aboutsummaryrefslogtreecommitdiff
path: root/av1/encoder/ethread.c
blob: c0b0e302d9f6ffcc6d3c6489cbc51c595d14cc19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/warped_motion.h"
#include "av1/common/thread_common.h"

#include "av1/encoder/allintra_vis.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encoder_alloc.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/ethread.h"
#if !CONFIG_REALTIME_ONLY
#include "av1/encoder/firstpass.h"
#endif
#include "av1/encoder/global_motion.h"
#include "av1/encoder/global_motion_facade.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/rdopt.h"
#include "aom_dsp/aom_dsp_common.h"
#include "av1/encoder/temporal_filter.h"
#include "av1/encoder/tpl_model.h"

static AOM_INLINE void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) {
  td->rd_counts.compound_ref_used_flag |=
      td_t->rd_counts.compound_ref_used_flag;
  td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag;

  for (int i = 0; i < TX_SIZES_ALL; i++) {
    for (int j = 0; j < TX_TYPES; j++)
      td->rd_counts.tx_type_used[i][j] += td_t->rd_counts.tx_type_used[i][j];
  }

  for (int i = 0; i < BLOCK_SIZES_ALL; i++) {
    for (int j = 0; j < 2; j++) {
      td->rd_counts.obmc_used[i][j] += td_t->rd_counts.obmc_used[i][j];
    }
  }

  for (int i = 0; i < 2; i++) {
    td->rd_counts.warped_used[i] += td_t->rd_counts.warped_used[i];
  }

  td->rd_counts.seg_tmp_pred_cost[0] += td_t->rd_counts.seg_tmp_pred_cost[0];
  td->rd_counts.seg_tmp_pred_cost[1] += td_t->rd_counts.seg_tmp_pred_cost[1];

  td->rd_counts.newmv_or_intra_blocks += td_t->rd_counts.newmv_or_intra_blocks;
}

static AOM_INLINE void update_delta_lf_for_row_mt(AV1_COMP *cpi) {
  AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
  const int mib_size = cm->seq_params->mib_size;
  const int frame_lf_count =
      av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
  for (int row = 0; row < cm->tiles.rows; row++) {
    for (int col = 0; col < cm->tiles.cols; col++) {
      TileDataEnc *tile_data = &cpi->tile_data[row * cm->tiles.cols + col];
      const TileInfo *const tile_info = &tile_data->tile_info;
      for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
           mi_row += mib_size) {
        if (mi_row == tile_info->mi_row_start)
          av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
        for (int mi_col = tile_info->mi_col_start;
             mi_col < tile_info->mi_col_end; mi_col += mib_size) {
          const int idx_str = cm->mi_params.mi_stride * mi_row + mi_col;
          MB_MODE_INFO **mi = cm->mi_params.mi_grid_base + idx_str;
          MB_MODE_INFO *mbmi = mi[0];
          if (mbmi->skip_txfm == 1 &&
              (mbmi->bsize == cm->seq_params->sb_size)) {
            for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
              mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
            mbmi->delta_lf_from_base = xd->delta_lf_from_base;
          } else {
            if (cm->delta_q_info.delta_lf_multi) {
              for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
                xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
            } else {
              xd->delta_lf_from_base = mbmi->delta_lf_from_base;
            }
          }
        }
      }
    }
  }
}

void av1_row_mt_sync_read_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
                                int c) {
  (void)row_mt_sync;
  (void)r;
  (void)c;
  return;
}

void av1_row_mt_sync_write_dummy(AV1EncRowMultiThreadSync *row_mt_sync, int r,
                                 int c, int cols) {
  (void)row_mt_sync;
  (void)r;
  (void)c;
  (void)cols;
  return;
}

void av1_row_mt_sync_read(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c) {
#if CONFIG_MULTITHREAD
  const int nsync = row_mt_sync->sync_range;

  if (r) {
    pthread_mutex_t *const mutex = &row_mt_sync->mutex_[r - 1];
    pthread_mutex_lock(mutex);

    while (c > row_mt_sync->num_finished_cols[r - 1] - nsync -
                   row_mt_sync->intrabc_extra_top_right_sb_delay) {
      pthread_cond_wait(&row_mt_sync->cond_[r - 1], mutex);
    }
    pthread_mutex_unlock(mutex);
  }
#else
  (void)row_mt_sync;
  (void)r;
  (void)c;
#endif  // CONFIG_MULTITHREAD
}

void av1_row_mt_sync_write(AV1EncRowMultiThreadSync *row_mt_sync, int r, int c,
                           int cols) {
#if CONFIG_MULTITHREAD
  const int nsync = row_mt_sync->sync_range;
  int cur;
  // Only signal when there are enough encoded blocks for next row to run.
  int sig = 1;

  if (c < cols - 1) {
    cur = c;
    if (c % nsync) sig = 0;
  } else {
    cur = cols + nsync + row_mt_sync->intrabc_extra_top_right_sb_delay;
  }

  if (sig) {
    pthread_mutex_lock(&row_mt_sync->mutex_[r]);

    row_mt_sync->num_finished_cols[r] = cur;

    pthread_cond_signal(&row_mt_sync->cond_[r]);
    pthread_mutex_unlock(&row_mt_sync->mutex_[r]);
  }
#else
  (void)row_mt_sync;
  (void)r;
  (void)c;
  (void)cols;
#endif  // CONFIG_MULTITHREAD
}

// Allocate memory for row synchronization
static void row_mt_sync_mem_alloc(AV1EncRowMultiThreadSync *row_mt_sync,
                                  AV1_COMMON *cm, int rows) {
#if CONFIG_MULTITHREAD
  int i;

  CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
                  aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
  if (row_mt_sync->mutex_) {
    for (i = 0; i < rows; ++i) {
      pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
    }
  }

  CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
                  aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
  if (row_mt_sync->cond_) {
    for (i = 0; i < rows; ++i) {
      pthread_cond_init(&row_mt_sync->cond_[i], NULL);
    }
  }
#endif  // CONFIG_MULTITHREAD

  CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
                  aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));

  row_mt_sync->rows = rows;
  // Set up nsync.
  row_mt_sync->sync_range = 1;
}

// Deallocate row based multi-threading synchronization related mutex and data
static void row_mt_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
  if (row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
    int i;

    if (row_mt_sync->mutex_ != NULL) {
      for (i = 0; i < row_mt_sync->rows; ++i) {
        pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
      }
      aom_free(row_mt_sync->mutex_);
    }
    if (row_mt_sync->cond_ != NULL) {
      for (i = 0; i < row_mt_sync->rows; ++i) {
        pthread_cond_destroy(&row_mt_sync->cond_[i]);
      }
      aom_free(row_mt_sync->cond_);
    }
#endif  // CONFIG_MULTITHREAD
    aom_free(row_mt_sync->num_finished_cols);

    // clear the structure as the source of this call may be dynamic change
    // in tiles in which case this call will be followed by an _alloc()
    // which may fail.
    av1_zero(*row_mt_sync);
  }
}

static AOM_INLINE int get_sb_rows_in_frame(AV1_COMMON *cm) {
  return CEIL_POWER_OF_TWO(cm->mi_params.mi_rows,
                           cm->seq_params->mib_size_log2);
}

static void row_mt_mem_alloc(AV1_COMP *cpi, int max_rows, int max_cols,
                             int alloc_row_ctx) {
  struct AV1Common *cm = &cpi->common;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int tile_col, tile_row;

  av1_row_mt_mem_dealloc(cpi);

  // Allocate memory for row based multi-threading
  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
      int tile_index = tile_row * tile_cols + tile_col;
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];

      row_mt_sync_mem_alloc(&this_tile->row_mt_sync, cm, max_rows);

      this_tile->row_ctx = NULL;
      if (alloc_row_ctx) {
        assert(max_cols > 0);
        const int num_row_ctx = AOMMAX(1, (max_cols - 1));
        CHECK_MEM_ERROR(cm, this_tile->row_ctx,
                        (FRAME_CONTEXT *)aom_memalign(
                            16, num_row_ctx * sizeof(*this_tile->row_ctx)));
      }
    }
  }
  const int sb_rows = get_sb_rows_in_frame(cm);
  CHECK_MEM_ERROR(
      cm, enc_row_mt->num_tile_cols_done,
      aom_malloc(sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows));

  enc_row_mt->allocated_tile_cols = tile_cols;
  enc_row_mt->allocated_tile_rows = tile_rows;
  enc_row_mt->allocated_rows = max_rows;
  enc_row_mt->allocated_cols = max_cols - 1;
  enc_row_mt->allocated_sb_rows = sb_rows;
}

void av1_row_mt_mem_dealloc(AV1_COMP *cpi) {
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
  const int tile_cols = enc_row_mt->allocated_tile_cols;
  const int tile_rows = enc_row_mt->allocated_tile_rows;
  int tile_col, tile_row;

  // Free row based multi-threading sync memory
  for (tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (tile_col = 0; tile_col < tile_cols; tile_col++) {
      int tile_index = tile_row * tile_cols + tile_col;
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];

      row_mt_sync_mem_dealloc(&this_tile->row_mt_sync);

      if (cpi->oxcf.algo_cfg.cdf_update_mode) aom_free(this_tile->row_ctx);
    }
  }
  aom_free(enc_row_mt->num_tile_cols_done);
  enc_row_mt->num_tile_cols_done = NULL;
  enc_row_mt->allocated_rows = 0;
  enc_row_mt->allocated_cols = 0;
  enc_row_mt->allocated_tile_cols = 0;
  enc_row_mt->allocated_tile_rows = 0;
  enc_row_mt->allocated_sb_rows = 0;
}

static AOM_INLINE void assign_tile_to_thread(int *thread_id_to_tile_id,
                                             int num_tiles, int num_workers) {
  int tile_id = 0;
  int i;

  for (i = 0; i < num_workers; i++) {
    thread_id_to_tile_id[i] = tile_id++;
    if (tile_id == num_tiles) tile_id = 0;
  }
}

static AOM_INLINE int get_next_job(TileDataEnc *const tile_data,
                                   int *current_mi_row, int mib_size) {
  AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
  const int mi_row_end = tile_data->tile_info.mi_row_end;

  if (row_mt_sync->next_mi_row < mi_row_end) {
    *current_mi_row = row_mt_sync->next_mi_row;
    row_mt_sync->num_threads_working++;
    row_mt_sync->next_mi_row += mib_size;
    return 1;
  }
  return 0;
}

static AOM_INLINE void switch_tile_and_get_next_job(
    AV1_COMMON *const cm, TileDataEnc *const tile_data, int *cur_tile_id,
    int *current_mi_row, int *end_of_frame, int is_firstpass,
    const BLOCK_SIZE fp_block_size) {
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;

  int tile_id = -1;  // Stores the tile ID with minimum proc done
  int max_mis_to_encode = 0;
  int min_num_threads_working = INT_MAX;

  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
      int tile_index = tile_row * tile_cols + tile_col;
      TileDataEnc *const this_tile = &tile_data[tile_index];
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;

#if CONFIG_REALTIME_ONLY
      int num_b_rows_in_tile =
          av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
      int num_b_cols_in_tile =
          av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
#else
      int num_b_rows_in_tile =
          is_firstpass
              ? av1_get_unit_rows_in_tile(&this_tile->tile_info, fp_block_size)
              : av1_get_sb_rows_in_tile(cm, &this_tile->tile_info);
      int num_b_cols_in_tile =
          is_firstpass
              ? av1_get_unit_cols_in_tile(&this_tile->tile_info, fp_block_size)
              : av1_get_sb_cols_in_tile(cm, &this_tile->tile_info);
#endif
      int theoretical_limit_on_threads =
          AOMMIN((num_b_cols_in_tile + 1) >> 1, num_b_rows_in_tile);
      int num_threads_working = row_mt_sync->num_threads_working;

      if (num_threads_working < theoretical_limit_on_threads) {
        int num_mis_to_encode =
            this_tile->tile_info.mi_row_end - row_mt_sync->next_mi_row;

        // Tile to be processed by this thread is selected on the basis of
        // availability of jobs:
        // 1) If jobs are available, tile to be processed is chosen on the
        // basis of minimum number of threads working for that tile. If two or
        // more tiles have same number of threads working for them, then the
        // tile with maximum number of jobs available will be chosen.
        // 2) If no jobs are available, then end_of_frame is reached.
        if (num_mis_to_encode > 0) {
          if (num_threads_working < min_num_threads_working) {
            min_num_threads_working = num_threads_working;
            max_mis_to_encode = 0;
          }
          if (num_threads_working == min_num_threads_working &&
              num_mis_to_encode > max_mis_to_encode) {
            tile_id = tile_index;
            max_mis_to_encode = num_mis_to_encode;
          }
        }
      }
    }
  }
  if (tile_id == -1) {
    *end_of_frame = 1;
  } else {
    // Update the current tile id to the tile id that will be processed next,
    // which will be the least processed tile.
    *cur_tile_id = tile_id;
    const int unit_height = mi_size_high[fp_block_size];
    get_next_job(&tile_data[tile_id], current_mi_row,
                 is_firstpass ? unit_height : cm->seq_params->mib_size);
  }
}

#if !CONFIG_REALTIME_ONLY
static int fp_enc_row_mt_worker_hook(void *arg1, void *unused) {
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
  AV1_COMP *const cpi = thread_data->cpi;
  AV1_COMMON *const cm = &cpi->common;
  int thread_id = thread_data->thread_id;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
  int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
#if CONFIG_MULTITHREAD
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif
  (void)unused;

  assert(cur_tile_id != -1);

  const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
  const int unit_height = mi_size_high[fp_block_size];
  int end_of_frame = 0;
  while (1) {
    int current_mi_row = -1;
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(enc_row_mt_mutex_);
#endif
    if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
                      unit_height)) {
      // No jobs are available for the current tile. Query for the status of
      // other tiles and get the next job if available
      switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
                                   &current_mi_row, &end_of_frame, 1,
                                   fp_block_size);
    }
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
    if (end_of_frame == 1) break;

    TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
    AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
    ThreadData *td = thread_data->td;

    assert(current_mi_row != -1 &&
           current_mi_row < this_tile->tile_info.mi_row_end);

    const int unit_height_log2 = mi_size_high_log2[fp_block_size];
    av1_first_pass_row(cpi, td, this_tile, current_mi_row >> unit_height_log2,
                       fp_block_size);
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(enc_row_mt_mutex_);
#endif
    row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
  }

  return 1;
}
#endif

static void launch_loop_filter_rows(AV1_COMMON *cm, EncWorkerData *thread_data,
                                    AV1EncRowMultiThreadInfo *enc_row_mt,
                                    int mib_size_log2) {
  AV1LfSync *const lf_sync = (AV1LfSync *)thread_data->lf_sync;
  const int sb_rows = get_sb_rows_in_frame(cm);
  AV1LfMTInfo *cur_job_info;
  (void)enc_row_mt;
#if CONFIG_MULTITHREAD
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif

  while ((cur_job_info = get_lf_job_info(lf_sync)) != NULL) {
    LFWorkerData *const lf_data = (LFWorkerData *)thread_data->lf_data;
    const int lpf_opt_level = cur_job_info->lpf_opt_level;
    (void)sb_rows;
#if CONFIG_MULTITHREAD
    const int cur_sb_row = cur_job_info->mi_row >> mib_size_log2;
    const int next_sb_row = AOMMIN(sb_rows - 1, cur_sb_row + 1);
    // Wait for current and next superblock row to finish encoding.
    pthread_mutex_lock(enc_row_mt_mutex_);
    while (enc_row_mt->num_tile_cols_done[cur_sb_row] < cm->tiles.cols ||
           enc_row_mt->num_tile_cols_done[next_sb_row] < cm->tiles.cols) {
      pthread_cond_wait(enc_row_mt->cond_, enc_row_mt_mutex_);
    }
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
    av1_thread_loop_filter_rows(
        lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->xd,
        cur_job_info->mi_row, cur_job_info->plane, cur_job_info->dir,
        lpf_opt_level, lf_sync, lf_data->params_buf, lf_data->tx_buf,
        mib_size_log2);
  }
}

static int enc_row_mt_worker_hook(void *arg1, void *unused) {
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
  AV1_COMP *const cpi = thread_data->cpi;
  AV1_COMMON *const cm = &cpi->common;
  int thread_id = thread_data->thread_id;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
  int cur_tile_id = enc_row_mt->thread_id_to_tile_id[thread_id];
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
#if CONFIG_MULTITHREAD
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif
  (void)unused;
  // Preallocate the pc_tree for realtime coding to reduce the cost of memory
  // allocation.
  thread_data->td->rt_pc_root =
      cpi->sf.rt_sf.use_nonrd_pick_mode
          ? av1_alloc_pc_tree_node(cm->seq_params->sb_size)
          : NULL;

  assert(cur_tile_id != -1);

  const BLOCK_SIZE fp_block_size = cpi->fp_block_size;
  int end_of_frame = 0;

  // When master thread does not have a valid job to process, xd->tile_ctx
  // is not set and it contains NULL pointer. This can result in NULL pointer
  // access violation if accessed beyond the encode stage. Hence, updating
  // thread_data->td->mb.e_mbd.tile_ctx is initialized with common frame
  // context to avoid NULL pointer access in subsequent stages.
  thread_data->td->mb.e_mbd.tile_ctx = cm->fc;
  while (1) {
    int current_mi_row = -1;
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(enc_row_mt_mutex_);
#endif
    if (!get_next_job(&cpi->tile_data[cur_tile_id], &current_mi_row,
                      cm->seq_params->mib_size)) {
      // No jobs are available for the current tile. Query for the status of
      // other tiles and get the next job if available
      switch_tile_and_get_next_job(cm, cpi->tile_data, &cur_tile_id,
                                   &current_mi_row, &end_of_frame, 0,
                                   fp_block_size);
    }
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
    if (end_of_frame == 1) break;

    TileDataEnc *const this_tile = &cpi->tile_data[cur_tile_id];
    AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;
    const TileInfo *const tile_info = &this_tile->tile_info;
    const int tile_row = tile_info->tile_row;
    const int tile_col = tile_info->tile_col;
    ThreadData *td = thread_data->td;
    const int sb_row = current_mi_row >> mib_size_log2;

    assert(current_mi_row != -1 && current_mi_row <= tile_info->mi_row_end);

    td->mb.e_mbd.tile_ctx = td->tctx;
    td->mb.tile_pb_ctx = &this_tile->tctx;
    td->abs_sum_level = 0;

    if (this_tile->allow_update_cdf) {
      td->mb.row_ctx = this_tile->row_ctx;
      if (current_mi_row == tile_info->mi_row_start)
        memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
    } else {
      memcpy(td->mb.e_mbd.tile_ctx, &this_tile->tctx, sizeof(FRAME_CONTEXT));
    }

    av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
                           &td->mb.e_mbd);

    cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
    if (td->mb.txfm_search_info.mb_rd_record != NULL) {
      av1_crc32c_calculator_init(
          &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
    }

    av1_encode_sb_row(cpi, td, tile_row, tile_col, current_mi_row);
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(enc_row_mt_mutex_);
#endif
    this_tile->abs_sum_level += td->abs_sum_level;
    row_mt_sync->num_threads_working--;
    enc_row_mt->num_tile_cols_done[sb_row]++;
#if CONFIG_MULTITHREAD
    pthread_cond_broadcast(enc_row_mt->cond_);
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
  }
  if (cpi->mt_info.pipeline_lpf_mt_with_enc &&
      (cm->lf.filter_level[PLANE_TYPE_Y] ||
       cm->lf.filter_level[PLANE_TYPE_UV])) {
    // Loop-filter a superblock row if encoding of the current and next
    // superblock row is complete.
    // TODO(deepa.kg @ittiam.com) Evaluate encoder speed by interleaving
    // encoding and loop filter stage.
    launch_loop_filter_rows(cm, thread_data, enc_row_mt, mib_size_log2);
  }
  av1_free_pc_tree_recursive(thread_data->td->rt_pc_root, av1_num_planes(cm), 0,
                             0);
  return 1;
}

static int enc_worker_hook(void *arg1, void *unused) {
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
  AV1_COMP *const cpi = thread_data->cpi;
  const AV1_COMMON *const cm = &cpi->common;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int t;

  (void)unused;
  // Preallocate the pc_tree for realtime coding to reduce the cost of memory
  // allocation.
  thread_data->td->rt_pc_root =
      cpi->sf.rt_sf.use_nonrd_pick_mode
          ? av1_alloc_pc_tree_node(cm->seq_params->sb_size)
          : NULL;

  for (t = thread_data->start; t < tile_rows * tile_cols;
       t += cpi->mt_info.num_workers) {
    int tile_row = t / tile_cols;
    int tile_col = t % tile_cols;

    TileDataEnc *const this_tile =
        &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
    thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;
    thread_data->td->mb.tile_pb_ctx = &this_tile->tctx;
    av1_encode_tile(cpi, thread_data->td, tile_row, tile_col);
  }

  av1_free_pc_tree_recursive(thread_data->td->rt_pc_root, av1_num_planes(cm), 0,
                             0);

  return 1;
}

void av1_init_frame_mt(AV1_PRIMARY *ppi, AV1_COMP *cpi) {
  cpi->mt_info.workers = ppi->p_mt_info.workers;
  cpi->mt_info.num_workers = ppi->p_mt_info.num_workers;
  cpi->mt_info.tile_thr_data = ppi->p_mt_info.tile_thr_data;
  int i;
  for (i = MOD_FP; i < NUM_MT_MODULES; i++) {
    cpi->mt_info.num_mod_workers[i] =
        AOMMIN(cpi->mt_info.num_workers, ppi->p_mt_info.num_mod_workers[i]);
  }
}

void av1_init_cdef_worker(AV1_COMP *cpi) {
  // The allocation is done only for level 0 parallel frames. No change
  // in config is supported in the middle of a parallel encode set, since the
  // rest of the MT modules also do not support dynamic change of config.
  if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) return;
  PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
  int num_cdef_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_CDEF);

  av1_alloc_cdef_buffers(&cpi->common, &p_mt_info->cdef_worker,
                         &cpi->mt_info.cdef_sync, num_cdef_workers, 1);
  cpi->mt_info.cdef_worker = p_mt_info->cdef_worker;
}

#if !CONFIG_REALTIME_ONLY
void av1_init_lr_mt_buffers(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  AV1LrSync *lr_sync = &cpi->mt_info.lr_row_sync;
  if (lr_sync->sync_range) {
    int num_lr_workers =
        av1_get_num_mod_workers_for_alloc(&cpi->ppi->p_mt_info, MOD_LR);
    if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)
      return;
    lr_sync->lrworkerdata[num_lr_workers - 1].rst_tmpbuf = cm->rst_tmpbuf;
    lr_sync->lrworkerdata[num_lr_workers - 1].rlbs = cm->rlbs;
  }
}
#endif

#if CONFIG_MULTITHREAD
void av1_init_mt_sync(AV1_COMP *cpi, int is_first_pass) {
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;

  // Initialize enc row MT object.
  if (is_first_pass || cpi->oxcf.row_mt == 1) {
    AV1EncRowMultiThreadInfo *enc_row_mt = &mt_info->enc_row_mt;
    if (enc_row_mt->mutex_ == NULL) {
      CHECK_MEM_ERROR(cm, enc_row_mt->mutex_,
                      aom_malloc(sizeof(*(enc_row_mt->mutex_))));
      if (enc_row_mt->mutex_) pthread_mutex_init(enc_row_mt->mutex_, NULL);
    }
    if (enc_row_mt->cond_ == NULL) {
      CHECK_MEM_ERROR(cm, enc_row_mt->cond_,
                      aom_malloc(sizeof(*(enc_row_mt->cond_))));
      if (enc_row_mt->cond_) pthread_cond_init(enc_row_mt->cond_, NULL);
    }
  }

  if (!is_first_pass) {
    // Initialize global motion MT object.
    AV1GlobalMotionSync *gm_sync = &mt_info->gm_sync;
    if (gm_sync->mutex_ == NULL) {
      CHECK_MEM_ERROR(cm, gm_sync->mutex_,
                      aom_malloc(sizeof(*(gm_sync->mutex_))));
      if (gm_sync->mutex_) pthread_mutex_init(gm_sync->mutex_, NULL);
    }
#if !CONFIG_REALTIME_ONLY
    // Initialize temporal filtering MT object.
    AV1TemporalFilterSync *tf_sync = &mt_info->tf_sync;
    if (tf_sync->mutex_ == NULL) {
      CHECK_MEM_ERROR(cm, tf_sync->mutex_,
                      aom_malloc(sizeof(*tf_sync->mutex_)));
      if (tf_sync->mutex_) pthread_mutex_init(tf_sync->mutex_, NULL);
    }
#endif  // !CONFIG_REALTIME_ONLY
        // Initialize CDEF MT object.
    AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
    if (cdef_sync->mutex_ == NULL) {
      CHECK_MEM_ERROR(cm, cdef_sync->mutex_,
                      aom_malloc(sizeof(*(cdef_sync->mutex_))));
      if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
    }

    // Initialize loop filter MT object.
    AV1LfSync *lf_sync = &mt_info->lf_row_sync;
    // Number of superblock rows
    const int sb_rows =
        CEIL_POWER_OF_TWO(cm->height >> MI_SIZE_LOG2, MAX_MIB_SIZE_LOG2);
    PrimaryMultiThreadInfo *const p_mt_info = &cpi->ppi->p_mt_info;
    int num_lf_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LPF);

    if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
        num_lf_workers > lf_sync->num_workers) {
      av1_loop_filter_dealloc(lf_sync);
      av1_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_lf_workers);
    }

#if !CONFIG_REALTIME_ONLY
    if (is_restoration_used(cm)) {
      // Initialize loop restoration MT object.
      AV1LrSync *lr_sync = &mt_info->lr_row_sync;
      int rst_unit_size;
      if (cm->width * cm->height > 352 * 288)
        rst_unit_size = RESTORATION_UNITSIZE_MAX;
      else
        rst_unit_size = (RESTORATION_UNITSIZE_MAX >> 1);
      int num_rows_lr = av1_lr_count_units_in_tile(rst_unit_size, cm->height);
      int num_lr_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_LR);
      if (!lr_sync->sync_range || num_rows_lr > lr_sync->rows ||
          num_lr_workers > lr_sync->num_workers ||
          MAX_MB_PLANE > lr_sync->num_planes) {
        av1_loop_restoration_dealloc(lr_sync, num_lr_workers);
        av1_loop_restoration_alloc(lr_sync, cm, num_lr_workers, num_rows_lr,
                                   MAX_MB_PLANE, cm->width);
      }
    }
#endif

    // Initialization of pack bitstream MT object.
    AV1EncPackBSSync *pack_bs_sync = &mt_info->pack_bs_sync;
    if (pack_bs_sync->mutex_ == NULL) {
      CHECK_MEM_ERROR(cm, pack_bs_sync->mutex_,
                      aom_malloc(sizeof(*pack_bs_sync->mutex_)));
      if (pack_bs_sync->mutex_) pthread_mutex_init(pack_bs_sync->mutex_, NULL);
    }
  }
}
#endif  // CONFIG_MULTITHREAD

// Computes the number of workers to be considered while allocating memory for a
// multi-threaded module under FPMT.
int av1_get_num_mod_workers_for_alloc(PrimaryMultiThreadInfo *const p_mt_info,
                                      MULTI_THREADED_MODULES mod_name) {
  int num_mod_workers = p_mt_info->num_mod_workers[mod_name];
  if (p_mt_info->num_mod_workers[MOD_FRAME_ENC] > 1) {
    // TODO(anyone): Change num_mod_workers to num_mod_workers[MOD_FRAME_ENC].
    // As frame parallel jobs will only perform multi-threading for the encode
    // stage, we can limit the allocations according to num_enc_workers per
    // frame parallel encode(a.k.a num_mod_workers[MOD_FRAME_ENC]).
    num_mod_workers = p_mt_info->num_workers;
  }
  return num_mod_workers;
}

void av1_init_tile_thread_data(AV1_PRIMARY *ppi, int is_first_pass) {
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;

  assert(p_mt_info->workers != NULL);
  assert(p_mt_info->tile_thr_data != NULL);

  int num_workers = p_mt_info->num_workers;
  int num_enc_workers = av1_get_num_mod_workers_for_alloc(p_mt_info, MOD_ENC);
  for (int i = num_workers - 1; i >= 0; i--) {
    EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];

    if (i > 0) {
      // Allocate thread data.
      AOM_CHECK_MEM_ERROR(&ppi->error, thread_data->td,
                          aom_memalign(32, sizeof(*thread_data->td)));
      av1_zero(*thread_data->td);
      thread_data->original_td = thread_data->td;

      // Set up shared coeff buffers.
      av1_setup_shared_coeff_buffer(
          &ppi->seq_params, &thread_data->td->shared_coeff_buf, &ppi->error);
      AOM_CHECK_MEM_ERROR(
          &ppi->error, thread_data->td->tmp_conv_dst,
          aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
                               sizeof(*thread_data->td->tmp_conv_dst)));

      if (i < p_mt_info->num_mod_workers[MOD_FP]) {
        // Set up firstpass PICK_MODE_CONTEXT.
        thread_data->td->firstpass_ctx = av1_alloc_pmc(
            ppi->cpi, BLOCK_16X16, &thread_data->td->shared_coeff_buf);
      }

      if (!is_first_pass && i < num_enc_workers) {
        // Set up sms_tree.
        av1_setup_sms_tree(ppi->cpi, thread_data->td);

        for (int x = 0; x < 2; x++)
          for (int y = 0; y < 2; y++)
            AOM_CHECK_MEM_ERROR(
                &ppi->error, thread_data->td->hash_value_buffer[x][y],
                (uint32_t *)aom_malloc(
                    AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
                    sizeof(*thread_data->td->hash_value_buffer[0][0])));

        // Allocate frame counters in thread data.
        AOM_CHECK_MEM_ERROR(&ppi->error, thread_data->td->counts,
                            aom_calloc(1, sizeof(*thread_data->td->counts)));

        // Allocate buffers used by palette coding mode.
        AOM_CHECK_MEM_ERROR(
            &ppi->error, thread_data->td->palette_buffer,
            aom_memalign(16, sizeof(*thread_data->td->palette_buffer)));

        // The buffers 'tmp_pred_bufs[]', 'comp_rd_buffer' and 'obmc_buffer' are
        // used in inter frames to store intermediate inter mode prediction
        // results and are not required for allintra encoding mode. Hence, the
        // memory allocations for these buffers are avoided for allintra
        // encoding mode.
        if (ppi->cpi->oxcf.kf_cfg.key_freq_max != 0) {
          alloc_obmc_buffers(&thread_data->td->obmc_buffer, &ppi->error);

          alloc_compound_type_rd_buffers(&ppi->error,
                                         &thread_data->td->comp_rd_buffer);

          for (int j = 0; j < 2; ++j) {
            AOM_CHECK_MEM_ERROR(
                &ppi->error, thread_data->td->tmp_pred_bufs[j],
                aom_memalign(32,
                             2 * MAX_MB_PLANE * MAX_SB_SQUARE *
                                 sizeof(*thread_data->td->tmp_pred_bufs[j])));
          }
        }

        if (is_gradient_caching_for_hog_enabled(ppi->cpi)) {
          const int plane_types = PLANE_TYPES >> ppi->seq_params.monochrome;
          AOM_CHECK_MEM_ERROR(
              &ppi->error, thread_data->td->pixel_gradient_info,
              aom_malloc(sizeof(*thread_data->td->pixel_gradient_info) *
                         plane_types * MAX_SB_SQUARE));
        }

        if (is_src_var_for_4x4_sub_blocks_caching_enabled(ppi->cpi)) {
          const BLOCK_SIZE sb_size = ppi->cpi->common.seq_params->sb_size;
          const int mi_count_in_sb =
              mi_size_wide[sb_size] * mi_size_high[sb_size];

          AOM_CHECK_MEM_ERROR(
              &ppi->error, thread_data->td->src_var_info_of_4x4_sub_blocks,
              aom_malloc(
                  sizeof(*thread_data->td->src_var_info_of_4x4_sub_blocks) *
                  mi_count_in_sb));
        }

        if (ppi->cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION) {
          const int num_64x64_blocks =
              (ppi->seq_params.sb_size == BLOCK_64X64) ? 1 : 4;
          AOM_CHECK_MEM_ERROR(
              &ppi->error, thread_data->td->vt64x64,
              aom_malloc(sizeof(*thread_data->td->vt64x64) * num_64x64_blocks));
        }
      }
    }

    if (!is_first_pass && ppi->cpi->oxcf.row_mt == 1 && i < num_enc_workers) {
      if (i == 0) {
        for (int j = 0; j < ppi->num_fp_contexts; j++) {
          AOM_CHECK_MEM_ERROR(&ppi->error, ppi->parallel_cpi[j]->td.tctx,
                              (FRAME_CONTEXT *)aom_memalign(
                                  16, sizeof(*ppi->parallel_cpi[j]->td.tctx)));
        }
      } else {
        AOM_CHECK_MEM_ERROR(
            &ppi->error, thread_data->td->tctx,
            (FRAME_CONTEXT *)aom_memalign(16, sizeof(*thread_data->td->tctx)));
      }
    }
  }
}

void av1_create_workers(AV1_PRIMARY *ppi, int num_workers) {
  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();

  AOM_CHECK_MEM_ERROR(&ppi->error, p_mt_info->workers,
                      aom_malloc(num_workers * sizeof(*p_mt_info->workers)));

  AOM_CHECK_MEM_ERROR(
      &ppi->error, p_mt_info->tile_thr_data,
      aom_calloc(num_workers, sizeof(*p_mt_info->tile_thr_data)));

  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &p_mt_info->workers[i];
    EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[i];

    winterface->init(worker);
    worker->thread_name = "aom enc worker";

    thread_data->thread_id = i;
    // Set the starting tile for each thread.
    thread_data->start = i;

    if (i > 0) {
      // Create threads
      if (!winterface->reset(worker))
        aom_internal_error(&ppi->error, AOM_CODEC_ERROR,
                           "Tile encoder thread creation failed");
    }
    winterface->sync(worker);

    ++p_mt_info->num_workers;
  }
}

// This function returns 1 if frame parallel encode is supported for
// the current configuration. Returns 0 otherwise.
static AOM_INLINE int is_fpmt_config(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
  // FPMT is enabled for AOM_Q and AOM_VBR.
  // TODO(Tarun): Test and enable resize config.
  if (oxcf->rc_cfg.mode == AOM_CBR || oxcf->rc_cfg.mode == AOM_CQ) {
    return 0;
  }
  if (ppi->use_svc) {
    return 0;
  }
  if (oxcf->tile_cfg.enable_large_scale_tile) {
    return 0;
  }
  if (oxcf->dec_model_cfg.timing_info_present) {
    return 0;
  }
  if (oxcf->mode != GOOD) {
    return 0;
  }
  if (oxcf->tool_cfg.error_resilient_mode) {
    return 0;
  }
  if (oxcf->resize_cfg.resize_mode) {
    return 0;
  }
  if (oxcf->pass != AOM_RC_SECOND_PASS) {
    return 0;
  }
  if (oxcf->max_threads < 2) {
    return 0;
  }
  if (!oxcf->fp_mt) {
    return 0;
  }

  return 1;
}

int av1_check_fpmt_config(AV1_PRIMARY *const ppi,
                          AV1EncoderConfig *const oxcf) {
  if (is_fpmt_config(ppi, oxcf)) return 1;
  // Reset frame parallel configuration for unsupported config
  if (ppi->num_fp_contexts > 1) {
    for (int i = 1; i < ppi->num_fp_contexts; i++) {
      // Release the previously-used frame-buffer
      if (ppi->parallel_cpi[i]->common.cur_frame != NULL) {
        --ppi->parallel_cpi[i]->common.cur_frame->ref_count;
        ppi->parallel_cpi[i]->common.cur_frame = NULL;
      }
    }

    int cur_gf_index = ppi->cpi->gf_frame_index;
    int reset_size = AOMMAX(0, ppi->gf_group.size - cur_gf_index);
    av1_zero_array(&ppi->gf_group.frame_parallel_level[cur_gf_index],
                   reset_size);
    av1_zero_array(&ppi->gf_group.is_frame_non_ref[cur_gf_index], reset_size);
    av1_zero_array(&ppi->gf_group.src_offset[cur_gf_index], reset_size);
    memset(&ppi->gf_group.skip_frame_refresh[cur_gf_index][0], INVALID_IDX,
           sizeof(ppi->gf_group.skip_frame_refresh[cur_gf_index][0]) *
               reset_size * REF_FRAMES);
    memset(&ppi->gf_group.skip_frame_as_ref[cur_gf_index], INVALID_IDX,
           sizeof(ppi->gf_group.skip_frame_as_ref[cur_gf_index]) * reset_size);
    ppi->num_fp_contexts = 1;
  }
  return 0;
}

// A large value for threads used to compute the max num_enc_workers
// possible for each resolution.
#define MAX_THREADS 100

// Computes the max number of enc workers possible for each resolution.
static AOM_INLINE int compute_max_num_enc_workers(
    CommonModeInfoParams *const mi_params, int mib_size_log2) {
  int num_sb_rows = CEIL_POWER_OF_TWO(mi_params->mi_rows, mib_size_log2);
  int num_sb_cols = CEIL_POWER_OF_TWO(mi_params->mi_cols, mib_size_log2);

  return AOMMIN((num_sb_cols + 1) >> 1, num_sb_rows);
}

// Computes the number of frame parallel(fp) contexts to be created
// based on the number of max_enc_workers.
int av1_compute_num_fp_contexts(AV1_PRIMARY *ppi, AV1EncoderConfig *oxcf) {
  ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] = 0;
  if (!av1_check_fpmt_config(ppi, oxcf)) {
    return 1;
  }
  int max_num_enc_workers = compute_max_num_enc_workers(
      &ppi->cpi->common.mi_params, ppi->cpi->common.seq_params->mib_size_log2);
  // Scaling factors and rounding factors used to tune worker_per_frame
  // computation.
  int rounding_factor[2] = { 2, 4 };
  int scaling_factor[2] = { 4, 8 };
  int is_480p_or_lesser =
      AOMMIN(oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height) <= 480;
  int is_sb_64 = 0;
  if (ppi->cpi != NULL)
    is_sb_64 = ppi->cpi->common.seq_params->sb_size == BLOCK_64X64;
  // A parallel frame encode has at least 1/4th the
  // theoretical limit of max enc workers in default case. For resolutions
  // larger than 480p, if SB size is 64x64, optimal performance is obtained with
  // limit of 1/8.
  int index = (!is_480p_or_lesser && is_sb_64) ? 1 : 0;
  int workers_per_frame =
      AOMMAX(1, (max_num_enc_workers + rounding_factor[index]) /
                    scaling_factor[index]);
  int max_threads = oxcf->max_threads;
  int num_fp_contexts = max_threads / workers_per_frame;
  // Based on empirical results, FPMT gains with multi-tile are significant when
  // more parallel frames are available. Use FPMT with multi-tile encode only
  // when sufficient threads are available for parallel encode of
  // MAX_PARALLEL_FRAMES frames.
  if (oxcf->tile_cfg.tile_columns > 0 || oxcf->tile_cfg.tile_rows > 0) {
    if (num_fp_contexts < MAX_PARALLEL_FRAMES) num_fp_contexts = 1;
  }

  num_fp_contexts = AOMMAX(1, AOMMIN(num_fp_contexts, MAX_PARALLEL_FRAMES));
  // Limit recalculated num_fp_contexts to ppi->num_fp_contexts.
  num_fp_contexts = (ppi->num_fp_contexts == 1)
                        ? num_fp_contexts
                        : AOMMIN(num_fp_contexts, ppi->num_fp_contexts);
  if (num_fp_contexts > 1) {
    ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC] =
        AOMMIN(max_num_enc_workers * num_fp_contexts, oxcf->max_threads);
  }
  return num_fp_contexts;
}

// Computes the number of workers to process each of the parallel frames.
static AOM_INLINE int compute_num_workers_per_frame(
    const int num_workers, const int parallel_frame_count) {
  // Number of level 2 workers per frame context (floor division).
  int workers_per_frame = (num_workers / parallel_frame_count);
  return workers_per_frame;
}

// Prepare level 1 workers. This function is only called for
// parallel_frame_count > 1. This function populates the mt_info structure of
// frame level contexts appropriately by dividing the total number of available
// workers amongst the frames as level 2 workers. It also populates the hook and
// data members of level 1 workers.
static AOM_INLINE void prepare_fpmt_workers(AV1_PRIMARY *ppi,
                                            AV1_COMP_DATA *first_cpi_data,
                                            AVxWorkerHook hook,
                                            int parallel_frame_count) {
  assert(parallel_frame_count <= ppi->num_fp_contexts &&
         parallel_frame_count > 1);

  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
  int num_workers = p_mt_info->num_workers;

  int frame_idx = 0;
  int i = 0;
  while (i < num_workers) {
    // Assign level 1 worker
    AVxWorker *frame_worker = p_mt_info->p_workers[frame_idx] =
        &p_mt_info->workers[i];
    AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
    MultiThreadInfo *mt_info = &cur_cpi->mt_info;
    AV1_COMMON *const cm = &cur_cpi->common;
    const int num_planes = av1_num_planes(cm);

    // Assign start of level 2 worker pool
    mt_info->workers = &p_mt_info->workers[i];
    mt_info->tile_thr_data = &p_mt_info->tile_thr_data[i];
    // Assign number of workers for each frame in the parallel encode set.
    mt_info->num_workers = compute_num_workers_per_frame(
        num_workers - i, parallel_frame_count - frame_idx);
    for (int j = MOD_FP; j < NUM_MT_MODULES; j++) {
      mt_info->num_mod_workers[j] =
          AOMMIN(mt_info->num_workers, ppi->p_mt_info.num_mod_workers[j]);
    }
    if (ppi->p_mt_info.cdef_worker != NULL) {
      mt_info->cdef_worker = &ppi->p_mt_info.cdef_worker[i];

      // Back up the original cdef_worker pointers.
      mt_info->restore_state_buf.cdef_srcbuf = mt_info->cdef_worker->srcbuf;
      for (int plane = 0; plane < num_planes; plane++)
        mt_info->restore_state_buf.cdef_colbuf[plane] =
            mt_info->cdef_worker->colbuf[plane];
    }
#if !CONFIG_REALTIME_ONLY
    if (is_restoration_used(cm)) {
      // Back up the original LR buffers before update.
      int idx = i + mt_info->num_workers - 1;
      mt_info->restore_state_buf.rst_tmpbuf =
          mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf;
      mt_info->restore_state_buf.rlbs =
          mt_info->lr_row_sync.lrworkerdata[idx].rlbs;

      // Update LR buffers.
      mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf = cm->rst_tmpbuf;
      mt_info->lr_row_sync.lrworkerdata[idx].rlbs = cm->rlbs;
    }
#endif

    // At this stage, the thread specific CDEF buffers for the current frame's
    // 'common' and 'cdef_sync' only need to be allocated. 'cdef_worker' has
    // already been allocated across parallel frames.
    av1_alloc_cdef_buffers(cm, &p_mt_info->cdef_worker, &mt_info->cdef_sync,
                           p_mt_info->num_workers, 0);

    frame_worker->hook = hook;
    frame_worker->data1 = cur_cpi;
    frame_worker->data2 = (frame_idx == 0)
                              ? first_cpi_data
                              : &ppi->parallel_frames_data[frame_idx - 1];
    frame_idx++;
    i += mt_info->num_workers;
  }
  p_mt_info->p_num_workers = parallel_frame_count;
}

// Launch level 1 workers to perform frame parallel encode.
static AOM_INLINE void launch_fpmt_workers(AV1_PRIMARY *ppi) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  int num_workers = ppi->p_mt_info.p_num_workers;

  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
    if (i == 0)
      winterface->execute(worker);
    else
      winterface->launch(worker);
  }
}

// Synchronize level 1 workers.
static AOM_INLINE void sync_fpmt_workers(AV1_PRIMARY *ppi) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  int num_workers = ppi->p_mt_info.p_num_workers;
  int had_error = 0;
  // Points to error in the earliest display order frame in the parallel set.
  const struct aom_internal_error_info *error;

  // Encoding ends.
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = ppi->p_mt_info.p_workers[i];
    if (!winterface->sync(worker)) {
      had_error = 1;
      error = ((AV1_COMP *)worker->data1)->common.error;
    }
  }

  if (had_error)
    aom_internal_error(&ppi->error, error->error_code, "%s", error->detail);
}

// Restore worker states after parallel encode.
static AOM_INLINE void restore_workers_after_fpmt(AV1_PRIMARY *ppi,
                                                  int parallel_frame_count) {
  assert(parallel_frame_count <= ppi->num_fp_contexts &&
         parallel_frame_count > 1);
  (void)parallel_frame_count;

  PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
  int num_workers = p_mt_info->num_workers;

  int frame_idx = 0;
  int i = 0;
  while (i < num_workers) {
    AV1_COMP *cur_cpi = ppi->parallel_cpi[frame_idx];
    MultiThreadInfo *mt_info = &cur_cpi->mt_info;
    const AV1_COMMON *const cm = &cur_cpi->common;
    const int num_planes = av1_num_planes(cm);

    // Restore the original cdef_worker pointers.
    if (ppi->p_mt_info.cdef_worker != NULL) {
      mt_info->cdef_worker->srcbuf = mt_info->restore_state_buf.cdef_srcbuf;
      for (int plane = 0; plane < num_planes; plane++)
        mt_info->cdef_worker->colbuf[plane] =
            mt_info->restore_state_buf.cdef_colbuf[plane];
    }
#if !CONFIG_REALTIME_ONLY
    if (is_restoration_used(cm)) {
      // Restore the original LR buffers.
      int idx = i + mt_info->num_workers - 1;
      mt_info->lr_row_sync.lrworkerdata[idx].rst_tmpbuf =
          mt_info->restore_state_buf.rst_tmpbuf;
      mt_info->lr_row_sync.lrworkerdata[idx].rlbs =
          mt_info->restore_state_buf.rlbs;
    }
#endif

    frame_idx++;
    i += mt_info->num_workers;
  }
}

static int get_compressed_data_hook(void *arg1, void *arg2) {
  AV1_COMP *cpi = (AV1_COMP *)arg1;
  AV1_COMP_DATA *cpi_data = (AV1_COMP_DATA *)arg2;
  int status = av1_get_compressed_data(cpi, cpi_data);

  // AOM_CODEC_OK(0) means no error.
  return !status;
}

// This function encodes the raw frame data for each frame in parallel encode
// set, and outputs the frame bit stream to the designated buffers.
int av1_compress_parallel_frames(AV1_PRIMARY *const ppi,
                                 AV1_COMP_DATA *const first_cpi_data) {
  // Bitmask for the frame buffers referenced by cpi->scaled_ref_buf
  // corresponding to frames in the current parallel encode set.
  int ref_buffers_used_map = 0;
  int frames_in_parallel_set = av1_init_parallel_frame_context(
      first_cpi_data, ppi, &ref_buffers_used_map);
  prepare_fpmt_workers(ppi, first_cpi_data, get_compressed_data_hook,
                       frames_in_parallel_set);
  launch_fpmt_workers(ppi);
  sync_fpmt_workers(ppi);
  restore_workers_after_fpmt(ppi, frames_in_parallel_set);

  // Release cpi->scaled_ref_buf corresponding to frames in the current parallel
  // encode set.
  for (int i = 0; i < frames_in_parallel_set; ++i) {
    av1_release_scaled_references_fpmt(ppi->parallel_cpi[i]);
  }
  av1_decrement_ref_counts_fpmt(ppi->cpi->common.buffer_pool,
                                ref_buffers_used_map);
  return AOM_CODEC_OK;
}

static AOM_INLINE void launch_workers(MultiThreadInfo *const mt_info,
                                      int num_workers) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &mt_info->workers[i];
    if (i == 0)
      winterface->execute(worker);
    else
      winterface->launch(worker);
  }
}

static AOM_INLINE void sync_enc_workers(MultiThreadInfo *const mt_info,
                                        AV1_COMMON *const cm, int num_workers) {
  const AVxWorkerInterface *const winterface = aom_get_worker_interface();
  int had_error = 0;

  // Encoding ends.
  for (int i = num_workers - 1; i > 0; i--) {
    AVxWorker *const worker = &mt_info->workers[i];
    had_error |= !winterface->sync(worker);
  }

  if (had_error)
    aom_internal_error(cm->error, AOM_CODEC_ERROR,
                       "Failed to encode tile data");
}

static AOM_INLINE void accumulate_counters_enc_workers(AV1_COMP *cpi,
                                                       int num_workers) {
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &cpi->mt_info.workers[i];
    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
    cpi->intrabc_used |= thread_data->td->intrabc_used;
    cpi->deltaq_used |= thread_data->td->deltaq_used;
    // Accumulate rtc counters.
    if (!frame_is_intra_only(&cpi->common))
      av1_accumulate_rtc_counters(cpi, &thread_data->td->mb);
    if (thread_data->td != &cpi->td) {
      // Keep these conditional expressions in sync with the corresponding ones
      // in prepare_enc_workers().
      if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
        aom_free(thread_data->td->mb.mv_costs);
      }
      if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
        aom_free(thread_data->td->mb.dv_costs);
      }
    }
    av1_dealloc_mb_data(&cpi->common, &thread_data->td->mb);

    // Accumulate counters.
    if (i > 0) {
      av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts);
      accumulate_rd_opt(&cpi->td, thread_data->td);
      cpi->td.mb.txfm_search_info.txb_split_count +=
          thread_data->td->mb.txfm_search_info.txb_split_count;
#if CONFIG_SPEED_STATS
      cpi->td.mb.txfm_search_info.tx_search_count +=
          thread_data->td->mb.txfm_search_info.tx_search_count;
#endif  // CONFIG_SPEED_STATS
    }
  }
}

static AOM_INLINE void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
                                           int num_workers) {
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &mt_info->workers[i];
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];

    // Initialize loopfilter data
    thread_data->lf_sync = &mt_info->lf_row_sync;
    thread_data->lf_data = &thread_data->lf_sync->lfdata[i];
    loop_filter_data_reset(thread_data->lf_data, &cm->cur_frame->buf, cm, xd);

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = NULL;

    thread_data->thread_id = i;
    // Set the starting tile for each thread.
    thread_data->start = i;

    thread_data->cpi = cpi;
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }

    thread_data->td->intrabc_used = 0;
    thread_data->td->deltaq_used = 0;
    thread_data->td->abs_sum_level = 0;
    thread_data->td->rd_counts.seg_tmp_pred_cost[0] = 0;
    thread_data->td->rd_counts.seg_tmp_pred_cost[1] = 0;

    // Before encoding a frame, copy the thread data from cpi.
    if (thread_data->td != &cpi->td) {
      thread_data->td->mb = cpi->td.mb;
      thread_data->td->rd_counts = cpi->td.rd_counts;
      thread_data->td->mb.obmc_buffer = thread_data->td->obmc_buffer;

      for (int x = 0; x < 2; x++) {
        for (int y = 0; y < 2; y++) {
          memcpy(thread_data->td->hash_value_buffer[x][y],
                 cpi->td.mb.intrabc_hash_info.hash_value_buffer[x][y],
                 AOM_BUFFER_SIZE_FOR_BLOCK_HASH *
                     sizeof(*thread_data->td->hash_value_buffer[0][0]));
          thread_data->td->mb.intrabc_hash_info.hash_value_buffer[x][y] =
              thread_data->td->hash_value_buffer[x][y];
        }
      }
      // Keep these conditional expressions in sync with the corresponding ones
      // in accumulate_counters_enc_workers().
      if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
        CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs,
                        (MvCosts *)aom_malloc(sizeof(MvCosts)));
        memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
               sizeof(MvCosts));
      }
      if (cpi->sf.intra_sf.dv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
        // Reset dv_costs to NULL for worker threads when dv cost update is
        // enabled so that only dv_cost_upd_level needs to be checked before the
        // aom_free() call for the same.
        thread_data->td->mb.dv_costs = NULL;
        if (av1_need_dv_costs(cpi)) {
          CHECK_MEM_ERROR(cm, thread_data->td->mb.dv_costs,
                          (IntraBCMVCosts *)aom_malloc(sizeof(IntraBCMVCosts)));
          memcpy(thread_data->td->mb.dv_costs, cpi->td.mb.dv_costs,
                 sizeof(IntraBCMVCosts));
        }
      }
    }
    av1_alloc_mb_data(cpi, &thread_data->td->mb);

    // Reset rtc counters.
    av1_init_rtc_counters(&thread_data->td->mb);

    if (thread_data->td->counts != &cpi->counts) {
      memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts));
    }

    if (i > 0) {
      thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer;
      thread_data->td->mb.comp_rd_buffer = thread_data->td->comp_rd_buffer;
      thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
      for (int j = 0; j < 2; ++j) {
        thread_data->td->mb.tmp_pred_bufs[j] =
            thread_data->td->tmp_pred_bufs[j];
      }
      thread_data->td->mb.pixel_gradient_info =
          thread_data->td->pixel_gradient_info;

      thread_data->td->mb.src_var_info_of_4x4_sub_blocks =
          thread_data->td->src_var_info_of_4x4_sub_blocks;

      thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
      for (int j = 0; j < 2; ++j) {
        thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] =
            thread_data->td->mb.tmp_pred_bufs[j];
      }
    }
  }
}

#if !CONFIG_REALTIME_ONLY
static AOM_INLINE void fp_prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook,
                                              int num_workers) {
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &mt_info->workers[i];
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = NULL;

    thread_data->thread_id = i;
    // Set the starting tile for each thread.
    thread_data->start = i;

    thread_data->cpi = cpi;
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }

    // Before encoding a frame, copy the thread data from cpi.
    if (thread_data->td != &cpi->td) {
      thread_data->td->mb = cpi->td.mb;
      // Keep this conditional expression in sync with the corresponding one
      // in av1_fp_encode_tiles_row_mt().
      if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
        CHECK_MEM_ERROR(cm, thread_data->td->mb.mv_costs,
                        (MvCosts *)aom_malloc(sizeof(MvCosts)));
        memcpy(thread_data->td->mb.mv_costs, cpi->td.mb.mv_costs,
               sizeof(MvCosts));
      }
    }

    av1_alloc_mb_data(cpi, &thread_data->td->mb);
  }
}
#endif

// Computes the number of workers for row multi-threading of encoding stage
static AOM_INLINE int compute_num_enc_row_mt_workers(AV1_COMMON *const cm,
                                                     int max_threads) {
  TileInfo tile_info;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int total_num_threads_row_mt = 0;
  for (int row = 0; row < tile_rows; row++) {
    for (int col = 0; col < tile_cols; col++) {
      av1_tile_init(&tile_info, cm, row, col);
      const int num_sb_rows_in_tile = av1_get_sb_rows_in_tile(cm, &tile_info);
      const int num_sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, &tile_info);
      total_num_threads_row_mt +=
          AOMMIN((num_sb_cols_in_tile + 1) >> 1, num_sb_rows_in_tile);
    }
  }
  return AOMMIN(max_threads, total_num_threads_row_mt);
}

// Computes the number of workers for tile multi-threading of encoding stage
static AOM_INLINE int compute_num_enc_tile_mt_workers(AV1_COMMON *const cm,
                                                      int max_threads) {
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  return AOMMIN(max_threads, tile_cols * tile_rows);
}

// Find max worker of all MT stages
int av1_get_max_num_workers(const AV1_COMP *cpi) {
  int max_num_workers = 0;
  for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
    max_num_workers =
        AOMMAX(cpi->ppi->p_mt_info.num_mod_workers[i], max_num_workers);
  assert(max_num_workers >= 1);
  return AOMMIN(max_num_workers, cpi->oxcf.max_threads);
}

// Computes the number of workers for encoding stage (row/tile multi-threading)
int av1_compute_num_enc_workers(AV1_COMP *cpi, int max_workers) {
  if (max_workers <= 1) return 1;
  if (cpi->oxcf.row_mt)
    return compute_num_enc_row_mt_workers(&cpi->common, max_workers);
  else
    return compute_num_enc_tile_mt_workers(&cpi->common, max_workers);
}

void av1_encode_tiles_mt(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int num_workers = mt_info->num_mod_workers[MOD_ENC];

  assert(IMPLIES(cpi->tile_data == NULL,
                 cpi->allocated_tiles < tile_cols * tile_rows));
  if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);

  av1_init_tile_data(cpi);
  num_workers = AOMMIN(num_workers, mt_info->num_workers);

  prepare_enc_workers(cpi, enc_worker_hook, num_workers);
  launch_workers(&cpi->mt_info, num_workers);
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
  accumulate_counters_enc_workers(cpi, num_workers);
}

// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int'
// members, so we treat it as an array, and sum over the whole length.
void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts,
                                 const FRAME_COUNTS *counts) {
  unsigned int *const acc = (unsigned int *)acc_counts;
  const unsigned int *const cnt = (const unsigned int *)counts;

  const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int);

  for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i];
}

// Computes the maximum number of sb rows and sb_cols across tiles which are
// used to allocate memory for multi-threaded encoding with row-mt=1.
static AOM_INLINE void compute_max_sb_rows_cols(const AV1_COMMON *cm,
                                                int *max_sb_rows_in_tile,
                                                int *max_sb_cols_in_tile) {
  const int tile_rows = cm->tiles.rows;
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
  const int num_mi_rows = cm->mi_params.mi_rows;
  const int *const row_start_sb = cm->tiles.row_start_sb;
  for (int row = 0; row < tile_rows; row++) {
    const int mi_row_start = row_start_sb[row] << mib_size_log2;
    const int mi_row_end =
        AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
    const int num_sb_rows_in_tile =
        CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, mib_size_log2);
    *max_sb_rows_in_tile = AOMMAX(*max_sb_rows_in_tile, num_sb_rows_in_tile);
  }

  const int tile_cols = cm->tiles.cols;
  const int num_mi_cols = cm->mi_params.mi_cols;
  const int *const col_start_sb = cm->tiles.col_start_sb;
  for (int col = 0; col < tile_cols; col++) {
    const int mi_col_start = col_start_sb[col] << mib_size_log2;
    const int mi_col_end =
        AOMMIN(col_start_sb[col + 1] << mib_size_log2, num_mi_cols);
    const int num_sb_cols_in_tile =
        CEIL_POWER_OF_TWO(mi_col_end - mi_col_start, mib_size_log2);
    *max_sb_cols_in_tile = AOMMAX(*max_sb_cols_in_tile, num_sb_cols_in_tile);
  }
}

#if !CONFIG_REALTIME_ONLY
// Computes the number of workers for firstpass stage (row/tile multi-threading)
int av1_fp_compute_num_enc_workers(AV1_COMP *cpi) {
  AV1_COMMON *cm = &cpi->common;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int total_num_threads_row_mt = 0;
  TileInfo tile_info;

  if (cpi->oxcf.max_threads <= 1) return 1;

  for (int row = 0; row < tile_rows; row++) {
    for (int col = 0; col < tile_cols; col++) {
      av1_tile_init(&tile_info, cm, row, col);
      const int num_mb_rows_in_tile =
          av1_get_unit_rows_in_tile(&tile_info, cpi->fp_block_size);
      const int num_mb_cols_in_tile =
          av1_get_unit_cols_in_tile(&tile_info, cpi->fp_block_size);
      total_num_threads_row_mt +=
          AOMMIN((num_mb_cols_in_tile + 1) >> 1, num_mb_rows_in_tile);
    }
  }
  return AOMMIN(cpi->oxcf.max_threads, total_num_threads_row_mt);
}

// Computes the maximum number of mb_rows for row multi-threading of firstpass
// stage
static AOM_INLINE int fp_compute_max_mb_rows(const AV1_COMMON *cm,
                                             BLOCK_SIZE fp_block_size) {
  const int tile_rows = cm->tiles.rows;
  const int unit_height_log2 = mi_size_high_log2[fp_block_size];
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
  const int num_mi_rows = cm->mi_params.mi_rows;
  const int *const row_start_sb = cm->tiles.row_start_sb;
  int max_mb_rows = 0;

  for (int row = 0; row < tile_rows; row++) {
    const int mi_row_start = row_start_sb[row] << mib_size_log2;
    const int mi_row_end =
        AOMMIN(row_start_sb[row + 1] << mib_size_log2, num_mi_rows);
    const int num_mb_rows_in_tile =
        CEIL_POWER_OF_TWO(mi_row_end - mi_row_start, unit_height_log2);
    max_mb_rows = AOMMAX(max_mb_rows, num_mb_rows_in_tile);
  }
  return max_mb_rows;
}
#endif

static void lpf_pipeline_mt_init(AV1_COMP *cpi) {
  // Pipelining of loop-filtering after encoding is enabled when loop-filter
  // level is chosen based on quantizer and frame type. It is disabled in case
  // of 'LOOPFILTER_SELECTIVELY' as the stats collected during encoding stage
  // decides the filter level. Loop-filtering is disabled in case
  // of non-reference frames and for frames with intra block copy tool enabled.
  AV1_COMMON *cm = &cpi->common;
  const int use_loopfilter = is_loopfilter_used(cm);
  const int use_superres = av1_superres_scaled(cm);
  const int use_cdef = is_cdef_used(cm);
  const int use_restoration = is_restoration_used(cm);

  const unsigned int skip_apply_postproc_filters =
      derive_skip_apply_postproc_filters(cpi, use_loopfilter, use_cdef,
                                         use_superres, use_restoration);
  cpi->mt_info.pipeline_lpf_mt_with_enc =
      (cpi->oxcf.mode == REALTIME) && (cpi->oxcf.speed >= 5) &&
      (cpi->sf.lpf_sf.lpf_pick == LPF_PICK_FROM_Q) &&
      (cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY) &&
      !cpi->ppi->rtc_ref.non_reference_frame && !cm->features.allow_intrabc &&
      ((skip_apply_postproc_filters & SKIP_APPLY_LOOPFILTER) == 0);

  if (!cpi->mt_info.pipeline_lpf_mt_with_enc) return;

  set_postproc_filter_default_params(cm);

  if (!use_loopfilter) return;

  const LPF_PICK_METHOD method = cpi->sf.lpf_sf.lpf_pick;
  assert(method == LPF_PICK_FROM_Q);
  assert(cpi->oxcf.algo_cfg.loopfilter_control != LOOPFILTER_SELECTIVELY);

  av1_pick_filter_level(cpi->source, cpi, method);

  struct loopfilter *lf = &cm->lf;
  const int plane_start = 0;
  const int plane_end = av1_num_planes(cm);
  int planes_to_lf[MAX_MB_PLANE];
  if ((lf->filter_level[PLANE_TYPE_Y] || lf->filter_level[PLANE_TYPE_UV]) &&
      check_planes_to_loop_filter(lf, planes_to_lf, plane_start, plane_end)) {
    int lpf_opt_level = get_lpf_opt_level(&cpi->sf);
    assert(lpf_opt_level == 2);

    const int start_mi_row = 0;
    const int end_mi_row = start_mi_row + cm->mi_params.mi_rows;

    av1_loop_filter_frame_init(cm, plane_start, plane_end);

    assert(cpi->mt_info.num_mod_workers[MOD_ENC] ==
           cpi->mt_info.num_mod_workers[MOD_LPF]);
    loop_filter_frame_mt_init(cm, start_mi_row, end_mi_row, planes_to_lf,
                              cpi->mt_info.num_mod_workers[MOD_LPF],
                              &cpi->mt_info.lf_row_sync, lpf_opt_level,
                              cm->seq_params->mib_size_log2);
  }
}

void av1_encode_tiles_row_mt(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  const int sb_rows_in_frame = get_sb_rows_in_frame(cm);
  int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
  int max_sb_rows_in_tile = 0, max_sb_cols_in_tile = 0;
  int num_workers = mt_info->num_mod_workers[MOD_ENC];

  compute_max_sb_rows_cols(cm, &max_sb_rows_in_tile, &max_sb_cols_in_tile);
  const bool alloc_row_mt_mem =
      (enc_row_mt->allocated_tile_cols != tile_cols ||
       enc_row_mt->allocated_tile_rows != tile_rows ||
       enc_row_mt->allocated_rows != max_sb_rows_in_tile ||
       enc_row_mt->allocated_cols != (max_sb_cols_in_tile - 1) ||
       enc_row_mt->allocated_sb_rows != sb_rows_in_frame);
  const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;

  assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
  if (alloc_tile_data) {
    av1_alloc_tile_data(cpi);
  }

  assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
  if (alloc_row_mt_mem) {
    row_mt_mem_alloc(cpi, max_sb_rows_in_tile, max_sb_cols_in_tile,
                     cpi->oxcf.algo_cfg.cdf_update_mode);
  }

  lpf_pipeline_mt_init(cpi);

  av1_init_tile_data(cpi);

  memset(thread_id_to_tile_id, -1,
         sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);
  memset(enc_row_mt->num_tile_cols_done, 0,
         sizeof(*enc_row_mt->num_tile_cols_done) * sb_rows_in_frame);

  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
      int tile_index = tile_row * tile_cols + tile_col;
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;

      // Initialize num_finished_cols to -1 for all rows.
      memset(row_mt_sync->num_finished_cols, -1,
             sizeof(*row_mt_sync->num_finished_cols) * max_sb_rows_in_tile);
      row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
      row_mt_sync->num_threads_working = 0;
      row_mt_sync->intrabc_extra_top_right_sb_delay =
          av1_get_intrabc_extra_top_right_sb_delay(cm);

      av1_inter_mode_data_init(this_tile);
      av1_zero_above_context(cm, &cpi->td.mb.e_mbd,
                             this_tile->tile_info.mi_col_start,
                             this_tile->tile_info.mi_col_end, tile_row);
    }
  }

  num_workers = AOMMIN(num_workers, mt_info->num_workers);

  assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
                        num_workers);
  prepare_enc_workers(cpi, enc_row_mt_worker_hook, num_workers);
  launch_workers(&cpi->mt_info, num_workers);
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
  if (cm->delta_q_info.delta_lf_present_flag) update_delta_lf_for_row_mt(cpi);
  accumulate_counters_enc_workers(cpi, num_workers);
}

#if !CONFIG_REALTIME_ONLY
void av1_fp_encode_tiles_row_mt(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int *thread_id_to_tile_id = enc_row_mt->thread_id_to_tile_id;
  int num_workers = 0;
  int max_mb_rows = 0;

  max_mb_rows = fp_compute_max_mb_rows(cm, cpi->fp_block_size);
  const bool alloc_row_mt_mem = enc_row_mt->allocated_tile_cols != tile_cols ||
                                enc_row_mt->allocated_tile_rows != tile_rows ||
                                enc_row_mt->allocated_rows != max_mb_rows;
  const bool alloc_tile_data = cpi->allocated_tiles < tile_cols * tile_rows;

  assert(IMPLIES(cpi->tile_data == NULL, alloc_tile_data));
  if (alloc_tile_data) {
    av1_alloc_tile_data(cpi);
  }

  assert(IMPLIES(alloc_tile_data, alloc_row_mt_mem));
  if (alloc_row_mt_mem) {
    row_mt_mem_alloc(cpi, max_mb_rows, -1, 0);
  }

  av1_init_tile_data(cpi);

  // For pass = 1, compute the no. of workers needed. For single-pass encode
  // (pass = 0), no. of workers are already computed.
  if (mt_info->num_mod_workers[MOD_FP] == 0)
    num_workers = av1_fp_compute_num_enc_workers(cpi);
  else
    num_workers = mt_info->num_mod_workers[MOD_FP];

  memset(thread_id_to_tile_id, -1,
         sizeof(*thread_id_to_tile_id) * MAX_NUM_THREADS);

  for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
    for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
      int tile_index = tile_row * tile_cols + tile_col;
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
      AV1EncRowMultiThreadSync *const row_mt_sync = &this_tile->row_mt_sync;

      // Initialize num_finished_cols to -1 for all rows.
      memset(row_mt_sync->num_finished_cols, -1,
             sizeof(*row_mt_sync->num_finished_cols) * max_mb_rows);
      row_mt_sync->next_mi_row = this_tile->tile_info.mi_row_start;
      row_mt_sync->num_threads_working = 0;

      // intraBC mode is not evaluated during first-pass encoding. Hence, no
      // additional top-right delay is required.
      row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
    }
  }

  num_workers = AOMMIN(num_workers, mt_info->num_workers);
  assign_tile_to_thread(thread_id_to_tile_id, tile_cols * tile_rows,
                        num_workers);
  fp_prepare_enc_workers(cpi, fp_enc_row_mt_worker_hook, num_workers);
  launch_workers(&cpi->mt_info, num_workers);
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
  for (int i = num_workers - 1; i >= 0; i--) {
    EncWorkerData *const thread_data = &cpi->mt_info.tile_thr_data[i];
    if (thread_data->td != &cpi->td) {
      // Keep this conditional expression in sync with the corresponding one
      // in fp_prepare_enc_workers().
      if (cpi->sf.inter_sf.mv_cost_upd_level != INTERNAL_COST_UPD_OFF) {
        aom_free(thread_data->td->mb.mv_costs);
      }
      assert(!thread_data->td->mb.dv_costs);
    }
    av1_dealloc_mb_data(cm, &thread_data->td->mb);
  }
}

void av1_tpl_row_mt_sync_read_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
                                    int r, int c) {
  (void)tpl_mt_sync;
  (void)r;
  (void)c;
  return;
}

void av1_tpl_row_mt_sync_write_dummy(AV1TplRowMultiThreadSync *tpl_mt_sync,
                                     int r, int c, int cols) {
  (void)tpl_mt_sync;
  (void)r;
  (void)c;
  (void)cols;
  return;
}

void av1_tpl_row_mt_sync_read(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
                              int c) {
#if CONFIG_MULTITHREAD
  int nsync = tpl_row_mt_sync->sync_range;

  if (r) {
    pthread_mutex_t *const mutex = &tpl_row_mt_sync->mutex_[r - 1];
    pthread_mutex_lock(mutex);

    while (c > tpl_row_mt_sync->num_finished_cols[r - 1] - nsync)
      pthread_cond_wait(&tpl_row_mt_sync->cond_[r - 1], mutex);
    pthread_mutex_unlock(mutex);
  }
#else
  (void)tpl_row_mt_sync;
  (void)r;
  (void)c;
#endif  // CONFIG_MULTITHREAD
}

void av1_tpl_row_mt_sync_write(AV1TplRowMultiThreadSync *tpl_row_mt_sync, int r,
                               int c, int cols) {
#if CONFIG_MULTITHREAD
  int nsync = tpl_row_mt_sync->sync_range;
  int cur;
  // Only signal when there are enough encoded blocks for next row to run.
  int sig = 1;

  if (c < cols - 1) {
    cur = c;
    if (c % nsync) sig = 0;
  } else {
    cur = cols + nsync;
  }

  if (sig) {
    pthread_mutex_lock(&tpl_row_mt_sync->mutex_[r]);

    tpl_row_mt_sync->num_finished_cols[r] = cur;

    pthread_cond_signal(&tpl_row_mt_sync->cond_[r]);
    pthread_mutex_unlock(&tpl_row_mt_sync->mutex_[r]);
  }
#else
  (void)tpl_row_mt_sync;
  (void)r;
  (void)c;
  (void)cols;
#endif  // CONFIG_MULTITHREAD
}

// Each worker calls tpl_worker_hook() and computes the tpl data.
static int tpl_worker_hook(void *arg1, void *unused) {
  (void)unused;
  EncWorkerData *thread_data = (EncWorkerData *)arg1;
  AV1_COMP *cpi = thread_data->cpi;
  AV1_COMMON *cm = &cpi->common;
  MACROBLOCK *x = &thread_data->td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  TplTxfmStats *tpl_txfm_stats = &thread_data->td->tpl_txfm_stats;
  CommonModeInfoParams *mi_params = &cm->mi_params;
  BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d);
  TX_SIZE tx_size = max_txsize_lookup[bsize];
  int mi_height = mi_size_high[bsize];
  int num_active_workers = cpi->ppi->tpl_data.tpl_mt_sync.num_threads_working;

  av1_init_tpl_txfm_stats(tpl_txfm_stats);

  for (int mi_row = thread_data->start * mi_height; mi_row < mi_params->mi_rows;
       mi_row += num_active_workers * mi_height) {
    // Motion estimation row boundary
    av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height,
                          cpi->oxcf.border_in_pixels);
    xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
    xd->mb_to_bottom_edge =
        GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE);
    av1_mc_flow_dispenser_row(cpi, tpl_txfm_stats, x, mi_row, bsize, tx_size);
  }
  return 1;
}

// Deallocate tpl synchronization related mutex and data.
void av1_tpl_dealloc(AV1TplRowMultiThreadSync *tpl_sync) {
  assert(tpl_sync != NULL);

#if CONFIG_MULTITHREAD
  if (tpl_sync->mutex_ != NULL) {
    for (int i = 0; i < tpl_sync->rows; ++i)
      pthread_mutex_destroy(&tpl_sync->mutex_[i]);
    aom_free(tpl_sync->mutex_);
  }
  if (tpl_sync->cond_ != NULL) {
    for (int i = 0; i < tpl_sync->rows; ++i)
      pthread_cond_destroy(&tpl_sync->cond_[i]);
    aom_free(tpl_sync->cond_);
  }
#endif  // CONFIG_MULTITHREAD

  aom_free(tpl_sync->num_finished_cols);
  // clear the structure as the source of this call may be a resize in which
  // case this call will be followed by an _alloc() which may fail.
  av1_zero(*tpl_sync);
}

// Allocate memory for tpl row synchronization.
void av1_tpl_alloc(AV1TplRowMultiThreadSync *tpl_sync, AV1_COMMON *cm,
                   int mb_rows) {
  tpl_sync->rows = mb_rows;
#if CONFIG_MULTITHREAD
  {
    CHECK_MEM_ERROR(cm, tpl_sync->mutex_,
                    aom_malloc(sizeof(*tpl_sync->mutex_) * mb_rows));
    if (tpl_sync->mutex_) {
      for (int i = 0; i < mb_rows; ++i)
        pthread_mutex_init(&tpl_sync->mutex_[i], NULL);
    }

    CHECK_MEM_ERROR(cm, tpl_sync->cond_,
                    aom_malloc(sizeof(*tpl_sync->cond_) * mb_rows));
    if (tpl_sync->cond_) {
      for (int i = 0; i < mb_rows; ++i)
        pthread_cond_init(&tpl_sync->cond_[i], NULL);
    }
  }
#endif  // CONFIG_MULTITHREAD
  CHECK_MEM_ERROR(cm, tpl_sync->num_finished_cols,
                  aom_malloc(sizeof(*tpl_sync->num_finished_cols) * mb_rows));

  // Set up nsync.
  tpl_sync->sync_range = 1;
}

// Each worker is prepared by assigning the hook function and individual thread
// data.
static AOM_INLINE void prepare_tpl_workers(AV1_COMP *cpi, AVxWorkerHook hook,
                                           int num_workers) {
  MultiThreadInfo *mt_info = &cpi->mt_info;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *worker = &mt_info->workers[i];
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = NULL;

    thread_data->thread_id = i;
    // Set the starting tile for each thread.
    thread_data->start = i;

    thread_data->cpi = cpi;
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }

    // Before encoding a frame, copy the thread data from cpi.
    if (thread_data->td != &cpi->td) {
      thread_data->td->mb = cpi->td.mb;
      // OBMC buffers are used only to init MS params and remain unused when
      // called from tpl, hence set the buffers to defaults.
      av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
      thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst;
      thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst;
    }
  }
}

// Accumulate transform stats after tpl.
static void tpl_accumulate_txfm_stats(ThreadData *main_td,
                                      const MultiThreadInfo *mt_info,
                                      int num_workers) {
  TplTxfmStats *accumulated_stats = &main_td->tpl_txfm_stats;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &mt_info->workers[i];
    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
    ThreadData *td = thread_data->td;
    if (td != main_td) {
      const TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats;
      av1_accumulate_tpl_txfm_stats(tpl_txfm_stats, accumulated_stats);
    }
  }
}

// Implements multi-threading for tpl.
void av1_mc_flow_dispenser_mt(AV1_COMP *cpi) {
  AV1_COMMON *cm = &cpi->common;
  CommonModeInfoParams *mi_params = &cm->mi_params;
  MultiThreadInfo *mt_info = &cpi->mt_info;
  TplParams *tpl_data = &cpi->ppi->tpl_data;
  AV1TplRowMultiThreadSync *tpl_sync = &tpl_data->tpl_mt_sync;
  int mb_rows = mi_params->mb_rows;
  int num_workers =
      AOMMIN(mt_info->num_mod_workers[MOD_TPL], mt_info->num_workers);

  if (mb_rows != tpl_sync->rows) {
    av1_tpl_dealloc(tpl_sync);
    av1_tpl_alloc(tpl_sync, cm, mb_rows);
  }
  tpl_sync->num_threads_working = num_workers;

  // Initialize cur_mb_col to -1 for all MB rows.
  memset(tpl_sync->num_finished_cols, -1,
         sizeof(*tpl_sync->num_finished_cols) * mb_rows);

  prepare_tpl_workers(cpi, tpl_worker_hook, num_workers);
  launch_workers(&cpi->mt_info, num_workers);
  sync_enc_workers(&cpi->mt_info, cm, num_workers);
  tpl_accumulate_txfm_stats(&cpi->td, &cpi->mt_info, num_workers);
}

// Deallocate memory for temporal filter multi-thread synchronization.
void av1_tf_mt_dealloc(AV1TemporalFilterSync *tf_sync) {
  assert(tf_sync != NULL);
#if CONFIG_MULTITHREAD
  if (tf_sync->mutex_ != NULL) {
    pthread_mutex_destroy(tf_sync->mutex_);
    aom_free(tf_sync->mutex_);
  }
#endif  // CONFIG_MULTITHREAD
  tf_sync->next_tf_row = 0;
}

// Checks if a job is available. If job is available,
// populates next_tf_row and returns 1, else returns 0.
static AOM_INLINE int tf_get_next_job(AV1TemporalFilterSync *tf_mt_sync,
                                      int *current_mb_row, int mb_rows) {
  int do_next_row = 0;
#if CONFIG_MULTITHREAD
  pthread_mutex_t *tf_mutex_ = tf_mt_sync->mutex_;
  pthread_mutex_lock(tf_mutex_);
#endif
  if (tf_mt_sync->next_tf_row < mb_rows) {
    *current_mb_row = tf_mt_sync->next_tf_row;
    tf_mt_sync->next_tf_row++;
    do_next_row = 1;
  }
#if CONFIG_MULTITHREAD
  pthread_mutex_unlock(tf_mutex_);
#endif
  return do_next_row;
}

// Hook function for each thread in temporal filter multi-threading.
static int tf_worker_hook(void *arg1, void *unused) {
  (void)unused;
  EncWorkerData *thread_data = (EncWorkerData *)arg1;
  AV1_COMP *cpi = thread_data->cpi;
  ThreadData *td = thread_data->td;
  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
  AV1TemporalFilterSync *tf_sync = &cpi->mt_info.tf_sync;
  const struct scale_factors *scale = &cpi->tf_ctx.sf;
  const int num_planes = av1_num_planes(&cpi->common);
  assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);

  MACROBLOCKD *mbd = &td->mb.e_mbd;
  uint8_t *input_buffer[MAX_MB_PLANE];
  MB_MODE_INFO **input_mb_mode_info;
  tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
  tf_setup_macroblockd(mbd, &td->tf_data, scale);

  int current_mb_row = -1;

  while (tf_get_next_job(tf_sync, &current_mb_row, tf_ctx->mb_rows))
    av1_tf_do_filtering_row(cpi, td, current_mb_row);

  tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);

  return 1;
}

// Assigns temporal filter hook function and thread data to each worker.
static void prepare_tf_workers(AV1_COMP *cpi, AVxWorkerHook hook,
                               int num_workers, int is_highbitdepth) {
  MultiThreadInfo *mt_info = &cpi->mt_info;
  mt_info->tf_sync.next_tf_row = 0;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *worker = &mt_info->workers[i];
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = NULL;

    thread_data->thread_id = i;
    // Set the starting tile for each thread.
    thread_data->start = i;

    thread_data->cpi = cpi;
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }

    // Before encoding a frame, copy the thread data from cpi.
    if (thread_data->td != &cpi->td) {
      thread_data->td->mb = cpi->td.mb;
      // OBMC buffers are used only to init MS params and remain unused when
      // called from tf, hence set the buffers to defaults.
      av1_init_obmc_buffer(&thread_data->td->mb.obmc_buffer);
      if (!tf_alloc_and_reset_data(&thread_data->td->tf_data,
                                   cpi->tf_ctx.num_pels, is_highbitdepth)) {
        aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
                           "Error allocating temporal filter data");
      }
    }
  }
}

// Deallocate thread specific data for temporal filter.
static void tf_dealloc_thread_data(AV1_COMP *cpi, int num_workers,
                                   int is_highbitdepth) {
  MultiThreadInfo *mt_info = &cpi->mt_info;
  for (int i = num_workers - 1; i >= 0; i--) {
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];
    ThreadData *td = thread_data->td;
    if (td != &cpi->td) tf_dealloc_data(&td->tf_data, is_highbitdepth);
  }
}

// Accumulate sse and sum after temporal filtering.
static void tf_accumulate_frame_diff(AV1_COMP *cpi, int num_workers) {
  FRAME_DIFF *total_diff = &cpi->td.tf_data.diff;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &cpi->mt_info.workers[i];
    EncWorkerData *const thread_data = (EncWorkerData *)worker->data1;
    ThreadData *td = thread_data->td;
    FRAME_DIFF *diff = &td->tf_data.diff;
    if (td != &cpi->td) {
      total_diff->sse += diff->sse;
      total_diff->sum += diff->sum;
    }
  }
}

// Implements multi-threading for temporal filter.
void av1_tf_do_filtering_mt(AV1_COMP *cpi) {
  AV1_COMMON *cm = &cpi->common;
  MultiThreadInfo *mt_info = &cpi->mt_info;
  const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;

  int num_workers =
      AOMMIN(mt_info->num_mod_workers[MOD_TF], mt_info->num_workers);

  prepare_tf_workers(cpi, tf_worker_hook, num_workers, is_highbitdepth);
  launch_workers(mt_info, num_workers);
  sync_enc_workers(mt_info, cm, num_workers);
  tf_accumulate_frame_diff(cpi, num_workers);
  tf_dealloc_thread_data(cpi, num_workers, is_highbitdepth);
}

// Checks if a job is available in the current direction. If a job is available,
// frame_idx will be populated and returns 1, else returns 0.
static AOM_INLINE int get_next_gm_job(AV1_COMP *cpi, int *frame_idx,
                                      int cur_dir) {
  GlobalMotionInfo *gm_info = &cpi->gm_info;
  JobInfo *job_info = &cpi->mt_info.gm_sync.job_info;

  int total_refs = gm_info->num_ref_frames[cur_dir];
  int8_t cur_frame_to_process = job_info->next_frame_to_process[cur_dir];

  if (cur_frame_to_process < total_refs && !job_info->early_exit[cur_dir]) {
    *frame_idx = gm_info->reference_frames[cur_dir][cur_frame_to_process].frame;
    job_info->next_frame_to_process[cur_dir] += 1;
    return 1;
  }
  return 0;
}

// Switches the current direction and calls the function get_next_gm_job() if
// the speed feature 'prune_ref_frame_for_gm_search' is not set.
static AOM_INLINE void switch_direction(AV1_COMP *cpi, int *frame_idx,
                                        int *cur_dir) {
  if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search) return;
  // Switch the direction and get next job
  *cur_dir = !(*cur_dir);
  get_next_gm_job(cpi, frame_idx, *(cur_dir));
}

// Initializes inliers, num_inliers and segment_map.
static AOM_INLINE void init_gm_thread_data(
    const GlobalMotionInfo *gm_info, GlobalMotionThreadData *thread_data) {
  for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
    MotionModel motion_params = thread_data->params_by_motion[m];
    av1_zero(motion_params.params);
    motion_params.num_inliers = 0;
  }

  av1_zero_array(thread_data->segment_map,
                 gm_info->segment_map_w * gm_info->segment_map_h);
}

// Hook function for each thread in global motion multi-threading.
static int gm_mt_worker_hook(void *arg1, void *unused) {
  (void)unused;

  EncWorkerData *thread_data = (EncWorkerData *)arg1;
  AV1_COMP *cpi = thread_data->cpi;
  GlobalMotionInfo *gm_info = &cpi->gm_info;
  MultiThreadInfo *mt_info = &cpi->mt_info;
  JobInfo *job_info = &mt_info->gm_sync.job_info;
  int thread_id = thread_data->thread_id;
  GlobalMotionThreadData *gm_thread_data =
      &mt_info->gm_sync.thread_data[thread_id];
  int cur_dir = job_info->thread_id_to_dir[thread_id];
#if CONFIG_MULTITHREAD
  pthread_mutex_t *gm_mt_mutex_ = mt_info->gm_sync.mutex_;
#endif

  while (1) {
    int ref_buf_idx = -1;
    int ref_frame_idx = -1;

#if CONFIG_MULTITHREAD
    pthread_mutex_lock(gm_mt_mutex_);
#endif

    // Populates ref_buf_idx(the reference frame type) for which global motion
    // estimation will be done.
    if (!get_next_gm_job(cpi, &ref_buf_idx, cur_dir)) {
      // No jobs are available for the current direction. Switch
      // to other direction and get the next job, if available.
      switch_direction(cpi, &ref_buf_idx, &cur_dir);
    }

    // 'ref_frame_idx' holds the index of the current reference frame type in
    // gm_info->reference_frames. job_info->next_frame_to_process will be
    // incremented in get_next_gm_job() and hence subtracting by 1.
    ref_frame_idx = job_info->next_frame_to_process[cur_dir] - 1;

#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(gm_mt_mutex_);
#endif

    if (ref_buf_idx == -1) break;

    init_gm_thread_data(gm_info, gm_thread_data);

    // Compute global motion for the given ref_buf_idx.
    av1_compute_gm_for_valid_ref_frames(
        cpi, gm_info->ref_buf, ref_buf_idx, gm_info->num_src_corners,
        gm_info->src_corners, gm_info->src_buffer,
        gm_thread_data->params_by_motion, gm_thread_data->segment_map,
        gm_info->segment_map_w, gm_info->segment_map_h);

#if CONFIG_MULTITHREAD
    pthread_mutex_lock(gm_mt_mutex_);
#endif
    assert(ref_frame_idx != -1);
    // If global motion w.r.t. current ref frame is
    // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t
    // the remaining ref frames in that direction. The below exit is disabled
    // when ref frame distance w.r.t. current frame is zero. E.g.:
    // source_alt_ref_frame w.r.t. ARF frames.
    if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search &&
        gm_info->reference_frames[cur_dir][ref_frame_idx].distance != 0 &&
        cpi->common.global_motion[ref_buf_idx].wmtype != ROTZOOM)
      job_info->early_exit[cur_dir] = 1;

#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(gm_mt_mutex_);
#endif
  }
  return 1;
}

// Assigns global motion hook function and thread data to each worker.
static AOM_INLINE void prepare_gm_workers(AV1_COMP *cpi, AVxWorkerHook hook,
                                          int num_workers) {
  MultiThreadInfo *mt_info = &cpi->mt_info;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *worker = &mt_info->workers[i];
    EncWorkerData *thread_data = &mt_info->tile_thr_data[i];

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = NULL;

    thread_data->thread_id = i;
    // Set the starting tile for each thread.
    thread_data->start = i;

    thread_data->cpi = cpi;
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }
  }
}

// Assigns available threads to past/future direction.
static AOM_INLINE void assign_thread_to_dir(int8_t *thread_id_to_dir,
                                            int num_workers) {
  int8_t frame_dir_idx = 0;

  for (int i = 0; i < num_workers; i++) {
    thread_id_to_dir[i] = frame_dir_idx++;
    if (frame_dir_idx == MAX_DIRECTIONS) frame_dir_idx = 0;
  }
}

// Computes number of workers for global motion multi-threading.
static AOM_INLINE int compute_gm_workers(const AV1_COMP *cpi) {
  int total_refs =
      cpi->gm_info.num_ref_frames[0] + cpi->gm_info.num_ref_frames[1];
  int num_gm_workers = cpi->sf.gm_sf.prune_ref_frame_for_gm_search
                           ? AOMMIN(MAX_DIRECTIONS, total_refs)
                           : total_refs;
  num_gm_workers = AOMMIN(num_gm_workers, cpi->mt_info.num_workers);
  return (num_gm_workers);
}

// Frees the memory allocated for each worker in global motion multi-threading.
void av1_gm_dealloc(AV1GlobalMotionSync *gm_sync_data) {
  if (gm_sync_data->thread_data != NULL) {
    for (int j = 0; j < gm_sync_data->allocated_workers; j++) {
      GlobalMotionThreadData *thread_data = &gm_sync_data->thread_data[j];
      aom_free(thread_data->segment_map);

      for (int m = 0; m < RANSAC_NUM_MOTIONS; m++)
        aom_free(thread_data->params_by_motion[m].inliers);
    }
    aom_free(gm_sync_data->thread_data);
  }
}

// Allocates memory for inliers and segment_map for each worker in global motion
// multi-threading.
static AOM_INLINE void gm_alloc(AV1_COMP *cpi, int num_workers) {
  AV1_COMMON *cm = &cpi->common;
  AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
  GlobalMotionInfo *gm_info = &cpi->gm_info;

  gm_sync->allocated_workers = num_workers;
  gm_sync->allocated_width = cpi->source->y_width;
  gm_sync->allocated_height = cpi->source->y_height;

  CHECK_MEM_ERROR(cm, gm_sync->thread_data,
                  aom_malloc(sizeof(*gm_sync->thread_data) * num_workers));

  for (int i = 0; i < num_workers; i++) {
    GlobalMotionThreadData *thread_data = &gm_sync->thread_data[i];
    CHECK_MEM_ERROR(
        cm, thread_data->segment_map,
        aom_malloc(sizeof(*thread_data->segment_map) * gm_info->segment_map_w *
                   gm_info->segment_map_h));

    for (int m = 0; m < RANSAC_NUM_MOTIONS; m++) {
      CHECK_MEM_ERROR(
          cm, thread_data->params_by_motion[m].inliers,
          aom_malloc(sizeof(*thread_data->params_by_motion[m].inliers) * 2 *
                     MAX_CORNERS));
    }
  }
}

// Implements multi-threading for global motion.
void av1_global_motion_estimation_mt(AV1_COMP *cpi) {
  AV1GlobalMotionSync *gm_sync = &cpi->mt_info.gm_sync;
  JobInfo *job_info = &gm_sync->job_info;

  av1_zero(*job_info);

  int num_workers = compute_gm_workers(cpi);

  if (num_workers > gm_sync->allocated_workers ||
      cpi->source->y_width != gm_sync->allocated_width ||
      cpi->source->y_height != gm_sync->allocated_height) {
    av1_gm_dealloc(gm_sync);
    gm_alloc(cpi, num_workers);
  }

  assign_thread_to_dir(job_info->thread_id_to_dir, num_workers);
  prepare_gm_workers(cpi, gm_mt_worker_hook, num_workers);
  launch_workers(&cpi->mt_info, num_workers);
  sync_enc_workers(&cpi->mt_info, &cpi->common, num_workers);
}
#endif  // !CONFIG_REALTIME_ONLY

// Allocate memory for row synchronization
static void wiener_var_sync_mem_alloc(
    AV1EncRowMultiThreadSync *const row_mt_sync, AV1_COMMON *const cm,
    const int rows) {
#if CONFIG_MULTITHREAD
  int i;

  CHECK_MEM_ERROR(cm, row_mt_sync->mutex_,
                  aom_malloc(sizeof(*row_mt_sync->mutex_) * rows));
  if (row_mt_sync->mutex_) {
    for (i = 0; i < rows; ++i) {
      pthread_mutex_init(&row_mt_sync->mutex_[i], NULL);
    }
  }

  CHECK_MEM_ERROR(cm, row_mt_sync->cond_,
                  aom_malloc(sizeof(*row_mt_sync->cond_) * rows));
  if (row_mt_sync->cond_) {
    for (i = 0; i < rows; ++i) {
      pthread_cond_init(&row_mt_sync->cond_[i], NULL);
    }
  }
#endif  // CONFIG_MULTITHREAD

  CHECK_MEM_ERROR(cm, row_mt_sync->num_finished_cols,
                  aom_malloc(sizeof(*row_mt_sync->num_finished_cols) * rows));

  row_mt_sync->rows = rows;
  // Set up nsync.
  row_mt_sync->sync_range = 1;
}

// Deallocate row based multi-threading synchronization related mutex and data
static void wiener_var_sync_mem_dealloc(AV1EncRowMultiThreadSync *row_mt_sync) {
  if (row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
    int i;

    if (row_mt_sync->mutex_ != NULL) {
      for (i = 0; i < row_mt_sync->rows; ++i) {
        pthread_mutex_destroy(&row_mt_sync->mutex_[i]);
      }
      aom_free(row_mt_sync->mutex_);
    }
    if (row_mt_sync->cond_ != NULL) {
      for (i = 0; i < row_mt_sync->rows; ++i) {
        pthread_cond_destroy(&row_mt_sync->cond_[i]);
      }
      aom_free(row_mt_sync->cond_);
    }
#endif  // CONFIG_MULTITHREAD
    aom_free(row_mt_sync->num_finished_cols);

    // clear the structure as the source of this call may be dynamic change
    // in tiles in which case this call will be followed by an _alloc()
    // which may fail.
    av1_zero(*row_mt_sync);
  }
}

static AOM_INLINE void prepare_wiener_var_workers(AV1_COMP *const cpi,
                                                  AVxWorkerHook hook,
                                                  const int num_workers) {
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *const worker = &mt_info->workers[i];
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = NULL;

    thread_data->thread_id = i;
    // Set the starting tile for each thread, in this case the preprocessing
    // stage does not need tiles. So we set it to 0.
    thread_data->start = 0;

    thread_data->cpi = cpi;
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }

    if (thread_data->td != &cpi->td) {
      thread_data->td->mb = cpi->td.mb;
    }
  }
}

static int cal_mb_wiener_var_hook(void *arg1, void *unused) {
  (void)unused;
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
  AV1_COMP *const cpi = thread_data->cpi;
  MACROBLOCK *x = &thread_data->td->mb;
  MACROBLOCKD *xd = &x->e_mbd;
  const BLOCK_SIZE bsize = cpi->weber_bsize;
  const int mb_step = mi_size_wide[bsize];
  AV1EncRowMultiThreadSync *const row_mt_sync = &cpi->tile_data[0].row_mt_sync;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
  (void)enc_row_mt;
#if CONFIG_MULTITHREAD
  pthread_mutex_t *enc_row_mt_mutex_ = enc_row_mt->mutex_;
#endif
  DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
  DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
  DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
  double sum_rec_distortion = 0;
  double sum_est_rate = 0;
  int has_jobs = 1;
  while (has_jobs) {
    int current_mi_row = -1;
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(enc_row_mt_mutex_);
#endif
    has_jobs = get_next_job(&cpi->tile_data[0], &current_mi_row, mb_step);
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
    if (!has_jobs) break;
    // TODO(chengchen): properly accumulate the distortion and rate.
    av1_calc_mb_wiener_var_row(cpi, x, xd, current_mi_row, src_diff, coeff,
                               qcoeff, dqcoeff, &sum_rec_distortion,
                               &sum_est_rate);
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(enc_row_mt_mutex_);
#endif
    row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(enc_row_mt_mutex_);
#endif
  }
  return 1;
}

// This function is the multi-threading version of computing the wiener
// variance.
// Note that the wiener variance is used for allintra mode (1 pass) and its
// computation is before the frame encoding, so we don't need to consider
// the number of tiles, instead we allocate all available threads to
// the computation.
void av1_calc_mb_wiener_var_mt(AV1_COMP *cpi, int num_workers,
                               double *sum_rec_distortion,
                               double *sum_est_rate) {
  (void)sum_rec_distortion;
  (void)sum_est_rate;
  AV1_COMMON *const cm = &cpi->common;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  const int tile_cols = 1;
  const int tile_rows = 1;
  if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
  CHECK_MEM_ERROR(
      cm, cpi->tile_data,
      aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
  cpi->allocated_tiles = tile_cols * tile_rows;
  cpi->tile_data->tile_info.mi_row_end = cm->mi_params.mi_rows;
  AV1EncRowMultiThreadSync *const row_mt_sync = &cpi->tile_data[0].row_mt_sync;

  // TODO(chengchen): the memory usage could be improved.
  const int mi_rows = cm->mi_params.mi_rows;
  wiener_var_sync_mem_alloc(row_mt_sync, cm, mi_rows);

  row_mt_sync->intrabc_extra_top_right_sb_delay = 0;
  row_mt_sync->num_threads_working = num_workers;
  row_mt_sync->next_mi_row = 0;
  memset(row_mt_sync->num_finished_cols, -1,
         sizeof(*row_mt_sync->num_finished_cols) * num_workers);

  prepare_wiener_var_workers(cpi, cal_mb_wiener_var_hook, num_workers);
  launch_workers(mt_info, num_workers);
  sync_enc_workers(mt_info, cm, num_workers);

  wiener_var_sync_mem_dealloc(row_mt_sync);
}

// Compare and order tiles based on absolute sum of tx coeffs.
static int compare_tile_order(const void *a, const void *b) {
  const PackBSTileOrder *const tile_a = (const PackBSTileOrder *)a;
  const PackBSTileOrder *const tile_b = (const PackBSTileOrder *)b;

  if (tile_a->abs_sum_level > tile_b->abs_sum_level)
    return -1;
  else if (tile_a->abs_sum_level == tile_b->abs_sum_level)
    return (tile_a->tile_idx > tile_b->tile_idx ? 1 : -1);
  else
    return 1;
}

// Get next tile index to be processed for pack bitstream
static AOM_INLINE int get_next_pack_bs_tile_idx(
    AV1EncPackBSSync *const pack_bs_sync, const int num_tiles) {
  assert(pack_bs_sync->next_job_idx <= num_tiles);
  if (pack_bs_sync->next_job_idx == num_tiles) return -1;

  return pack_bs_sync->pack_bs_tile_order[pack_bs_sync->next_job_idx++]
      .tile_idx;
}

// Calculates bitstream chunk size based on total buffer size and tile or tile
// group size.
static AOM_INLINE size_t get_bs_chunk_size(int tg_or_tile_size,
                                           const int frame_or_tg_size,
                                           size_t *remain_buf_size,
                                           size_t max_buf_size,
                                           int is_last_chunk) {
  size_t this_chunk_size;
  assert(*remain_buf_size > 0);
  if (is_last_chunk) {
    this_chunk_size = *remain_buf_size;
    *remain_buf_size = 0;
  } else {
    const uint64_t size_scale = (uint64_t)max_buf_size * tg_or_tile_size;
    this_chunk_size = (size_t)(size_scale / frame_or_tg_size);
    *remain_buf_size -= this_chunk_size;
    assert(*remain_buf_size > 0);
  }
  assert(this_chunk_size > 0);
  return this_chunk_size;
}

// Initializes params required for pack bitstream tile.
static void init_tile_pack_bs_params(AV1_COMP *const cpi, uint8_t *const dst,
                                     struct aom_write_bit_buffer *saved_wb,
                                     PackBSParams *const pack_bs_params_arr,
                                     uint8_t obu_extn_header) {
  MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
  AV1_COMMON *const cm = &cpi->common;
  const CommonTileParams *const tiles = &cm->tiles;
  const int num_tiles = tiles->cols * tiles->rows;
  // Fixed size tile groups for the moment
  const int num_tg_hdrs = cpi->num_tg;
  // Tile group size in terms of number of tiles.
  const int tg_size_in_tiles = (num_tiles + num_tg_hdrs - 1) / num_tg_hdrs;
  uint8_t *tile_dst = dst;
  uint8_t *tile_data_curr = dst;
  // Max tile group count can not be more than MAX_TILES.
  int tg_size_mi[MAX_TILES] = { 0 };  // Size of tile group in mi units
  int tile_idx;
  int tg_idx = 0;
  int tile_count_in_tg = 0;
  int new_tg = 1;

  // Populate pack bitstream params of all tiles.
  for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
    const TileInfo *const tile_info = &cpi->tile_data[tile_idx].tile_info;
    PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
    // Calculate tile size in mi units.
    const int tile_size_mi = (tile_info->mi_col_end - tile_info->mi_col_start) *
                             (tile_info->mi_row_end - tile_info->mi_row_start);
    int is_last_tile_in_tg = 0;
    tile_count_in_tg++;
    if (tile_count_in_tg == tg_size_in_tiles || tile_idx == (num_tiles - 1))
      is_last_tile_in_tg = 1;

    // Populate pack bitstream params of this tile.
    pack_bs_params->curr_tg_hdr_size = 0;
    pack_bs_params->obu_extn_header = obu_extn_header;
    pack_bs_params->saved_wb = saved_wb;
    pack_bs_params->obu_header_size = 0;
    pack_bs_params->is_last_tile_in_tg = is_last_tile_in_tg;
    pack_bs_params->new_tg = new_tg;
    pack_bs_params->tile_col = tile_info->tile_col;
    pack_bs_params->tile_row = tile_info->tile_row;
    pack_bs_params->tile_size_mi = tile_size_mi;
    tg_size_mi[tg_idx] += tile_size_mi;

    if (new_tg) new_tg = 0;
    if (is_last_tile_in_tg) {
      tile_count_in_tg = 0;
      new_tg = 1;
      tg_idx++;
    }
  }

  assert(cpi->available_bs_size > 0);
  size_t tg_buf_size[MAX_TILES] = { 0 };
  size_t max_buf_size = cpi->available_bs_size;
  size_t remain_buf_size = max_buf_size;
  const int frame_size_mi = cm->mi_params.mi_rows * cm->mi_params.mi_cols;

  tile_idx = 0;
  // Prepare obu, tile group and frame header of each tile group.
  for (tg_idx = 0; tg_idx < cpi->num_tg; tg_idx++) {
    PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
    int is_last_tg = tg_idx == cpi->num_tg - 1;
    // Prorate bitstream buffer size based on tile group size and available
    // buffer size. This buffer will be used to store headers and tile data.
    tg_buf_size[tg_idx] =
        get_bs_chunk_size(tg_size_mi[tg_idx], frame_size_mi, &remain_buf_size,
                          max_buf_size, is_last_tg);

    pack_bs_params->dst = tile_dst;
    pack_bs_params->tile_data_curr = tile_dst;

    // Write obu, tile group and frame header at first tile in the tile
    // group.
    av1_write_obu_tg_tile_headers(cpi, xd, pack_bs_params, tile_idx);
    tile_dst += tg_buf_size[tg_idx];

    // Exclude headers from tile group buffer size.
    tg_buf_size[tg_idx] -= pack_bs_params->curr_tg_hdr_size;
    tile_idx += tg_size_in_tiles;
  }

  tg_idx = 0;
  // Calculate bitstream buffer size of each tile in the tile group.
  for (tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
    PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];

    if (pack_bs_params->new_tg) {
      max_buf_size = tg_buf_size[tg_idx];
      remain_buf_size = max_buf_size;
    }

    // Prorate bitstream buffer size of this tile based on tile size and
    // available buffer size. For this proration, header size is not accounted.
    const size_t tile_buf_size = get_bs_chunk_size(
        pack_bs_params->tile_size_mi, tg_size_mi[tg_idx], &remain_buf_size,
        max_buf_size, pack_bs_params->is_last_tile_in_tg);
    pack_bs_params->tile_buf_size = tile_buf_size;

    // Update base address of bitstream buffer for tile and tile group.
    if (pack_bs_params->new_tg) {
      tile_dst = pack_bs_params->dst;
      tile_data_curr = pack_bs_params->tile_data_curr;
      // Account header size in first tile of a tile group.
      pack_bs_params->tile_buf_size += pack_bs_params->curr_tg_hdr_size;
    } else {
      pack_bs_params->dst = tile_dst;
      pack_bs_params->tile_data_curr = tile_data_curr;
    }

    if (pack_bs_params->is_last_tile_in_tg) tg_idx++;
    tile_dst += pack_bs_params->tile_buf_size;
  }
}

// Worker hook function of pack bitsteam multithreading.
static int pack_bs_worker_hook(void *arg1, void *arg2) {
  EncWorkerData *const thread_data = (EncWorkerData *)arg1;
  PackBSParams *const pack_bs_params = (PackBSParams *)arg2;
  AV1_COMP *const cpi = thread_data->cpi;
  AV1_COMMON *const cm = &cpi->common;
  AV1EncPackBSSync *const pack_bs_sync = &cpi->mt_info.pack_bs_sync;
  const CommonTileParams *const tiles = &cm->tiles;
  const int num_tiles = tiles->cols * tiles->rows;

  while (1) {
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(pack_bs_sync->mutex_);
#endif
    const int tile_idx = get_next_pack_bs_tile_idx(pack_bs_sync, num_tiles);
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(pack_bs_sync->mutex_);
#endif
    if (tile_idx == -1) break;
    TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
    thread_data->td->mb.e_mbd.tile_ctx = &this_tile->tctx;

    av1_pack_tile_info(cpi, thread_data->td, &pack_bs_params[tile_idx]);
  }

  return 1;
}

// Prepares thread data and workers of pack bitsteam multithreading.
static void prepare_pack_bs_workers(AV1_COMP *const cpi,
                                    PackBSParams *const pack_bs_params,
                                    AVxWorkerHook hook, const int num_workers) {
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *worker = &mt_info->workers[i];
    EncWorkerData *const thread_data = &mt_info->tile_thr_data[i];
    if (i == 0) {
      thread_data->td = &cpi->td;
    } else {
      thread_data->td = thread_data->original_td;
    }

    if (thread_data->td != &cpi->td) thread_data->td->mb = cpi->td.mb;

    thread_data->cpi = cpi;
    thread_data->start = i;
    thread_data->thread_id = i;
    av1_reset_pack_bs_thread_data(thread_data->td);

    worker->hook = hook;
    worker->data1 = thread_data;
    worker->data2 = pack_bs_params;
  }

  AV1_COMMON *const cm = &cpi->common;
  AV1EncPackBSSync *const pack_bs_sync = &mt_info->pack_bs_sync;
  const uint16_t num_tiles = cm->tiles.rows * cm->tiles.cols;
  pack_bs_sync->next_job_idx = 0;

  PackBSTileOrder *const pack_bs_tile_order = pack_bs_sync->pack_bs_tile_order;
  // Reset tile order data of pack bitstream
  av1_zero_array(pack_bs_tile_order, num_tiles);

  // Populate pack bitstream tile order structure
  for (uint16_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
    pack_bs_tile_order[tile_idx].abs_sum_level =
        cpi->tile_data[tile_idx].abs_sum_level;
    pack_bs_tile_order[tile_idx].tile_idx = tile_idx;
  }

  // Sort tiles in descending order based on tile area.
  qsort(pack_bs_tile_order, num_tiles, sizeof(*pack_bs_tile_order),
        compare_tile_order);
}

// Accumulates data after pack bitsteam processing.
static void accumulate_pack_bs_data(
    AV1_COMP *const cpi, const PackBSParams *const pack_bs_params_arr,
    uint8_t *const dst, uint32_t *total_size, const FrameHeaderInfo *fh_info,
    int *const largest_tile_id, unsigned int *max_tile_size,
    uint32_t *const obu_header_size, uint8_t **tile_data_start,
    const int num_workers) {
  const AV1_COMMON *const cm = &cpi->common;
  const CommonTileParams *const tiles = &cm->tiles;
  const int tile_count = tiles->cols * tiles->rows;
  // Fixed size tile groups for the moment
  size_t curr_tg_data_size = 0;
  int is_first_tg = 1;
  uint8_t *curr_tg_start = dst;
  size_t src_offset = 0;
  size_t dst_offset = 0;

  for (int tile_idx = 0; tile_idx < tile_count; tile_idx++) {
    // PackBSParams stores all parameters required to pack tile and header
    // info.
    const PackBSParams *const pack_bs_params = &pack_bs_params_arr[tile_idx];
    uint32_t tile_size = 0;

    if (pack_bs_params->new_tg) {
      curr_tg_start = dst + *total_size;
      curr_tg_data_size = pack_bs_params->curr_tg_hdr_size;
      *tile_data_start += pack_bs_params->curr_tg_hdr_size;
      *obu_header_size = pack_bs_params->obu_header_size;
    }
    curr_tg_data_size +=
        pack_bs_params->buf.size + (pack_bs_params->is_last_tile_in_tg ? 0 : 4);

    if (pack_bs_params->buf.size > *max_tile_size) {
      *largest_tile_id = tile_idx;
      *max_tile_size = (unsigned int)pack_bs_params->buf.size;
    }
    tile_size +=
        (uint32_t)pack_bs_params->buf.size + *pack_bs_params->total_size;

    // Pack all the chunks of tile bitstreams together
    if (tile_idx != 0) memmove(dst + dst_offset, dst + src_offset, tile_size);

    if (pack_bs_params->is_last_tile_in_tg)
      av1_write_last_tile_info(
          cpi, fh_info, pack_bs_params->saved_wb, &curr_tg_data_size,
          curr_tg_start, &tile_size, tile_data_start, largest_tile_id,
          &is_first_tg, *obu_header_size, pack_bs_params->obu_extn_header);
    src_offset += pack_bs_params->tile_buf_size;
    dst_offset += tile_size;
    *total_size += tile_size;
  }

  // Accumulate thread data
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  for (int idx = num_workers - 1; idx >= 0; idx--) {
    ThreadData const *td = mt_info->tile_thr_data[idx].td;
    av1_accumulate_pack_bs_thread_data(cpi, td);
  }
}

void av1_write_tile_obu_mt(
    AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
    struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
    const FrameHeaderInfo *fh_info, int *const largest_tile_id,
    unsigned int *max_tile_size, uint32_t *const obu_header_size,
    uint8_t **tile_data_start, const int num_workers) {
  MultiThreadInfo *const mt_info = &cpi->mt_info;

  PackBSParams pack_bs_params[MAX_TILES];
  uint32_t tile_size[MAX_TILES] = { 0 };

  for (int tile_idx = 0; tile_idx < MAX_TILES; tile_idx++)
    pack_bs_params[tile_idx].total_size = &tile_size[tile_idx];

  init_tile_pack_bs_params(cpi, dst, saved_wb, pack_bs_params, obu_extn_header);
  prepare_pack_bs_workers(cpi, pack_bs_params, pack_bs_worker_hook,
                          num_workers);
  launch_workers(mt_info, num_workers);
  sync_enc_workers(mt_info, &cpi->common, num_workers);
  accumulate_pack_bs_data(cpi, pack_bs_params, dst, total_size, fh_info,
                          largest_tile_id, max_tile_size, obu_header_size,
                          tile_data_start, num_workers);
}

// Deallocate memory for CDEF search multi-thread synchronization.
void av1_cdef_mt_dealloc(AV1CdefSync *cdef_sync) {
  (void)cdef_sync;
  assert(cdef_sync != NULL);
#if CONFIG_MULTITHREAD
  if (cdef_sync->mutex_ != NULL) {
    pthread_mutex_destroy(cdef_sync->mutex_);
    aom_free(cdef_sync->mutex_);
  }
#endif  // CONFIG_MULTITHREAD
}

// Updates the row and column indices of the next job to be processed.
// Also updates end_of_frame flag when the processing of all blocks is complete.
static void update_next_job_info(AV1CdefSync *cdef_sync, int nvfb, int nhfb) {
  cdef_sync->fbc++;
  if (cdef_sync->fbc == nhfb) {
    cdef_sync->fbr++;
    if (cdef_sync->fbr == nvfb) {
      cdef_sync->end_of_frame = 1;
    } else {
      cdef_sync->fbc = 0;
    }
  }
}

// Initializes cdef_sync parameters.
static AOM_INLINE void cdef_reset_job_info(AV1CdefSync *cdef_sync) {
#if CONFIG_MULTITHREAD
  if (cdef_sync->mutex_) pthread_mutex_init(cdef_sync->mutex_, NULL);
#endif  // CONFIG_MULTITHREAD
  cdef_sync->end_of_frame = 0;
  cdef_sync->fbr = 0;
  cdef_sync->fbc = 0;
}

// Checks if a job is available. If job is available,
// populates next job information and returns 1, else returns 0.
static AOM_INLINE int cdef_get_next_job(AV1CdefSync *cdef_sync,
                                        CdefSearchCtx *cdef_search_ctx,
                                        int *cur_fbr, int *cur_fbc,
                                        int *sb_count) {
#if CONFIG_MULTITHREAD
  pthread_mutex_lock(cdef_sync->mutex_);
#endif  // CONFIG_MULTITHREAD
  int do_next_block = 0;
  const int nvfb = cdef_search_ctx->nvfb;
  const int nhfb = cdef_search_ctx->nhfb;

  // If a block is skip, do not process the block and
  // check the skip condition for the next block.
  while ((!cdef_sync->end_of_frame) &&
         (cdef_sb_skip(cdef_search_ctx->mi_params, cdef_sync->fbr,
                       cdef_sync->fbc))) {
    update_next_job_info(cdef_sync, nvfb, nhfb);
  }

  // Populates information needed for current job and update the row,
  // column indices of the next block to be processed.
  if (cdef_sync->end_of_frame == 0) {
    do_next_block = 1;
    *cur_fbr = cdef_sync->fbr;
    *cur_fbc = cdef_sync->fbc;
    *sb_count = cdef_search_ctx->sb_count;
    cdef_search_ctx->sb_count++;
    update_next_job_info(cdef_sync, nvfb, nhfb);
  }
#if CONFIG_MULTITHREAD
  pthread_mutex_unlock(cdef_sync->mutex_);
#endif  // CONFIG_MULTITHREAD
  return do_next_block;
}

// Hook function for each thread in CDEF search multi-threading.
static int cdef_filter_block_worker_hook(void *arg1, void *arg2) {
  AV1CdefSync *const cdef_sync = (AV1CdefSync *)arg1;
  CdefSearchCtx *cdef_search_ctx = (CdefSearchCtx *)arg2;
  int cur_fbr, cur_fbc, sb_count;
  while (cdef_get_next_job(cdef_sync, cdef_search_ctx, &cur_fbr, &cur_fbc,
                           &sb_count)) {
    av1_cdef_mse_calc_block(cdef_search_ctx, cur_fbr, cur_fbc, sb_count);
  }
  return 1;
}

// Assigns CDEF search hook function and thread data to each worker.
static void prepare_cdef_workers(MultiThreadInfo *mt_info,
                                 CdefSearchCtx *cdef_search_ctx,
                                 AVxWorkerHook hook, int num_workers) {
  for (int i = num_workers - 1; i >= 0; i--) {
    AVxWorker *worker = &mt_info->workers[i];
    worker->hook = hook;
    worker->data1 = &mt_info->cdef_sync;
    worker->data2 = cdef_search_ctx;
  }
}

// Implements multi-threading for CDEF search.
void av1_cdef_mse_calc_frame_mt(AV1_COMMON *cm, MultiThreadInfo *mt_info,
                                CdefSearchCtx *cdef_search_ctx) {
  AV1CdefSync *cdef_sync = &mt_info->cdef_sync;
  const int num_workers = mt_info->num_mod_workers[MOD_CDEF_SEARCH];

  cdef_reset_job_info(cdef_sync);
  prepare_cdef_workers(mt_info, cdef_search_ctx, cdef_filter_block_worker_hook,
                       num_workers);
  launch_workers(mt_info, num_workers);
  sync_enc_workers(mt_info, cm, num_workers);
}

// Computes num_workers for temporal filter multi-threading.
static AOM_INLINE int compute_num_tf_workers(AV1_COMP *cpi) {
  // For single-pass encode, using no. of workers as per tf block size was not
  // found to improve speed. Hence the thread assignment for single-pass encode
  // is kept based on compute_num_enc_workers().
  if (cpi->oxcf.pass < AOM_RC_SECOND_PASS)
    return (av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads));

  if (cpi->oxcf.max_threads <= 1) return 1;

  const int frame_height = cpi->common.height;
  const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
  const int mb_height = block_size_high[block_size];
  const int mb_rows = get_num_blocks(frame_height, mb_height);
  return AOMMIN(cpi->oxcf.max_threads, mb_rows);
}

// Computes num_workers for tpl multi-threading.
static AOM_INLINE int compute_num_tpl_workers(AV1_COMP *cpi) {
  return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
}

// Computes num_workers for loop filter multi-threading.
static AOM_INLINE int compute_num_lf_workers(AV1_COMP *cpi) {
  return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
}

// Computes num_workers for cdef multi-threading.
static AOM_INLINE int compute_num_cdef_workers(AV1_COMP *cpi) {
  return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
}

// Computes num_workers for loop-restoration multi-threading.
static AOM_INLINE int compute_num_lr_workers(AV1_COMP *cpi) {
  return av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
}

// Computes num_workers for pack bitstream multi-threading.
static AOM_INLINE int compute_num_pack_bs_workers(AV1_COMP *cpi) {
  if (cpi->oxcf.max_threads <= 1) return 1;
  return compute_num_enc_tile_mt_workers(&cpi->common, cpi->oxcf.max_threads);
}

// Computes num_workers for all intra multi-threading.
static AOM_INLINE int compute_num_ai_workers(AV1_COMP *cpi) {
  if (cpi->oxcf.max_threads <= 1) return 1;
  cpi->weber_bsize = BLOCK_8X8;
  const BLOCK_SIZE bsize = cpi->weber_bsize;
  const int mb_step = mi_size_wide[bsize];
  const int num_mb_rows = cpi->common.mi_params.mi_rows / mb_step;
  return AOMMIN(num_mb_rows, cpi->oxcf.max_threads);
}

int compute_num_mod_workers(AV1_COMP *cpi, MULTI_THREADED_MODULES mod_name) {
  int num_mod_workers = 0;
  switch (mod_name) {
    case MOD_FP:
      if (cpi->oxcf.pass >= AOM_RC_SECOND_PASS)
        num_mod_workers = 0;
      else
        num_mod_workers =
            av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
      break;
    case MOD_TF: num_mod_workers = compute_num_tf_workers(cpi); break;
    case MOD_TPL: num_mod_workers = compute_num_tpl_workers(cpi); break;
    case MOD_GME: num_mod_workers = 1; break;
    case MOD_ENC:
      num_mod_workers = av1_compute_num_enc_workers(cpi, cpi->oxcf.max_threads);
      break;
    case MOD_LPF: num_mod_workers = compute_num_lf_workers(cpi); break;
    case MOD_CDEF_SEARCH:
      num_mod_workers = compute_num_cdef_workers(cpi);
      break;
    case MOD_CDEF: num_mod_workers = compute_num_cdef_workers(cpi); break;
    case MOD_LR: num_mod_workers = compute_num_lr_workers(cpi); break;
    case MOD_PACK_BS: num_mod_workers = compute_num_pack_bs_workers(cpi); break;
    case MOD_FRAME_ENC:
      num_mod_workers = cpi->ppi->p_mt_info.num_mod_workers[MOD_FRAME_ENC];
      break;
    case MOD_AI:
      if (cpi->oxcf.pass == AOM_RC_ONE_PASS) {
        num_mod_workers = compute_num_ai_workers(cpi);
        break;
      } else {
        num_mod_workers = 0;
        break;
      }
    default: assert(0); break;
  }
  return (num_mod_workers);
}
// Computes the number of workers for each MT modules in the encoder
void av1_compute_num_workers_for_mt(AV1_COMP *cpi) {
  for (int i = MOD_FP; i < NUM_MT_MODULES; i++)
    cpi->ppi->p_mt_info.num_mod_workers[i] =
        compute_num_mod_workers(cpi, (MULTI_THREADED_MODULES)i);
}