aboutsummaryrefslogtreecommitdiff
path: root/test/wiener_test.cc
blob: d44dd9253c88aee3c165f3460f9d7ff0295f851a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <tuple>
#include <utility>
#include <vector>

#include "third_party/googletest/src/googletest/include/gtest/gtest.h"

#include "test/register_state_check.h"
#include "test/acm_random.h"
#include "test/util.h"

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"

#include "aom/aom_integer.h"
#include "aom_ports/aom_timer.h"
#include "av1/encoder/pickrst.h"

#define MAX_WIENER_BLOCK 384
#define MAX_DATA_BLOCK (MAX_WIENER_BLOCK + WIENER_WIN)

// 8-bit-depth tests
namespace wiener_lowbd {

// C implementation of the algorithm implmented by the SIMD code.
// This is a little more efficient than the version in av1_compute_stats_c().
static void compute_stats_win_opt_c(int wiener_win, const uint8_t *dgd,
                                    const uint8_t *src, int h_start, int h_end,
                                    int v_start, int v_end, int dgd_stride,
                                    int src_stride, int64_t *M, int64_t *H,
                                    int use_downsampled_wiener_stats) {
  ASSERT_TRUE(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA);
  int i, j, k, l, m, n;
  const int pixel_count = (h_end - h_start) * (v_end - v_start);
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = (wiener_win >> 1);
  uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
  int downsample_factor =
      use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;

  std::vector<std::vector<int64_t> > M_int(wiener_win,
                                           std::vector<int64_t>(wiener_win, 0));
  std::vector<std::vector<int64_t> > H_int(
      wiener_win * wiener_win, std::vector<int64_t>(wiener_win * 8, 0));
  std::vector<std::vector<int32_t> > sumY(wiener_win,
                                          std::vector<int32_t>(wiener_win, 0));
  int32_t sumX = 0;
  const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;

  // Main loop handles two pixels at a time
  // We can assume that h_start is even, since it will always be aligned to
  // a tile edge + some number of restoration units, and both of those will
  // be 64-pixel aligned.
  // However, at the edge of the image, h_end may be odd, so we need to handle
  // that case correctly.
  assert(h_start % 2 == 0);
  for (i = v_start; i < v_end; i = i + downsample_factor) {
    if (use_downsampled_wiener_stats &&
        (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
      downsample_factor = v_end - i;
    }
    int32_t sumX_row_i32 = 0;
    std::vector<std::vector<int32_t> > sumY_row(
        wiener_win, std::vector<int32_t>(wiener_win, 0));
    std::vector<std::vector<int32_t> > M_row_i32(
        wiener_win, std::vector<int32_t>(wiener_win, 0));
    std::vector<std::vector<int32_t> > H_row_i32(
        wiener_win * wiener_win, std::vector<int32_t>(wiener_win * 8, 0));
    const int h_end_even = h_end & ~1;
    const int has_odd_pixel = h_end & 1;
    for (j = h_start; j < h_end_even; j += 2) {
      const uint8_t X1 = src[i * src_stride + j];
      const uint8_t X2 = src[i * src_stride + j + 1];
      sumX_row_i32 += X1 + X2;

      const uint8_t *dgd_ij = dgd_win + i * dgd_stride + j;
      for (k = 0; k < wiener_win; k++) {
        for (l = 0; l < wiener_win; l++) {
          const uint8_t *dgd_ijkl = dgd_ij + k * dgd_stride + l;
          int32_t *H_int_temp = &H_row_i32[(l * wiener_win + k)][0];
          const uint8_t D1 = dgd_ijkl[0];
          const uint8_t D2 = dgd_ijkl[1];
          sumY_row[k][l] += D1 + D2;
          M_row_i32[l][k] += D1 * X1 + D2 * X2;
          for (m = 0; m < wiener_win; m++) {
            for (n = 0; n < wiener_win; n++) {
              H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m] +
                                       D2 * dgd_ij[n + dgd_stride * m + 1];
            }
          }
        }
      }
    }
    // If the width is odd, add in the final pixel
    if (has_odd_pixel) {
      const uint8_t X1 = src[i * src_stride + j];
      sumX_row_i32 += X1;

      const uint8_t *dgd_ij = dgd_win + i * dgd_stride + j;
      for (k = 0; k < wiener_win; k++) {
        for (l = 0; l < wiener_win; l++) {
          const uint8_t *dgd_ijkl = dgd_ij + k * dgd_stride + l;
          int32_t *H_int_temp = &H_row_i32[(l * wiener_win + k)][0];
          const uint8_t D1 = dgd_ijkl[0];
          sumY_row[k][l] += D1;
          M_row_i32[l][k] += D1 * X1;
          for (m = 0; m < wiener_win; m++) {
            for (n = 0; n < wiener_win; n++) {
              H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m];
            }
          }
        }
      }
    }

    sumX += sumX_row_i32 * downsample_factor;
    // Scale M matrix based on the downsampling factor
    for (k = 0; k < wiener_win; ++k) {
      for (l = 0; l < wiener_win; ++l) {
        sumY[k][l] += sumY_row[k][l] * downsample_factor;
        M_int[k][l] += (int64_t)M_row_i32[k][l] * downsample_factor;
      }
    }
    // Scale H matrix based on the downsampling factor
    for (k = 0; k < wiener_win * wiener_win; ++k) {
      for (l = 0; l < wiener_win * 8; ++l) {
        H_int[k][l] += (int64_t)H_row_i32[k][l] * downsample_factor;
      }
    }
  }

  const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
  for (k = 0; k < wiener_win; k++) {
    for (l = 0; l < wiener_win; l++) {
      M[l * wiener_win + k] =
          M_int[l][k] + avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]);
      for (m = 0; m < wiener_win; m++) {
        for (n = 0; n < wiener_win; n++) {
          H[(l * wiener_win + k) * wiener_win2 + m * wiener_win + n] =
              H_int[(l * wiener_win + k)][n * 8 + m] + avg_square_sum -
              (int64_t)avg * (sumY[k][l] + sumY[n][m]);
        }
      }
    }
  }
}

void compute_stats_opt_c(int wiener_win, const uint8_t *dgd, const uint8_t *src,
                         int h_start, int h_end, int v_start, int v_end,
                         int dgd_stride, int src_stride, int64_t *M, int64_t *H,
                         int use_downsampled_wiener_stats) {
  if (wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA) {
    compute_stats_win_opt_c(wiener_win, dgd, src, h_start, h_end, v_start,
                            v_end, dgd_stride, src_stride, M, H,
                            use_downsampled_wiener_stats);
  } else {
    av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
                        dgd_stride, src_stride, M, H,
                        use_downsampled_wiener_stats);
  }
}

static const int kIterations = 100;
typedef void (*compute_stats_Func)(int wiener_win, const uint8_t *dgd,
                                   const uint8_t *src, int h_start, int h_end,
                                   int v_start, int v_end, int dgd_stride,
                                   int src_stride, int64_t *M, int64_t *H,
                                   int use_downsampled_wiener_stats);

////////////////////////////////////////////////////////////////////////////////
// 8 bit
////////////////////////////////////////////////////////////////////////////////

typedef std::tuple<const compute_stats_Func> WienerTestParam;

class WienerTest : public ::testing::TestWithParam<WienerTestParam> {
 public:
  virtual void SetUp() {
    src_buf = (uint8_t *)aom_memalign(
        32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*src_buf));
    ASSERT_NE(src_buf, nullptr);
    dgd_buf = (uint8_t *)aom_memalign(
        32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*dgd_buf));
    ASSERT_NE(dgd_buf, nullptr);
    target_func_ = GET_PARAM(0);
  }
  virtual void TearDown() {
    aom_free(src_buf);
    aom_free(dgd_buf);
  }
  void RunWienerTest(const int32_t wiener_win, int32_t run_times);
  void RunWienerTest_ExtremeValues(const int32_t wiener_win);

 private:
  compute_stats_Func target_func_;
  libaom_test::ACMRandom rng_;
  uint8_t *src_buf;
  uint8_t *dgd_buf;
};

void WienerTest::RunWienerTest(const int32_t wiener_win, int32_t run_times) {
  const int32_t wiener_halfwin = wiener_win >> 1;
  const int32_t wiener_win2 = wiener_win * wiener_win;
  DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]);
  // Note(rachelbarker):
  // The SIMD code requires `h_start` to be even, but can otherwise
  // deal with any values of `h_end`, `v_start`, `v_end`. We cover this
  // entire range, even though (at the time of writing) `h_start` and `v_start`
  // will always be multiples of 64 when called from non-test code.
  // If in future any new requirements are added, these lines will
  // need changing.
  int h_start = (rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & ~1;
  int h_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK);
  if (h_start > h_end) std::swap(h_start, h_end);
  int v_start = rng_.Rand16() % (MAX_WIENER_BLOCK / 2);
  int v_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK);
  if (v_start > v_end) std::swap(v_start, v_end);
  const int dgd_stride = h_end;
  const int src_stride = MAX_DATA_BLOCK;
  const int iters = run_times == 1 ? kIterations : 2;
  const int max_value_downsample_stats = 1;

  for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) {
    for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) {
      dgd_buf[i] = rng_.Rand8();
      src_buf[i] = rng_.Rand8();
    }
    uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin;
    uint8_t *src = src_buf;
    for (int use_downsampled_stats = 0;
         use_downsampled_stats <= max_value_downsample_stats;
         use_downsampled_stats++) {
      aom_usec_timer timer;
      aom_usec_timer_start(&timer);
      for (int i = 0; i < run_times; ++i) {
        av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start,
                            v_end, dgd_stride, src_stride, M_ref, H_ref,
                            use_downsampled_stats);
      }
      aom_usec_timer_mark(&timer);
      const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
      aom_usec_timer_start(&timer);
      for (int i = 0; i < run_times; ++i) {
        target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
                     dgd_stride, src_stride, M_test, H_test,
                     use_downsampled_stats);
      }
      aom_usec_timer_mark(&timer);
      const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
      if (run_times > 10) {
        printf("win %d %3dx%-3d:%7.2f/%7.2fns", wiener_win, h_end, v_end, time1,
               time2);
        printf("(%3.2f)\n", time1 / time2);
      }
      int failed = 0;
      for (int i = 0; i < wiener_win2; ++i) {
        if (M_ref[i] != M_test[i]) {
          failed = 1;
          printf("win %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n",
                 wiener_win, iter, i, M_ref[i], M_test[i]);
          break;
        }
      }
      for (int i = 0; i < wiener_win2 * wiener_win2; ++i) {
        if (H_ref[i] != H_test[i]) {
          failed = 1;
          printf("win %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n",
                 wiener_win, iter, i, H_ref[i], H_test[i]);
          break;
        }
      }
      ASSERT_EQ(failed, 0);
    }
  }
}

void WienerTest::RunWienerTest_ExtremeValues(const int32_t wiener_win) {
  const int32_t wiener_halfwin = wiener_win >> 1;
  const int32_t wiener_win2 = wiener_win * wiener_win;
  DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]);
  const int h_start = 16;
  const int h_end = MAX_WIENER_BLOCK;
  const int v_start = 16;
  const int v_end = MAX_WIENER_BLOCK;
  const int dgd_stride = h_end;
  const int src_stride = MAX_DATA_BLOCK;
  const int iters = 1;
  const int max_value_downsample_stats = 1;

  for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) {
    for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) {
      dgd_buf[i] = 255;
      src_buf[i] = 255;
    }
    uint8_t *dgd = dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin;
    uint8_t *src = src_buf;
    for (int use_downsampled_stats = 0;
         use_downsampled_stats <= max_value_downsample_stats;
         use_downsampled_stats++) {
      av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
                          dgd_stride, src_stride, M_ref, H_ref,
                          use_downsampled_stats);

      target_func_(wiener_win, dgd, src, h_start, h_end, v_start, v_end,
                   dgd_stride, src_stride, M_test, H_test,
                   use_downsampled_stats);

      int failed = 0;
      for (int i = 0; i < wiener_win2; ++i) {
        if (M_ref[i] != M_test[i]) {
          failed = 1;
          printf("win %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n",
                 wiener_win, iter, i, M_ref[i], M_test[i]);
          break;
        }
      }
      for (int i = 0; i < wiener_win2 * wiener_win2; ++i) {
        if (H_ref[i] != H_test[i]) {
          failed = 1;
          printf("win %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64 " \n",
                 wiener_win, iter, i, H_ref[i], H_test[i]);
          break;
        }
      }
      ASSERT_EQ(failed, 0);
    }
  }
}

TEST_P(WienerTest, RandomValues) {
  RunWienerTest(WIENER_WIN, 1);
  RunWienerTest(WIENER_WIN_CHROMA, 1);
}

TEST_P(WienerTest, ExtremeValues) {
  RunWienerTest_ExtremeValues(WIENER_WIN);
  RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA);
}

TEST_P(WienerTest, DISABLED_Speed) {
  RunWienerTest(WIENER_WIN, 200);
  RunWienerTest(WIENER_WIN_CHROMA, 200);
}

INSTANTIATE_TEST_SUITE_P(C, WienerTest, ::testing::Values(compute_stats_opt_c));

#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(SSE4_1, WienerTest,
                         ::testing::Values(av1_compute_stats_sse4_1));
#endif  // HAVE_SSE4_1

#if HAVE_AVX2

INSTANTIATE_TEST_SUITE_P(AVX2, WienerTest,
                         ::testing::Values(av1_compute_stats_avx2));
#endif  // HAVE_AVX2

}  // namespace wiener_lowbd

#if CONFIG_AV1_HIGHBITDEPTH
// High bit-depth tests:
namespace wiener_highbd {

static void compute_stats_highbd_win_opt_c(int wiener_win, const uint8_t *dgd8,
                                           const uint8_t *src8, int h_start,
                                           int h_end, int v_start, int v_end,
                                           int dgd_stride, int src_stride,
                                           int64_t *M, int64_t *H,
                                           aom_bit_depth_t bit_depth) {
  ASSERT_TRUE(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA);
  int i, j, k, l, m, n;
  const int pixel_count = (h_end - h_start) * (v_end - v_start);
  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = (wiener_win >> 1);
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
  const uint16_t avg =
      find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);

  std::vector<std::vector<int64_t> > M_int(wiener_win,
                                           std::vector<int64_t>(wiener_win, 0));
  std::vector<std::vector<int64_t> > H_int(
      wiener_win * wiener_win, std::vector<int64_t>(wiener_win * 8, 0));
  std::vector<std::vector<int32_t> > sumY(wiener_win,
                                          std::vector<int32_t>(wiener_win, 0));

  memset(M, 0, sizeof(*M) * wiener_win2);
  memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2);

  int64_t sumX = 0;
  const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;

  // Main loop handles two pixels at a time
  // We can assume that h_start is even, since it will always be aligned to
  // a tile edge + some number of restoration units, and both of those will
  // be 64-pixel aligned.
  // However, at the edge of the image, h_end may be odd, so we need to handle
  // that case correctly.
  assert(h_start % 2 == 0);
  for (i = v_start; i < v_end; i++) {
    const int h_end_even = h_end & ~1;
    const int has_odd_pixel = h_end & 1;
    for (j = h_start; j < h_end_even; j += 2) {
      const uint16_t X1 = src[i * src_stride + j];
      const uint16_t X2 = src[i * src_stride + j + 1];
      sumX += X1 + X2;

      const uint16_t *dgd_ij = dgd_win + i * dgd_stride + j;
      for (k = 0; k < wiener_win; k++) {
        for (l = 0; l < wiener_win; l++) {
          const uint16_t *dgd_ijkl = dgd_ij + k * dgd_stride + l;
          int64_t *H_int_temp = &H_int[(l * wiener_win + k)][0];
          const uint16_t D1 = dgd_ijkl[0];
          const uint16_t D2 = dgd_ijkl[1];
          sumY[k][l] += D1 + D2;
          M_int[l][k] += D1 * X1 + D2 * X2;
          for (m = 0; m < wiener_win; m++) {
            for (n = 0; n < wiener_win; n++) {
              H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m] +
                                       D2 * dgd_ij[n + dgd_stride * m + 1];
            }
          }
        }
      }
    }
    // If the width is odd, add in the final pixel
    if (has_odd_pixel) {
      const uint16_t X1 = src[i * src_stride + j];
      sumX += X1;

      const uint16_t *dgd_ij = dgd_win + i * dgd_stride + j;
      for (k = 0; k < wiener_win; k++) {
        for (l = 0; l < wiener_win; l++) {
          const uint16_t *dgd_ijkl = dgd_ij + k * dgd_stride + l;
          int64_t *H_int_temp = &H_int[(l * wiener_win + k)][0];
          const uint16_t D1 = dgd_ijkl[0];
          sumY[k][l] += D1;
          M_int[l][k] += D1 * X1;
          for (m = 0; m < wiener_win; m++) {
            for (n = 0; n < wiener_win; n++) {
              H_int_temp[m * 8 + n] += D1 * dgd_ij[n + dgd_stride * m];
            }
          }
        }
      }
    }
  }

  uint8_t bit_depth_divider = 1;
  if (bit_depth == AOM_BITS_12)
    bit_depth_divider = 16;
  else if (bit_depth == AOM_BITS_10)
    bit_depth_divider = 4;

  const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
  for (k = 0; k < wiener_win; k++) {
    for (l = 0; l < wiener_win; l++) {
      M[l * wiener_win + k] =
          (M_int[l][k] +
           (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
          bit_depth_divider;
      for (m = 0; m < wiener_win; m++) {
        for (n = 0; n < wiener_win; n++) {
          H[(l * wiener_win + k) * wiener_win2 + m * wiener_win + n] =
              (H_int[(l * wiener_win + k)][n * 8 + m] +
               (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
              bit_depth_divider;
        }
      }
    }
  }
}

void compute_stats_highbd_opt_c(int wiener_win, const uint8_t *dgd,
                                const uint8_t *src, int h_start, int h_end,
                                int v_start, int v_end, int dgd_stride,
                                int src_stride, int64_t *M, int64_t *H,
                                aom_bit_depth_t bit_depth) {
  if (wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA) {
    compute_stats_highbd_win_opt_c(wiener_win, dgd, src, h_start, h_end,
                                   v_start, v_end, dgd_stride, src_stride, M, H,
                                   bit_depth);
  } else {
    av1_compute_stats_highbd_c(wiener_win, dgd, src, h_start, h_end, v_start,
                               v_end, dgd_stride, src_stride, M, H, bit_depth);
  }
}

static const int kIterations = 100;
typedef void (*compute_stats_Func)(int wiener_win, const uint8_t *dgd,
                                   const uint8_t *src, int h_start, int h_end,
                                   int v_start, int v_end, int dgd_stride,
                                   int src_stride, int64_t *M, int64_t *H,
                                   aom_bit_depth_t bit_depth);

typedef std::tuple<const compute_stats_Func> WienerTestParam;

class WienerTestHighbd : public ::testing::TestWithParam<WienerTestParam> {
 public:
  virtual void SetUp() {
    src_buf = (uint16_t *)aom_memalign(
        32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*src_buf));
    ASSERT_NE(src_buf, nullptr);
    dgd_buf = (uint16_t *)aom_memalign(
        32, MAX_DATA_BLOCK * MAX_DATA_BLOCK * sizeof(*dgd_buf));
    ASSERT_NE(dgd_buf, nullptr);
    target_func_ = GET_PARAM(0);
  }
  virtual void TearDown() {
    aom_free(src_buf);
    aom_free(dgd_buf);
  }
  void RunWienerTest(const int32_t wiener_win, int32_t run_times,
                     aom_bit_depth_t bit_depth);
  void RunWienerTest_ExtremeValues(const int32_t wiener_win,
                                   aom_bit_depth_t bit_depth);

 private:
  compute_stats_Func target_func_;
  libaom_test::ACMRandom rng_;
  uint16_t *src_buf;
  uint16_t *dgd_buf;
};

void WienerTestHighbd::RunWienerTest(const int32_t wiener_win,
                                     int32_t run_times,
                                     aom_bit_depth_t bit_depth) {
  const int32_t wiener_halfwin = wiener_win >> 1;
  const int32_t wiener_win2 = wiener_win * wiener_win;
  DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]);
  // Note(rachelbarker):
  // The SIMD code requires `h_start` to be even, but can otherwise
  // deal with any values of `h_end`, `v_start`, `v_end`. We cover this
  // entire range, even though (at the time of writing) `h_start` and `v_start`
  // will always be multiples of 64 when called from non-test code.
  // If in future any new requirements are added, these lines will
  // need changing.
  int h_start = (rng_.Rand16() % (MAX_WIENER_BLOCK / 2)) & ~1;
  int h_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK);
  if (h_start > h_end) std::swap(h_start, h_end);
  int v_start = rng_.Rand16() % (MAX_WIENER_BLOCK / 2);
  int v_end = run_times != 1 ? 256 : (rng_.Rand16() % MAX_WIENER_BLOCK);
  if (v_start > v_end) std::swap(v_start, v_end);
  const int dgd_stride = h_end;
  const int src_stride = MAX_DATA_BLOCK;
  const int iters = run_times == 1 ? kIterations : 2;
  for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) {
    for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) {
      dgd_buf[i] = rng_.Rand16() % (1 << bit_depth);
      src_buf[i] = rng_.Rand16() % (1 << bit_depth);
    }
    const uint8_t *dgd8 = CONVERT_TO_BYTEPTR(
        dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin);
    const uint8_t *src8 = CONVERT_TO_BYTEPTR(src_buf);

    aom_usec_timer timer;
    aom_usec_timer_start(&timer);
    for (int i = 0; i < run_times; ++i) {
      av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end,
                                 v_start, v_end, dgd_stride, src_stride, M_ref,
                                 H_ref, bit_depth);
    }
    aom_usec_timer_mark(&timer);
    const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
    aom_usec_timer_start(&timer);
    for (int i = 0; i < run_times; ++i) {
      target_func_(wiener_win, dgd8, src8, h_start, h_end, v_start, v_end,
                   dgd_stride, src_stride, M_test, H_test, bit_depth);
    }
    aom_usec_timer_mark(&timer);
    const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
    if (run_times > 10) {
      printf("win %d bd %d %3dx%-3d:%7.2f/%7.2fns", wiener_win, bit_depth,
             h_end, v_end, time1, time2);
      printf("(%3.2f)\n", time1 / time2);
    }
    int failed = 0;
    for (int i = 0; i < wiener_win2; ++i) {
      if (M_ref[i] != M_test[i]) {
        failed = 1;
        printf("win %d bd %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64
               " \n",
               wiener_win, bit_depth, iter, i, M_ref[i], M_test[i]);
        break;
      }
    }
    for (int i = 0; i < wiener_win2 * wiener_win2; ++i) {
      if (H_ref[i] != H_test[i]) {
        failed = 1;
        printf("win %d bd %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64
               " \n",
               wiener_win, bit_depth, iter, i, H_ref[i], H_test[i]);
        break;
      }
    }
    ASSERT_EQ(failed, 0);
  }
}

void WienerTestHighbd::RunWienerTest_ExtremeValues(const int32_t wiener_win,
                                                   aom_bit_depth_t bit_depth) {
  const int32_t wiener_halfwin = wiener_win >> 1;
  const int32_t wiener_win2 = wiener_win * wiener_win;
  DECLARE_ALIGNED(32, int64_t, M_ref[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_ref[WIENER_WIN2 * WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, M_test[WIENER_WIN2]);
  DECLARE_ALIGNED(32, int64_t, H_test[WIENER_WIN2 * WIENER_WIN2]);
  const int h_start = 16;
  const int h_end = MAX_WIENER_BLOCK;
  const int v_start = 16;
  const int v_end = MAX_WIENER_BLOCK;
  const int dgd_stride = h_end;
  const int src_stride = MAX_DATA_BLOCK;
  const int iters = 1;
  for (int iter = 0; iter < iters && !HasFatalFailure(); ++iter) {
    for (int i = 0; i < MAX_DATA_BLOCK * MAX_DATA_BLOCK; ++i) {
      dgd_buf[i] = ((uint16_t)1 << bit_depth) - 1;
      src_buf[i] = ((uint16_t)1 << bit_depth) - 1;
    }
    const uint8_t *dgd8 = CONVERT_TO_BYTEPTR(
        dgd_buf + wiener_halfwin * MAX_DATA_BLOCK + wiener_halfwin);
    const uint8_t *src8 = CONVERT_TO_BYTEPTR(src_buf);

    av1_compute_stats_highbd_c(wiener_win, dgd8, src8, h_start, h_end, v_start,
                               v_end, dgd_stride, src_stride, M_ref, H_ref,
                               bit_depth);

    target_func_(wiener_win, dgd8, src8, h_start, h_end, v_start, v_end,
                 dgd_stride, src_stride, M_test, H_test, bit_depth);

    int failed = 0;
    for (int i = 0; i < wiener_win2; ++i) {
      if (M_ref[i] != M_test[i]) {
        failed = 1;
        printf("win %d bd %d M iter %d [%4d] ref %6" PRId64 " test %6" PRId64
               " \n",
               wiener_win, bit_depth, iter, i, M_ref[i], M_test[i]);
        break;
      }
    }
    for (int i = 0; i < wiener_win2 * wiener_win2; ++i) {
      if (H_ref[i] != H_test[i]) {
        failed = 1;
        printf("win %d bd %d H iter %d [%4d] ref %6" PRId64 " test %6" PRId64
               " \n",
               wiener_win, bit_depth, iter, i, H_ref[i], H_test[i]);
        break;
      }
    }
    ASSERT_EQ(failed, 0);
  }
}

TEST_P(WienerTestHighbd, RandomValues) {
  RunWienerTest(WIENER_WIN, 1, AOM_BITS_8);
  RunWienerTest(WIENER_WIN_CHROMA, 1, AOM_BITS_8);
  RunWienerTest(WIENER_WIN, 1, AOM_BITS_10);
  RunWienerTest(WIENER_WIN_CHROMA, 1, AOM_BITS_10);
  RunWienerTest(WIENER_WIN, 1, AOM_BITS_12);
  RunWienerTest(WIENER_WIN_CHROMA, 1, AOM_BITS_12);
}

TEST_P(WienerTestHighbd, ExtremeValues) {
  RunWienerTest_ExtremeValues(WIENER_WIN, AOM_BITS_8);
  RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA, AOM_BITS_8);
  RunWienerTest_ExtremeValues(WIENER_WIN, AOM_BITS_10);
  RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA, AOM_BITS_10);
  RunWienerTest_ExtremeValues(WIENER_WIN, AOM_BITS_12);
  RunWienerTest_ExtremeValues(WIENER_WIN_CHROMA, AOM_BITS_12);
}

TEST_P(WienerTestHighbd, DISABLED_Speed) {
  RunWienerTest(WIENER_WIN, 200, AOM_BITS_8);
  RunWienerTest(WIENER_WIN_CHROMA, 200, AOM_BITS_8);
  RunWienerTest(WIENER_WIN, 200, AOM_BITS_10);
  RunWienerTest(WIENER_WIN_CHROMA, 200, AOM_BITS_10);
  RunWienerTest(WIENER_WIN, 200, AOM_BITS_12);
  RunWienerTest(WIENER_WIN_CHROMA, 200, AOM_BITS_12);
}

INSTANTIATE_TEST_SUITE_P(C, WienerTestHighbd,
                         ::testing::Values(compute_stats_highbd_opt_c));

#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(SSE4_1, WienerTestHighbd,
                         ::testing::Values(av1_compute_stats_highbd_sse4_1));
#endif  // HAVE_SSE4_1

#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, WienerTestHighbd,
                         ::testing::Values(av1_compute_stats_highbd_avx2));
#endif  // HAVE_AVX2

}  // namespace wiener_highbd
#endif  // CONFIG_AV1_HIGHBITDEPTH