  assert(!is_compound);
  assert(!is_intrabc_block(mi));

  // For sub8x8 chroma blocks, we may be covering more than one luma block's
  // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
  // the top-left corner of the prediction source - the correct top-left corner
  // is at (pre_x, pre_y).
  const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
  const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
  const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
  const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;

  int row = row_start;
  for (int y = 0; y < b8_h; y += b4_h) {
    int col = col_start;
    for (int x = 0; x < b8_w; x += b4_w) {
      MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
      struct buf_2d *const dst_buf = &pd->dst;
      uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
      int ref = 0;
      const RefCntBuffer *ref_buf =
          get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
      const struct scale_factors *ref_scale_factors =
          get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
      const struct scale_factors *const sf = ref_scale_factors;
      const struct buf_2d pre_buf = {
        NULL,
        (plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
        ref_buf->buf.uv_crop_width,
        ref_buf->buf.uv_crop_height,
        ref_buf->buf.uv_stride,
      };

      const MV mv = this_mbmi->mv[ref].as_mv;

      InterPredParams inter_pred_params;
      av1_init_inter_params(&inter_pred_params, b4_w, b4_h, pre_y + y,
                            pre_x + x, pd->subsampling_x, pd->subsampling_y,
                            xd->bd, is_cur_buf_hbd(xd), mi->use_intrabc, sf,
                            &pre_buf, this_mbmi->interp_filters);
      inter_pred_params.conv_params =
          get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd);

      av1_build_one_inter_predictor(dst, dst_buf->stride, &mv,
                                    &inter_pred_params, xd, mi_x + x, mi_y + y,
                                    ref, mc_buf, calc_subpel_params_func);

      ++col;
    }
    ++row;
  }
}

static void build_inter_predictors_8x8_and_bigger(
    const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
    int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint8_t **mc_buf,
    CalcSubpelParamsFunc calc_subpel_params_func) {
  const int is_compound = has_second_ref(mi);
  const int is_intrabc = is_intrabc_block(mi);
  assert(IMPLIES(is_intrabc, !is_compound));
  struct macroblockd_plane *const pd = &xd->plane[plane];
  struct buf_2d *const dst_buf = &pd->dst;
  uint8_t *const dst = dst_buf->buf;

  int is_global[2] = { 0, 0 };
  for (int ref = 0; ref < 1 + is_compound; ++ref) {
    const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
    is_global[ref] = is_global_mv_block(mi, wm->wmtype);
  }

  const BLOCK_SIZE bsize = mi->bsize;
  const int ss_x = pd->subsampling_x;
  const int ss_y = pd->subsampling_y;
  const int row_start =
      (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0;
  const int col_start =
      (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0;
  const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
  const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;

  for (int ref = 0; ref < 1 + is_compound; ++ref) {
    const struct scale_factors *const sf =
        is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
    struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
    const MV mv = mi->mv[ref].as_mv;
    const WarpTypesAllowed warp_types = { is_global[ref],
                                          mi->motion_mode == WARPED_CAUSAL };

    InterPredParams inter_pred_params;
    av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
                          pd->subsampling_x, pd->subsampling_y, xd->bd,
                          is_cur_buf_hbd(xd), mi->use_intrabc, sf, pre_buf,
                          mi->interp_filters);
    if (is_compound) av1_init_comp_mode(&inter_pred_params);
    inter_pred_params.conv_params = get_conv_params_no_round(
        ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);

    av1_dist_wtd_comp_weight_assign(
        cm, mi, &inter_pred_params.conv_params.fwd_offset,
        &inter_pred_params.conv_params.bck_offset,
        &inter_pred_params.conv_params.use_dist_wtd_comp_avg, is_compound);

    if (!build_for_obmc)
      av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);

    if (is_masked_compound_type(mi->interinter_comp.type)) {
      inter_pred_params.sb_type = mi->bsize;
      inter_pred_params.mask_comp = mi->interinter_comp;
      if (ref == 1) {
        inter_pred_params.conv_params.do_average = 0;
        inter_pred_params.comp_mode = MASK_COMP;
      }
      // Assign physical buffer.
      inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
    }

    av1_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params,
                                  xd, mi_x, mi_y, ref, mc_buf,
                                  calc_subpel_params_func);
  }
}

void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                int plane, const MB_MODE_INFO *mi,
                                int build_for_obmc, int bw, int bh, int mi_x,
                                int mi_y, uint8_t **mc_buf,
                                CalcSubpelParamsFunc calc_subpel_params_func) {
  if (is_sub8x8_inter(xd, plane, mi->bsize, is_intrabc_block(mi),
                      build_for_obmc)) {
    assert(bw < 8 || bh < 8);
    build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf,
                                  calc_subpel_params_func);
  } else {
    build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi, build_for_obmc, bw,
                                          bh, mi_x, mi_y, mc_buf,
                                          calc_subpel_params_func);
  }
}
void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
                          const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
                          const int plane_start, const int plane_end) {
  // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
  // the static analysis warnings.
  for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
    struct macroblockd_plane *const pd = &planes[i];
    const int is_uv = i > 0;
    setup_pred_plane(&pd->dst, bsize, src->buffers[i], src->crop_widths[is_uv],
                     src->crop_heights[is_uv], src->strides[is_uv], mi_row,
                     mi_col, NULL, pd->subsampling_x, pd->subsampling_y);
  }
}

void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
                          const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
                          const struct scale_factors *sf,
                          const int num_planes) {
  if (src != NULL) {
    // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
    // the static analysis warnings.
    for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
      struct macroblockd_plane *const pd = &xd->plane[i];
      const int is_uv = i > 0;
      setup_pred_plane(&pd->pre[idx], xd->mi[0]->bsize, src->buffers[i],
                       src->crop_widths[is_uv], src->crop_heights[is_uv],
                       src->strides[is_uv], mi_row, mi_col, sf,
                       pd->subsampling_x, pd->subsampling_y);
    }
  }
}

// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 64 };
DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 };

DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 };

static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };

static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
                                          56, 58, 60, 61, 64, 64, 64, 64 };

static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
                                          45, 47, 48, 50, 51, 52, 53, 55,
                                          56, 57, 58, 59, 60, 60, 61, 62,
                                          64, 64, 64, 64, 64, 64, 64, 64 };

static const uint8_t obmc_mask_64[64] = {
  33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
  45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
  56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
  62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};

const uint8_t *av1_get_obmc_mask(int length) {
  switch (length) {
    case 1: return obmc_mask_1;
    case 2: return obmc_mask_2;
    case 4: return obmc_mask_4;
    case 8: return obmc_mask_8;
    case 16: return obmc_mask_16;
    case 32: return obmc_mask_32;
    case 64: return obmc_mask_64;
    default: assert(0); return NULL;
  }
}

static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_row,
                                     int rel_mi_col, uint8_t op_mi_size,
                                     int dir, MB_MODE_INFO *mi, void *fun_ctxt,
                                     const int num_planes) {
  (void)xd;
  (void)rel_mi_row;
  (void)rel_mi_col;
  (void)op_mi_size;
  (void)dir;
  (void)mi;
  ++*(int *)fun_ctxt;
  (void)num_planes;
}

void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) {
  MB_MODE_INFO *mbmi = xd->mi[0];

  mbmi->overlappable_neighbors = 0;

  if (!is_motion_variation_allowed_bsize(mbmi->bsize)) return;

  foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_int_ptr,
                                &mbmi->overlappable_neighbors);
  if (mbmi->overlappable_neighbors) return;
  foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_int_ptr,
                               &mbmi->overlappable_neighbors);
}

// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if
// block-size of current plane is smaller than 8x8, always only blend with the
// left neighbor(s) (skip blending with the above side).
#define DISABLE_CHROMA_U8X8_OBMC 0  // 0: one-sided obmc; 1: disable

int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
                               const struct macroblockd_plane *pd, int dir) {
  assert(is_motion_variation_allowed_bsize(bsize));

  const BLOCK_SIZE bsize_plane =
      get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
  switch (bsize_plane) {
#if DISABLE_CHROMA_U8X8_OBMC
    case BLOCK_4X4:
    case BLOCK_8X4:
    case BLOCK_4X8: return 1; break;
#else
    case BLOCK_4X4:
    case BLOCK_8X4:
    case BLOCK_4X8: return dir == 0; break;
#endif
    default: return 0;
  }
}

void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
  mbmi->ref_frame[1] = NONE_FRAME;
  mbmi->interinter_comp.type = COMPOUND_AVERAGE;

  return;
}

struct obmc_inter_pred_ctxt {
  uint8_t **adjacent;
  int *adjacent_stride;
};

static INLINE void build_obmc_inter_pred_above(
    MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
    int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) {
  (void)above_mi;
  (void)rel_mi_row;
  (void)dir;
  struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
  const int overlap =
      AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;

  for (int plane = 0; plane < num_planes; ++plane) {
    const struct macroblockd_plane *pd = &xd->plane[plane];
    const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
    const int bh = overlap >> pd->subsampling_y;
    const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;

    if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;

    const int dst_stride = pd->dst.stride;
    uint8_t *const dst = &pd->dst.buf[plane_col];
    const int tmp_stride = ctxt->adjacent_stride[plane];
    const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col];
    const uint8_t *const mask = av1_get_obmc_mask(bh);
#if CONFIG_AV1_HIGHBITDEPTH
    const int is_hbd = is_cur_buf_hbd(xd);
    if (is_hbd)
      aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
                                 tmp_stride, mask, bw, bh, xd->bd);
    else
      aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
                          mask, bw, bh);
#else
    aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask,
                        bw, bh);
#endif
  }
}

static INLINE void build_obmc_inter_pred_left(
    MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
    int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) {
  (void)left_mi;
  (void)rel_mi_col;
  (void)dir;
  struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
  const int overlap =
      AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;

  for (int plane = 0; plane < num_planes; ++plane) {
    const struct macroblockd_plane *pd = &xd->plane[plane];
    const int bw = overlap >> pd->subsampling_x;
    const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y;
    const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;

    if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;

    const int dst_stride = pd->dst.stride;
    uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride];
    const int tmp_stride = ctxt->adjacent_stride[plane];
    const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
    const uint8_t *const mask = av1_get_obmc_mask(bw);

#if CONFIG_AV1_HIGHBITDEPTH
    const int is_hbd = is_cur_buf_hbd(xd);
    if (is_hbd)
      aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
                                 tmp_stride, mask, bw, bh, xd->bd);
    else
      aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
                          mask, bw, bh);
#else
    aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask,
                        bw, bh);
#endif
  }
}

// This function combines motion compensated predictions that are generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                     uint8_t *above[MAX_MB_PLANE],
                                     int above_stride[MAX_MB_PLANE],
                                     uint8_t *left[MAX_MB_PLANE],
                                     int left_stride[MAX_MB_PLANE]) {
  const BLOCK_SIZE bsize = xd->mi[0]->bsize;

  // handle above row
  struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
  foreach_overlappable_nb_above(cm, xd,
                                max_neighbor_obmc[mi_size_wide_log2[bsize]],
                                build_obmc_inter_pred_above, &ctxt_above);

  // handle left column
  struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
  foreach_overlappable_nb_left(cm, xd,
                               max_neighbor_obmc[mi_size_high_log2[bsize]],
                               build_obmc_inter_pred_left, &ctxt_left);
}

void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint8_t **dst_buf1,
                             uint8_t **dst_buf2) {
  if (is_cur_buf_hbd(xd)) {
    int len = sizeof(uint16_t);
    dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]);
    dst_buf1[1] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len);
    dst_buf1[2] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len);
    dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]);
    dst_buf2[1] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len);
    dst_buf2[2] =
        CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len);
  } else {
    dst_buf1[0] = xd->tmp_obmc_bufs[0];
    dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
    dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
    dst_buf2[0] = xd->tmp_obmc_bufs[1];
    dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
    dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
  }
}

void av1_setup_build_prediction_by_above_pred(
    MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
    MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
    const int num_planes) {
  const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->bsize);
  const int above_mi_col = xd->mi_col + rel_mi_col;

  av1_modify_neighbor_predictor_for_obmc(above_mbmi);

  for (int j = 0; j < num_planes; ++j) {
    struct macroblockd_plane *const pd = &xd->plane[j];
    setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
                     ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
                     NULL, pd->subsampling_x, pd->subsampling_y);
  }

  const int num_refs = 1 + has_second_ref(above_mbmi);

  for (int ref = 0; ref < num_refs; ++ref) {
    const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];

    const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
    const struct scale_factors *const sf =
        get_ref_scale_factors_const(ctxt->cm, frame);
    xd->block_ref_scale_factors[ref] = sf;
    if ((!av1_is_valid_scale(sf)))
      aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
                         "Reference frame has invalid dimensions");
    av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf,
                         num_planes);
  }

  xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
  xd->mb_to_right_edge =
      ctxt->mb_to_far_edge +
      (xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8;
}

void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
                                             uint8_t left_mi_height,
                                             MB_MODE_INFO *left_mbmi,
                                             struct build_prediction_ctxt *ctxt,
                                             const int num_planes) {
  const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->bsize);
  const int left_mi_row = xd->mi_row + rel_mi_row;

  av1_modify_neighbor_predictor_for_obmc(left_mbmi);

  for (int j = 0; j < num_planes; ++j) {
    struct macroblockd_plane *const pd = &xd->plane[j];
    setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
                     ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
                     NULL, pd->subsampling_x, pd->subsampling_y);
  }

  const int num_refs = 1 + has_second_ref(left_mbmi);

  for (int ref = 0; ref < num_refs; ++ref) {
    const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];

    const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
    const struct scale_factors *const ref_scale_factors =
        get_ref_scale_factors_const(ctxt->cm, frame);

    xd->block_ref_scale_factors[ref] = ref_scale_factors;
    if ((!av1_is_valid_scale(ref_scale_factors)))
      aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
                         "Reference frame has invalid dimensions");
    av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col,
                         ref_scale_factors, num_planes);
  }

  xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row));
  xd->mb_to_bottom_edge =
      ctxt->mb_to_far_edge +
      GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE);
}

static AOM_INLINE void combine_interintra(
    INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
    int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
    uint8_t *comppred, int compstride, const uint8_t *interpred,
    int interstride, const uint8_t *intrapred, int intrastride) {
  const int bw = block_size_wide[plane_bsize];
  const int bh = block_size_high[plane_bsize];

  if (use_wedge_interintra) {
    if (av1_is_wedge_used(bsize)) {
      const uint8_t *mask =
          av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
      const int subw = 2 * mi_size_wide[bsize] == bw;
      const int subh = 2 * mi_size_high[bsize] == bh;
      aom_blend_a64_mask(comppred, compstride, intrapred, intrastride,
                         interpred, interstride, mask, block_size_wide[bsize],
                         bw, bh, subw, subh);
    }
    return;
  }

  const uint8_t *mask = smooth_interintra_mask_buf[mode][plane_bsize];
  aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred,
                     interstride, mask, bw, bw, bh, 0, 0);
}

#if CONFIG_AV1_HIGHBITDEPTH
static AOM_INLINE void combine_interintra_highbd(
    INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
    int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
    uint8_t *comppred8, int compstride, const uint8_t *interpred8,
    int interstride, const uint8_t *intrapred8, int intrastride, int bd) {
  const int bw = block_size_wide[plane_bsize];
  const int bh = block_size_high[plane_bsize];

  if (use_wedge_interintra) {
    if (av1_is_wedge_used(bsize)) {
      const uint8_t *mask =
          av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
      const int subh = 2 * mi_size_high[bsize] == bh;
      const int subw = 2 * mi_size_wide[bsize] == bw;
      aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
                                interpred8, interstride, mask,
                                block_size_wide[bsize], bw, bh, subw, subh, bd);
    }
    return;
  }

  uint8_t mask[MAX_SB_SQUARE];
  build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
  aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
                            interpred8, interstride, mask, bw, bw, bh, 0, 0,
                            bd);
}
#endif

void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
                                               MACROBLOCKD *xd,
                                               BLOCK_SIZE bsize, int plane,
                                               const BUFFER_SET *ctx,
                                               uint8_t *dst, int dst_stride) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  const int ssx = xd->plane[plane].subsampling_x;
  const int ssy = xd->plane[plane].subsampling_y;
  BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
  PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
  assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
  assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
  assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0);
  assert(xd->mi[0]->use_intrabc == 0);
  const SequenceHeader *seq_params = cm->seq_params;

  av1_predict_intra_block(xd, seq_params->sb_size,
                          seq_params->enable_intra_edge_filter, pd->width,
                          pd->height, max_txsize_rect_lookup[plane_bsize], mode,
                          0, 0, FILTER_INTRA_MODES, ctx->plane[plane],
                          ctx->stride[plane], dst, dst_stride, 0, 0, plane);
}

void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
                            const uint8_t *inter_pred, int inter_stride,
                            const uint8_t *intra_pred, int intra_stride) {
  const int ssx = xd->plane[plane].subsampling_x;
  const int ssy = xd->plane[plane].subsampling_y;
  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(xd)) {
    combine_interintra_highbd(
        xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
        xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
        plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
        inter_pred, inter_stride, intra_pred, intra_stride, xd->bd);
    return;
  }
#endif
  combine_interintra(
      xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
      xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
      plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
      inter_pred, inter_stride, intra_pred, intra_stride);
}

// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                    uint8_t *pred, int stride,
                                    const BUFFER_SET *ctx, int plane,
                                    BLOCK_SIZE bsize) {
  assert(bsize < BLOCK_SIZES_ALL);
  if (is_cur_buf_hbd(xd)) {
    DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
    av1_build_intra_predictors_for_interintra(
        cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(intrapredictor),
        MAX_SB_SIZE);
    av1_combine_interintra(xd, bsize, plane, pred, stride,
                           CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
  } else {
    DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
    av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
                                              intrapredictor, MAX_SB_SIZE);
    av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
                           MAX_SB_SIZE);
  }
}