aboutsummaryrefslogtreecommitdiff
path: root/av1/encoder/global_motion.c
blob: 5e03d79aeaf4b731377cb125487bd60c2a2ce181 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <memory.h>
#include <math.h>
#include <assert.h>

#include "config/aom_dsp_rtcd.h"

#include "av1/encoder/global_motion.h"

#include "av1/common/convolve.h"
#include "av1/common/resize.h"
#include "av1/common/warped_motion.h"

#include "av1/encoder/segmentation.h"
#include "av1/encoder/corner_detect.h"
#include "av1/encoder/corner_match.h"
#include "av1/encoder/ransac.h"

#define MIN_INLIER_PROB 0.1

#define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR)

// Border over which to compute the global motion
#define ERRORADV_BORDER 0

// Number of pyramid levels in disflow computation
#define N_LEVELS 2
// Size of square patches in the disflow dense grid
#define PATCH_SIZE 8
// Center point of square patch
#define PATCH_CENTER ((PATCH_SIZE + 1) >> 1)
// Step size between patches, lower value means greater patch overlap
#define PATCH_STEP 1
// Minimum size of border padding for disflow
#define MIN_PAD 7
// Warp error convergence threshold for disflow
#define DISFLOW_ERROR_TR 0.01
// Max number of iterations if warp convergence is not found
#define DISFLOW_MAX_ITR 10

// Struct for an image pyramid
typedef struct {
  int n_levels;
  int pad_size;
  int has_gradient;
  int widths[N_LEVELS];
  int heights[N_LEVELS];
  int strides[N_LEVELS];
  int level_loc[N_LEVELS];
  unsigned char *level_buffer;
  double *level_dx_buffer;
  double *level_dy_buffer;
} ImagePyramid;

int av1_is_enough_erroradvantage(double best_erroradvantage, int params_cost) {
  return best_erroradvantage < erroradv_tr &&
         best_erroradvantage * params_cost < erroradv_prod_tr;
}

static void convert_to_params(const double *params, int32_t *model) {
  int i;
  int alpha_present = 0;
  model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
  model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
  model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
             GM_TRANS_DECODE_FACTOR;
  model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
             GM_TRANS_DECODE_FACTOR;

  for (i = 2; i < 6; ++i) {
    const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0);
    model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
    model[i] =
        (int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX);
    alpha_present |= (model[i] != 0);
    model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR;
  }
  for (; i < 8; ++i) {
    model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5);
    model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) *
               GM_ROW3HOMO_DECODE_FACTOR;
    alpha_present |= (model[i] != 0);
  }

  if (!alpha_present) {
    if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
      model[0] = 0;
      model[1] = 0;
    }
  }
}

void av1_convert_model_to_params(const double *params,
                                 WarpedMotionParams *model) {
  convert_to_params(params, model->wmmat);
  model->wmtype = get_wmtype(model);
  model->invalid = 0;
}

// Adds some offset to a global motion parameter and handles
// all of the necessary precision shifts, clamping, and
// zero-centering.
static int32_t add_param_offset(int param_index, int32_t param_value,
                                int32_t offset) {
  const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF,
                              GM_ROW3HOMO_PREC_DIFF };
  const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX };
  // type of param: 0 - translation, 1 - affine, 2 - homography
  const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2));
  const int is_one_centered = (param_index == 2 || param_index == 5);

  // Make parameter zero-centered and offset the shift that was done to make
  // it compatible with the warped model
  param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >>
                scale_vals[param_type];
  // Add desired offset to the rescaled/zero-centered parameter
  param_value += offset;
  // Clamp the parameter so it does not overflow the number of bits allotted
  // to it in the bitstream
  param_value = (int32_t)clamp(param_value, -clamp_vals[param_type],
                               clamp_vals[param_type]);
  // Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible
  // with the warped motion library
  param_value *= (1 << scale_vals[param_type]);

  // Undo the zero-centering step if necessary
  return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS);
}

static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) {
  switch (wmtype) {
    case IDENTITY:
      wm->wmmat[0] = 0;
      wm->wmmat[1] = 0;
      AOM_FALLTHROUGH_INTENDED;
    case TRANSLATION:
      wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS;
      wm->wmmat[3] = 0;
      AOM_FALLTHROUGH_INTENDED;
    case ROTZOOM:
      wm->wmmat[4] = -wm->wmmat[3];
      wm->wmmat[5] = wm->wmmat[2];
      AOM_FALLTHROUGH_INTENDED;
    case AFFINE: break;
    default: assert(0);
  }
  wm->wmtype = wmtype;
}

#if CONFIG_AV1_HIGHBITDEPTH
static int64_t highbd_warp_error(
    WarpedMotionParams *wm, const uint16_t *const ref, int width, int height,
    int stride, const uint16_t *const dst, int p_col, int p_row, int p_width,
    int p_height, int p_stride, int subsampling_x, int subsampling_y, int bd,
    int64_t best_error, uint8_t *segment_map, int segment_map_stride) {
  int64_t gm_sumerr = 0;
  const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
  const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
  uint16_t tmp[WARP_ERROR_BLOCK * WARP_ERROR_BLOCK];

  ConvolveParams conv_params = get_conv_params(0, 0, bd);
  conv_params.use_dist_wtd_comp_avg = 0;
  for (int i = p_row; i < p_row + p_height; i += WARP_ERROR_BLOCK) {
    for (int j = p_col; j < p_col + p_width; j += WARP_ERROR_BLOCK) {
      int seg_x = j >> WARP_ERROR_BLOCK_LOG;
      int seg_y = i >> WARP_ERROR_BLOCK_LOG;
      // Only compute the error if this block contains inliers from the motion
      // model
      if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;
      // avoid warping extra 8x8 blocks in the padded region of the frame
      // when p_width and p_height are not multiples of WARP_ERROR_BLOCK
      const int warp_w = AOMMIN(error_bsize_w, p_col + p_width - j);
      const int warp_h = AOMMIN(error_bsize_h, p_row + p_height - i);
      highbd_warp_plane(wm, ref, width, height, stride, tmp, j, i, warp_w,
                        warp_h, WARP_ERROR_BLOCK, subsampling_x, subsampling_y,
                        bd, &conv_params);
      gm_sumerr += av1_calc_highbd_frame_error(tmp, WARP_ERROR_BLOCK,
                                               dst + j + i * p_stride, warp_w,
                                               warp_h, p_stride, bd);
      if (gm_sumerr > best_error) return INT64_MAX;
    }
  }
  return gm_sumerr;
}
#endif

static int64_t warp_error(WarpedMotionParams *wm, const uint8_t *const ref,
                          int width, int height, int stride,
                          const uint8_t *const dst, int p_col, int p_row,
                          int p_width, int p_height, int p_stride,
                          int subsampling_x, int subsampling_y,
                          int64_t best_error, uint8_t *segment_map,
                          int segment_map_stride) {
  int64_t gm_sumerr = 0;
  int warp_w, warp_h;
  const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
  const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
  DECLARE_ALIGNED(16, uint8_t, tmp[WARP_ERROR_BLOCK * WARP_ERROR_BLOCK]);
  ConvolveParams conv_params = get_conv_params(0, 0, 8);
  conv_params.use_dist_wtd_comp_avg = 0;

  for (int i = p_row; i < p_row + p_height; i += WARP_ERROR_BLOCK) {
    for (int j = p_col; j < p_col + p_width; j += WARP_ERROR_BLOCK) {
      int seg_x = j >> WARP_ERROR_BLOCK_LOG;
      int seg_y = i >> WARP_ERROR_BLOCK_LOG;
      // Only compute the error if this block contains inliers from the motion
      // model
      if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;
      // avoid warping extra 8x8 blocks in the padded region of the frame
      // when p_width and p_height are not multiples of WARP_ERROR_BLOCK
      warp_w = AOMMIN(error_bsize_w, p_col + p_width - j);
      warp_h = AOMMIN(error_bsize_h, p_row + p_height - i);
      warp_plane(wm, ref, width, height, stride, tmp, j, i, warp_w, warp_h,
                 WARP_ERROR_BLOCK, subsampling_x, subsampling_y, &conv_params);

      gm_sumerr +=
          av1_calc_frame_error(tmp, WARP_ERROR_BLOCK, dst + j + i * p_stride,
                               warp_w, warp_h, p_stride);
      if (gm_sumerr > best_error) return INT64_MAX;
    }
  }
  return gm_sumerr;
}

int64_t av1_warp_error(WarpedMotionParams *wm, int use_hbd, int bd,
                       const uint8_t *ref, int width, int height, int stride,
                       uint8_t *dst, int p_col, int p_row, int p_width,
                       int p_height, int p_stride, int subsampling_x,
                       int subsampling_y, int64_t best_error,
                       uint8_t *segment_map, int segment_map_stride) {
  if (wm->wmtype <= AFFINE)
    if (!av1_get_shear_params(wm)) return INT64_MAX;
#if CONFIG_AV1_HIGHBITDEPTH
  if (use_hbd)
    return highbd_warp_error(wm, CONVERT_TO_SHORTPTR(ref), width, height,
                             stride, CONVERT_TO_SHORTPTR(dst), p_col, p_row,
                             p_width, p_height, p_stride, subsampling_x,
                             subsampling_y, bd, best_error, segment_map,
                             segment_map_stride);
#endif
  (void)use_hbd;
  (void)bd;
  return warp_error(wm, ref, width, height, stride, dst, p_col, p_row, p_width,
                    p_height, p_stride, subsampling_x, subsampling_y,
                    best_error, segment_map, segment_map_stride);
}

// Factors used to calculate the thresholds for av1_warp_error
static double thresh_factors[GM_REFINEMENT_COUNT] = { 1.25, 1.20, 1.15, 1.10,
                                                      1.05 };

static INLINE int64_t calc_approx_erroradv_threshold(
    double scaling_factor, int64_t erroradv_threshold) {
  return erroradv_threshold <
                 (int64_t)(((double)INT64_MAX / scaling_factor) + 0.5)
             ? (int64_t)(scaling_factor * erroradv_threshold + 0.5)
             : INT64_MAX;
}

int64_t av1_refine_integerized_param(
    WarpedMotionParams *wm, TransformationType wmtype, int use_hbd, int bd,
    uint8_t *ref, int r_width, int r_height, int r_stride, uint8_t *dst,
    int d_width, int d_height, int d_stride, int n_refinements,
    int64_t best_frame_error, uint8_t *segment_map, int segment_map_stride,
    int64_t erroradv_threshold) {
  static const int max_trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 };
  const int border = ERRORADV_BORDER;
  int i = 0, p;
  int n_params = max_trans_model_params[wmtype];
  int32_t *param_mat = wm->wmmat;
  int64_t step_error, best_error;
  int32_t step;
  int32_t *param;
  int32_t curr_param;
  int32_t best_param;

  force_wmtype(wm, wmtype);
  best_error =
      av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
                     dst + border * d_stride + border, border, border,
                     d_width - 2 * border, d_height - 2 * border, d_stride, 0,
                     0, best_frame_error, segment_map, segment_map_stride);
  best_error = AOMMIN(best_error, best_frame_error);
  step = 1 << (n_refinements - 1);
  for (i = 0; i < n_refinements; i++, step >>= 1) {
    int64_t error_adv_thresh =
        calc_approx_erroradv_threshold(thresh_factors[i], erroradv_threshold);
    for (p = 0; p < n_params; ++p) {
      int step_dir = 0;
      // Skip searches for parameters that are forced to be 0
      param = param_mat + p;
      curr_param = *param;
      best_param = curr_param;
      // look to the left
      *param = add_param_offset(p, curr_param, -step);
      step_error =
          av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
                         dst + border * d_stride + border, border, border,
                         d_width - 2 * border, d_height - 2 * border, d_stride,
                         0, 0, AOMMIN(best_error, error_adv_thresh),
                         segment_map, segment_map_stride);
      if (step_error < best_error) {
        best_error = step_error;
        best_param = *param;
        step_dir = -1;
      }

      // look to the right
      *param = add_param_offset(p, curr_param, step);
      step_error =
          av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
                         dst + border * d_stride + border, border, border,
                         d_width - 2 * border, d_height - 2 * border, d_stride,
                         0, 0, AOMMIN(best_error, error_adv_thresh),
                         segment_map, segment_map_stride);
      if (step_error < best_error) {
        best_error = step_error;
        best_param = *param;
        step_dir = 1;
      }
      *param = best_param;

      // look to the direction chosen above repeatedly until error increases
      // for the biggest step size
      while (step_dir) {
        *param = add_param_offset(p, best_param, step * step_dir);
        step_error =
            av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
                           dst + border * d_stride + border, border, border,
                           d_width - 2 * border, d_height - 2 * border,
                           d_stride, 0, 0, AOMMIN(best_error, error_adv_thresh),
                           segment_map, segment_map_stride);
        if (step_error < best_error) {
          best_error = step_error;
          best_param = *param;
        } else {
          *param = best_param;
          step_dir = 0;
        }
      }
    }
  }
  force_wmtype(wm, wmtype);
  wm->wmtype = get_wmtype(wm);
  return best_error;
}

unsigned char *av1_downconvert_frame(YV12_BUFFER_CONFIG *frm, int bit_depth) {
  int i, j;
  uint16_t *orig_buf = CONVERT_TO_SHORTPTR(frm->y_buffer);
  uint8_t *buf_8bit = frm->y_buffer_8bit;
  assert(buf_8bit);
  if (!frm->buf_8bit_valid) {
    for (i = 0; i < frm->y_height; ++i) {
      for (j = 0; j < frm->y_width; ++j) {
        buf_8bit[i * frm->y_stride + j] =
            orig_buf[i * frm->y_stride + j] >> (bit_depth - 8);
      }
    }
    frm->buf_8bit_valid = 1;
  }
  return buf_8bit;
}

static bool get_inliers_from_indices(MotionModel *params,
                                     int *correspondences) {
  int *inliers_tmp = (int *)aom_malloc(2 * MAX_CORNERS * sizeof(*inliers_tmp));
  if (!inliers_tmp) return false;
  memset(inliers_tmp, 0, 2 * MAX_CORNERS * sizeof(*inliers_tmp));

  for (int i = 0; i < params->num_inliers; i++) {
    int index = params->inliers[i];
    inliers_tmp[2 * i] = correspondences[4 * index];
    inliers_tmp[2 * i + 1] = correspondences[4 * index + 1];
  }
  memcpy(params->inliers, inliers_tmp, sizeof(*inliers_tmp) * 2 * MAX_CORNERS);
  aom_free(inliers_tmp);
  return true;
}

#define FEAT_COUNT_TR 3
#define SEG_COUNT_TR 0.40
void av1_compute_feature_segmentation_map(uint8_t *segment_map, int width,
                                          int height, int *inliers,
                                          int num_inliers) {
  int seg_count = 0;
  memset(segment_map, 0, sizeof(*segment_map) * width * height);

  for (int i = 0; i < num_inliers; i++) {
    int x = inliers[i * 2];
    int y = inliers[i * 2 + 1];
    int seg_x = x >> WARP_ERROR_BLOCK_LOG;
    int seg_y = y >> WARP_ERROR_BLOCK_LOG;
    segment_map[seg_y * width + seg_x] += 1;
  }

  for (int i = 0; i < height; i++) {
    for (int j = 0; j < width; j++) {
      uint8_t feat_count = segment_map[i * width + j];
      segment_map[i * width + j] = (feat_count >= FEAT_COUNT_TR);
      seg_count += (segment_map[i * width + j]);
    }
  }

  // If this motion does not make up a large enough portion of the frame,
  // use the unsegmented version of the error metric
  if (seg_count < (width * height * SEG_COUNT_TR))
    memset(segment_map, 1, width * height * sizeof(*segment_map));
}

static int compute_global_motion_feature_based(
    TransformationType type, unsigned char *src_buffer, int src_width,
    int src_height, int src_stride, int *src_corners, int num_src_corners,
    YV12_BUFFER_CONFIG *ref, int bit_depth, int *num_inliers_by_motion,
    MotionModel *params_by_motion, int num_motions) {
  int i;
  int num_ref_corners;
  int num_correspondences;
  int *correspondences;
  int ref_corners[2 * MAX_CORNERS];
  unsigned char *ref_buffer = ref->y_buffer;
  RansacFunc ransac = av1_get_ransac_type(type);

  if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
    ref_buffer = av1_downconvert_frame(ref, bit_depth);
  }

  num_ref_corners =
      av1_fast_corner_detect(ref_buffer, ref->y_width, ref->y_height,
                             ref->y_stride, ref_corners, MAX_CORNERS);

  // find correspondences between the two images
  correspondences =
      (int *)malloc(num_src_corners * 4 * sizeof(*correspondences));
  if (!correspondences) return 0;
  num_correspondences = av1_determine_correspondence(
      src_buffer, (int *)src_corners, num_src_corners, ref_buffer,
      (int *)ref_corners, num_ref_corners, src_width, src_height, src_stride,
      ref->y_stride, correspondences);

  ransac(correspondences, num_correspondences, num_inliers_by_motion,
         params_by_motion, num_motions);

  // Set num_inliers = 0 for motions with too few inliers so they are ignored.
  for (i = 0; i < num_motions; ++i) {
    if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences ||
        num_correspondences == 0) {
      num_inliers_by_motion[i] = 0;
    } else if (!get_inliers_from_indices(&params_by_motion[i],
                                         correspondences)) {
      free(correspondences);
      return 0;
    }
  }

  free(correspondences);

  // Return true if any one of the motions has inliers.
  for (i = 0; i < num_motions; ++i) {
    if (num_inliers_by_motion[i] > 0) return 1;
  }
  return 0;
}

// Don't use points around the frame border since they are less reliable
static INLINE int valid_point(int x, int y, int width, int height) {
  return (x > (PATCH_SIZE + PATCH_CENTER)) &&
         (x < (width - PATCH_SIZE - PATCH_CENTER)) &&
         (y > (PATCH_SIZE + PATCH_CENTER)) &&
         (y < (height - PATCH_SIZE - PATCH_CENTER));
}

static int determine_disflow_correspondence(int *frm_corners,
                                            int num_frm_corners, double *flow_u,
                                            double *flow_v, int width,
                                            int height, int stride,
                                            double *correspondences) {
  int num_correspondences = 0;
  int x, y;
  for (int i = 0; i < num_frm_corners; ++i) {
    x = frm_corners[2 * i];
    y = frm_corners[2 * i + 1];
    if (valid_point(x, y, width, height)) {
      correspondences[4 * num_correspondences] = x;
      correspondences[4 * num_correspondences + 1] = y;
      correspondences[4 * num_correspondences + 2] = x + flow_u[y * stride + x];
      correspondences[4 * num_correspondences + 3] = y + flow_v[y * stride + x];
      num_correspondences++;
    }
  }
  return num_correspondences;
}

static double getCubicValue(double p[4], double x) {
  return p[1] + 0.5 * x *
                    (p[2] - p[0] +
                     x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
                          x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}

static void get_subcolumn(unsigned char *ref, double col[4], int stride, int x,
                          int y_start) {
  int i;
  for (i = 0; i < 4; ++i) {
    col[i] = ref[(i + y_start) * stride + x];
  }
}

static double bicubic(unsigned char *ref, double x, double y, int stride) {
  double arr[4];
  int k;
  int i = (int)x;
  int j = (int)y;
  for (k = 0; k < 4; ++k) {
    double arr_temp[4];
    get_subcolumn(ref, arr_temp, stride, i + k - 1, j - 1);
    arr[k] = getCubicValue(arr_temp, y - j);
  }
  return getCubicValue(arr, x - i);
}

// Interpolate a warped block using bicubic interpolation when possible
static unsigned char interpolate(unsigned char *ref, double x, double y,
                                 int width, int height, int stride) {
  if (x < 0 && y < 0)
    return ref[0];
  else if (x < 0 && y > height - 1)
    return ref[(height - 1) * stride];
  else if (x > width - 1 && y < 0)
    return ref[width - 1];
  else if (x > width - 1 && y > height - 1)
    return ref[(height - 1) * stride + (width - 1)];
  else if (x < 0) {
    int v;
    int i = (int)y;
    double a = y - i;
    if (y > 1 && y < height - 2) {
      double arr[4];
      get_subcolumn(ref, arr, stride, 0, i - 1);
      return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
    }
    v = (int)(ref[i * stride] * (1 - a) + ref[(i + 1) * stride] * a + 0.5);
    return clamp(v, 0, 255);
  } else if (y < 0) {
    int v;
    int j = (int)x;
    double b = x - j;
    if (x > 1 && x < width - 2) {
      double arr[4] = { ref[j - 1], ref[j], ref[j + 1], ref[j + 2] };
      return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
    }
    v = (int)(ref[j] * (1 - b) + ref[j + 1] * b + 0.5);
    return clamp(v, 0, 255);
  } else if (x > width - 1) {
    int v;
    int i = (int)y;
    double a = y - i;
    if (y > 1 && y < height - 2) {
      double arr[4];
      get_subcolumn(ref, arr, stride, width - 1, i - 1);
      return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
    }
    v = (int)(ref[i * stride + width - 1] * (1 - a) +
              ref[(i + 1) * stride + width - 1] * a + 0.5);
    return clamp(v, 0, 255);
  } else if (y > height - 1) {
    int v;
    int j = (int)x;
    double b = x - j;
    if (x > 1 && x < width - 2) {
      int row = (height - 1) * stride;
      double arr[4] = { ref[row + j - 1], ref[row + j], ref[row + j + 1],
                        ref[row + j + 2] };
      return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
    }
    v = (int)(ref[(height - 1) * stride + j] * (1 - b) +
              ref[(height - 1) * stride + j + 1] * b + 0.5);
    return clamp(v, 0, 255);
  } else if (x > 1 && y > 1 && x < width - 2 && y < height - 2) {
    return clamp((int)(bicubic(ref, x, y, stride) + 0.5), 0, 255);
  } else {
    int i = (int)y;
    int j = (int)x;
    double a = y - i;
    double b = x - j;
    int v = (int)(ref[i * stride + j] * (1 - a) * (1 - b) +
                  ref[i * stride + j + 1] * (1 - a) * b +
                  ref[(i + 1) * stride + j] * a * (1 - b) +
                  ref[(i + 1) * stride + j + 1] * a * b);
    return clamp(v, 0, 255);
  }
}

// Warps a block using flow vector [u, v] and computes the mse
static double compute_warp_and_error(unsigned char *ref, unsigned char *frm,
                                     int width, int height, int stride, int x,
                                     int y, double u, double v, int16_t *dt) {
  int i, j;
  unsigned char warped;
  double x_w, y_w;
  double mse = 0;
  int16_t err = 0;
  for (i = y; i < y + PATCH_SIZE; ++i)
    for (j = x; j < x + PATCH_SIZE; ++j) {
      x_w = (double)j + u;
      y_w = (double)i + v;
      warped = interpolate(ref, x_w, y_w, width, height, stride);
      err = warped - frm[j + i * stride];
      mse += err * err;
      dt[(i - y) * PATCH_SIZE + (j - x)] = err;
    }

  mse /= (PATCH_SIZE * PATCH_SIZE);
  return mse;
}

// Computes the components of the system of equations used to solve for
// a flow vector. This includes:
// 1.) The hessian matrix for optical flow. This matrix is in the
// form of:
//
//       M = |sum(dx * dx)  sum(dx * dy)|
//           |sum(dx * dy)  sum(dy * dy)|
//
// 2.)   b = |sum(dx * dt)|
//           |sum(dy * dt)|
// Where the sums are computed over a square window of PATCH_SIZE.
static INLINE void compute_flow_system(const double *dx, int dx_stride,
                                       const double *dy, int dy_stride,
                                       const int16_t *dt, int dt_stride,
                                       double *M, double *b) {
  for (int i = 0; i < PATCH_SIZE; i++) {
    for (int j = 0; j < PATCH_SIZE; j++) {
      M[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
      M[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
      M[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];

      b[0] += dx[i * dx_stride + j] * dt[i * dt_stride + j];
      b[1] += dy[i * dy_stride + j] * dt[i * dt_stride + j];
    }
  }

  M[2] = M[1];
}

// Solves a general Mx = b where M is a 2x2 matrix and b is a 2x1 matrix
static INLINE void solve_2x2_system(const double *M, const double *b,
                                    double *output_vec) {
  double M_0 = M[0];
  double M_3 = M[3];
  double det = (M_0 * M_3) - (M[1] * M[2]);
  if (det < 1e-5) {
    // Handle singular matrix
    // TODO(sarahparker) compare results using pseudo inverse instead
    M_0 += 1e-10;
    M_3 += 1e-10;
    det = (M_0 * M_3) - (M[1] * M[2]);
  }
  const double det_inv = 1 / det;
  const double mult_b0 = det_inv * b[0];
  const double mult_b1 = det_inv * b[1];
  output_vec[0] = M_3 * mult_b0 - M[1] * mult_b1;
  output_vec[1] = -M[2] * mult_b0 + M_0 * mult_b1;
}

/*
static INLINE void image_difference(const uint8_t *src, int src_stride,
                                    const uint8_t *ref, int ref_stride,
                                    int16_t *dst, int dst_stride, int height,
                                    int width) {
  const int block_unit = 8;
  // Take difference in 8x8 blocks to make use of optimized diff function
  for (int i = 0; i < height; i += block_unit) {
    for (int j = 0; j < width; j += block_unit) {
      aom_subtract_block(block_unit, block_unit, dst + i * dst_stride + j,
                         dst_stride, src + i * src_stride + j, src_stride,
                         ref + i * ref_stride + j, ref_stride);
    }
  }
}
*/

// Compute an image gradient using a sobel filter.
// If dir == 1, compute the x gradient. If dir == 0, compute y. This function
// assumes the images have been padded so that they can be processed in units
// of 8.
static INLINE void sobel_xy_image_gradient(const uint8_t *src, int src_stride,
                                           double *dst, int dst_stride,
                                           int height, int width, int dir) {
  double norm = 1.0;
  // TODO(sarahparker) experiment with doing this over larger block sizes
  const int block_unit = 8;
  // Filter in 8x8 blocks to eventually make use of optimized convolve function
  for (int i = 0; i < height; i += block_unit) {
    for (int j = 0; j < width; j += block_unit) {
      av1_convolve_2d_sobel_y_c(src + i * src_stride + j, src_stride,
                                dst + i * dst_stride + j, dst_stride,
                                block_unit, block_unit, dir, norm);
    }
  }
}

static void free_pyramid(ImagePyramid *pyr) {
  aom_free(pyr->level_buffer);
  if (pyr->has_gradient) {
    aom_free(pyr->level_dx_buffer);
    aom_free(pyr->level_dy_buffer);
  }
  aom_free(pyr);
}

static ImagePyramid *alloc_pyramid(int width, int height, int pad_size,
                                   int compute_gradient) {
  ImagePyramid *pyr = aom_calloc(1, sizeof(*pyr));
  if (!pyr) return NULL;
  pyr->has_gradient = compute_gradient;
  // 2 * width * height is the upper bound for a buffer that fits
  // all pyramid levels + padding for each level
  const int buffer_size = sizeof(*pyr->level_buffer) * 2 * width * height +
                          (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
  pyr->level_buffer = aom_malloc(buffer_size);
  if (!pyr->level_buffer) {
    free_pyramid(pyr);
    return NULL;
  }
  memset(pyr->level_buffer, 0, buffer_size);

  if (compute_gradient) {
    const int gradient_size =
        sizeof(*pyr->level_dx_buffer) * 2 * width * height +
        (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
    pyr->level_dx_buffer = aom_calloc(1, gradient_size);
    pyr->level_dy_buffer = aom_calloc(1, gradient_size);
    if (!(pyr->level_dx_buffer && pyr->level_dy_buffer)) {
      free_pyramid(pyr);
      return NULL;
    }
  }
  return pyr;
}

static INLINE void update_level_dims(ImagePyramid *frm_pyr, int level) {
  frm_pyr->widths[level] = frm_pyr->widths[level - 1] >> 1;
  frm_pyr->heights[level] = frm_pyr->heights[level - 1] >> 1;
  frm_pyr->strides[level] = frm_pyr->widths[level] + 2 * frm_pyr->pad_size;
  // Point the beginning of the next level buffer to the correct location inside
  // the padded border
  frm_pyr->level_loc[level] =
      frm_pyr->level_loc[level - 1] +
      frm_pyr->strides[level - 1] *
          (2 * frm_pyr->pad_size + frm_pyr->heights[level - 1]);
}

// Compute coarse to fine pyramids for a frame
static void compute_flow_pyramids(unsigned char *frm, const int frm_width,
                                  const int frm_height, const int frm_stride,
                                  int n_levels, int pad_size, int compute_grad,
                                  ImagePyramid *frm_pyr) {
  int cur_width, cur_height, cur_stride, cur_loc;
  assert((frm_width >> n_levels) > 0);
  assert((frm_height >> n_levels) > 0);

  // Initialize first level
  frm_pyr->n_levels = n_levels;
  frm_pyr->pad_size = pad_size;
  frm_pyr->widths[0] = frm_width;
  frm_pyr->heights[0] = frm_height;
  frm_pyr->strides[0] = frm_width + 2 * frm_pyr->pad_size;
  // Point the beginning of the level buffer to the location inside
  // the padded border
  frm_pyr->level_loc[0] =
      frm_pyr->strides[0] * frm_pyr->pad_size + frm_pyr->pad_size;
  // This essentially copies the original buffer into the pyramid buffer
  // without the original padding
  av1_resize_plane(frm, frm_height, frm_width, frm_stride,
                   frm_pyr->level_buffer + frm_pyr->level_loc[0],
                   frm_pyr->heights[0], frm_pyr->widths[0],
                   frm_pyr->strides[0]);

  if (compute_grad) {
    cur_width = frm_pyr->widths[0];
    cur_height = frm_pyr->heights[0];
    cur_stride = frm_pyr->strides[0];
    cur_loc = frm_pyr->level_loc[0];
    assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
           frm_pyr->level_dy_buffer != NULL);
    // Computation x gradient
    sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
                            frm_pyr->level_dx_buffer + cur_loc, cur_stride,
                            cur_height, cur_width, 1);

    // Computation y gradient
    sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
                            frm_pyr->level_dy_buffer + cur_loc, cur_stride,
                            cur_height, cur_width, 0);
  }

  // Start at the finest level and resize down to the coarsest level
  for (int level = 1; level < n_levels; ++level) {
    update_level_dims(frm_pyr, level);
    cur_width = frm_pyr->widths[level];
    cur_height = frm_pyr->heights[level];
    cur_stride = frm_pyr->strides[level];
    cur_loc = frm_pyr->level_loc[level];

    av1_resize_plane(frm_pyr->level_buffer + frm_pyr->level_loc[level - 1],
                     frm_pyr->heights[level - 1], frm_pyr->widths[level - 1],
                     frm_pyr->strides[level - 1],
                     frm_pyr->level_buffer + cur_loc, cur_height, cur_width,
                     cur_stride);

    if (compute_grad) {
      assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
             frm_pyr->level_dy_buffer != NULL);
      // Computation x gradient
      sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
                              frm_pyr->level_dx_buffer + cur_loc, cur_stride,
                              cur_height, cur_width, 1);

      // Computation y gradient
      sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
                              frm_pyr->level_dy_buffer + cur_loc, cur_stride,
                              cur_height, cur_width, 0);
    }
  }
}

static INLINE void compute_flow_at_point(unsigned char *frm, unsigned char *ref,
                                         double *dx, double *dy, int x, int y,
                                         int width, int height, int stride,
                                         double *u, double *v) {
  double M[4] = { 0 };
  double b[2] = { 0 };
  double tmp_output_vec[2] = { 0 };
  double error = 0;
  int16_t dt[PATCH_SIZE * PATCH_SIZE];
  double o_u = *u;
  double o_v = *v;

  for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
    error = compute_warp_and_error(ref, frm, width, height, stride, x, y, *u,
                                   *v, dt);
    if (error <= DISFLOW_ERROR_TR) break;
    compute_flow_system(dx, stride, dy, stride, dt, PATCH_SIZE, M, b);
    solve_2x2_system(M, b, tmp_output_vec);
    *u += tmp_output_vec[0];
    *v += tmp_output_vec[1];
  }
  if (fabs(*u - o_u) > PATCH_SIZE || fabs(*v - o_u) > PATCH_SIZE) {
    *u = o_u;
    *v = o_v;
  }
}

// make sure flow_u and flow_v start at 0
static bool compute_flow_field(ImagePyramid *frm_pyr, ImagePyramid *ref_pyr,
                               double *flow_u, double *flow_v) {
  int cur_width, cur_height, cur_stride, cur_loc, patch_loc, patch_center;
  double *u_upscale =
      aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
  double *v_upscale =
      aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
  if (!(u_upscale && v_upscale)) {
    aom_free(u_upscale);
    aom_free(v_upscale);
    return false;
  }

  assert(frm_pyr->n_levels == ref_pyr->n_levels);

  // Compute flow field from coarsest to finest level of the pyramid
  for (int level = frm_pyr->n_levels - 1; level >= 0; --level) {
    cur_width = frm_pyr->widths[level];
    cur_height = frm_pyr->heights[level];
    cur_stride = frm_pyr->strides[level];
    cur_loc = frm_pyr->level_loc[level];

    for (int i = PATCH_SIZE; i < cur_height - PATCH_SIZE; i += PATCH_STEP) {
      for (int j = PATCH_SIZE; j < cur_width - PATCH_SIZE; j += PATCH_STEP) {
        patch_loc = i * cur_stride + j;
        patch_center = patch_loc + PATCH_CENTER * cur_stride + PATCH_CENTER;
        compute_flow_at_point(frm_pyr->level_buffer + cur_loc,
                              ref_pyr->level_buffer + cur_loc,
                              frm_pyr->level_dx_buffer + cur_loc + patch_loc,
                              frm_pyr->level_dy_buffer + cur_loc + patch_loc, j,
                              i, cur_width, cur_height, cur_stride,
                              flow_u + patch_center, flow_v + patch_center);
      }
    }
    // TODO(sarahparker) Replace this with upscale function in resize.c
    if (level > 0) {
      int h_upscale = frm_pyr->heights[level - 1];
      int w_upscale = frm_pyr->widths[level - 1];
      int s_upscale = frm_pyr->strides[level - 1];
      for (int i = 0; i < h_upscale; ++i) {
        for (int j = 0; j < w_upscale; ++j) {
          u_upscale[j + i * s_upscale] =
              flow_u[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
          v_upscale[j + i * s_upscale] =
              flow_v[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
        }
      }
      memcpy(flow_u, u_upscale,
             frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
      memcpy(flow_v, v_upscale,
             frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
    }
  }
  aom_free(u_upscale);
  aom_free(v_upscale);
  return true;
}

static int compute_global_motion_disflow_based(
    TransformationType type, unsigned char *frm_buffer, int frm_width,
    int frm_height, int frm_stride, int *frm_corners, int num_frm_corners,
    YV12_BUFFER_CONFIG *ref, int bit_depth, int *num_inliers_by_motion,
    MotionModel *params_by_motion, int num_motions) {
  unsigned char *ref_buffer = ref->y_buffer;
  const int ref_width = ref->y_width;
  const int ref_height = ref->y_height;
  const int pad_size = AOMMAX(PATCH_SIZE, MIN_PAD);
  int num_correspondences;
  double *correspondences;
  RansacFuncDouble ransac = av1_get_ransac_double_prec_type(type);
  assert(frm_width == ref_width);
  assert(frm_height == ref_height);

  // Ensure the number of pyramid levels will work with the frame resolution
  const int msb =
      frm_width < frm_height ? get_msb(frm_width) : get_msb(frm_height);
  const int n_levels = AOMMIN(msb, N_LEVELS);

  if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
    ref_buffer = av1_downconvert_frame(ref, bit_depth);
  }

  // TODO(sarahparker) We will want to do the source pyramid computation
  // outside of this function so it doesn't get recomputed for every
  // reference. We also don't need to compute every pyramid level for the
  // reference in advance, since lower levels can be overwritten once their
  // flow field is computed and upscaled. I'll add these optimizations
  // once the full implementation is working.
  // Allocate frm image pyramids
  int compute_gradient = 1;
  ImagePyramid *frm_pyr =
      alloc_pyramid(frm_width, frm_height, pad_size, compute_gradient);
  if (!frm_pyr) return 0;
  compute_flow_pyramids(frm_buffer, frm_width, frm_height, frm_stride, n_levels,
                        pad_size, compute_gradient, frm_pyr);
  // Allocate ref image pyramids
  compute_gradient = 0;
  ImagePyramid *ref_pyr =
      alloc_pyramid(ref_width, ref_height, pad_size, compute_gradient);
  if (!ref_pyr) {
    free_pyramid(frm_pyr);
    return 0;
  }
  compute_flow_pyramids(ref_buffer, ref_width, ref_height, ref->y_stride,
                        n_levels, pad_size, compute_gradient, ref_pyr);

  int ret = 0;
  double *flow_u =
      aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
  double *flow_v =
      aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
  if (!(flow_u && flow_v)) goto Error;

  memset(flow_u, 0,
         frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
  memset(flow_v, 0,
         frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));

  if (!compute_flow_field(frm_pyr, ref_pyr, flow_u, flow_v)) goto Error;

  // find correspondences between the two images using the flow field
  correspondences = aom_malloc(num_frm_corners * 4 * sizeof(*correspondences));
  if (!correspondences) goto Error;
  num_correspondences = determine_disflow_correspondence(
      frm_corners, num_frm_corners, flow_u, flow_v, frm_width, frm_height,
      frm_pyr->strides[0], correspondences);
  ransac(correspondences, num_correspondences, num_inliers_by_motion,
         params_by_motion, num_motions);

  // Set num_inliers = 0 for motions with too few inliers so they are ignored.
  for (int i = 0; i < num_motions; ++i) {
    if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) {
      num_inliers_by_motion[i] = 0;
    }
  }

  // Return true if any one of the motions has inliers.
  for (int i = 0; i < num_motions; ++i) {
    if (num_inliers_by_motion[i] > 0) {
      ret = 1;
      break;
    }
  }

  aom_free(correspondences);
Error:
  free_pyramid(frm_pyr);
  free_pyramid(ref_pyr);
  aom_free(flow_u);
  aom_free(flow_v);
  return ret;
}

int av1_compute_global_motion(TransformationType type,
                              unsigned char *src_buffer, int src_width,
                              int src_height, int src_stride, int *src_corners,
                              int num_src_corners, YV12_BUFFER_CONFIG *ref,
                              int bit_depth,
                              GlobalMotionEstimationType gm_estimation_type,
                              int *num_inliers_by_motion,
                              MotionModel *params_by_motion, int num_motions) {
  switch (gm_estimation_type) {
    case GLOBAL_MOTION_FEATURE_BASED:
      return compute_global_motion_feature_based(
          type, src_buffer, src_width, src_height, src_stride, src_corners,
          num_src_corners, ref, bit_depth, num_inliers_by_motion,
          params_by_motion, num_motions);
    case GLOBAL_MOTION_DISFLOW_BASED:
      return compute_global_motion_disflow_based(
          type, src_buffer, src_width, src_height, src_stride, src_corners,
          num_src_corners, ref, bit_depth, num_inliers_by_motion,
          params_by_motion, num_motions);
    default: assert(0 && "Unknown global motion estimation type");
  }
  return 0;
}