aboutsummaryrefslogtreecommitdiff
path: root/brillo/any_internal_impl.h
blob: 9309f5dcc1307172e55868063379a5ffae15d2a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright 2014 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Internal implementation of brillo::Any class.

#ifndef LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
#define LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_

#include <type_traits>
#include <typeinfo>
#include <utility>

#include <base/logging.h>
#include <brillo/dbus/data_serialization.h>
#include <brillo/type_name_undecorate.h>

namespace brillo {

namespace internal_details {

// An extension to std::is_convertible to allow conversion from an enum to
// an integral type which std::is_convertible does not indicate as supported.
template <typename From, typename To>
struct IsConvertible
    : public std::integral_constant<
          bool,
          std::is_convertible<From, To>::value ||
              (std::is_enum<From>::value && std::is_integral<To>::value)> {};

// TryConvert is a helper function that does a safe compile-time conditional
// type cast between data types that may not be always convertible.
// From and To are the source and destination types.
// The function returns true if conversion was possible/successful.
template <typename From, typename To>
inline typename std::enable_if<IsConvertible<From, To>::value, bool>::type
TryConvert(const From& in, To* out) {
  *out = static_cast<To>(in);
  return true;
}
template <typename From, typename To>
inline typename std::enable_if<!IsConvertible<From, To>::value, bool>::type
TryConvert(const From& /* in */, To* /* out */) {
  return false;
}

//////////////////////////////////////////////////////////////////////////////
// Provide a way to compare values of unspecified types without compiler errors
// when no operator==() is provided for a given type. This is important to
// allow Any class to have operator==(), yet still allowing arbitrary types
// (not necessarily comparable) to be placed inside Any without resulting in
// compile-time error.
//
// We achieve this in two ways. First, we provide a IsEqualityComparable<T>
// class that can be used in compile-time conditions to determine if there is
// operator==() defined that takes values of type T (or which can be implicitly
// converted to type T). Secondly, this allows us to specialize a helper
// compare function EqCompare<T>(v1, v2) to use operator==() for types that
// are comparable, and just return false for those that are not.
//
// IsEqualityComparableHelper<T> is a helper class for implementing an
// an STL-compatible IsEqualityComparable<T> containing a Boolean member |value|
// which evaluates to true for comparable types and false otherwise.
template<typename T>
struct IsEqualityComparableHelper {
  struct IntWrapper {
    // A special structure that provides a constructor that takes an int.
    // This way, an int argument passed to a function will be favored over
    // IntWrapper when both overloads are provided.
    // Also this constructor must NOT be explicit.
    // NOLINTNEXTLINE(runtime/explicit)
    // NOLINT: Allow implicit conversion from int.
    IntWrapper(int /* dummy */) {}  // do nothing, NOLINT
  };

  // Here is an obscure trick to determine if a type U has operator==().
  // We are providing two function prototypes for TriggerFunction. One that
  // takes an argument of type IntWrapper (which is implicitly convertible from
  // an int), and returns an std::false_type. This is a fall-back mechanism.
  template<typename U>
  static std::false_type TriggerFunction(IntWrapper dummy);

  // The second overload of TriggerFunction takes an int (explicitly) and
  // returns std::true_type. If both overloads are available, this one will be
  // chosen when referencing it as TriggerFunction(0), since it is a better
  // (more specific) match.
  //
  // However this overload is available only for types that support operator==.
  // This is achieved by employing SFINAE mechanism inside a template function
  // overload that refers to operator==() for two values of types U&. This is
  // used inside decltype(), so no actual code is executed. If the types
  // are not comparable, reference to "==" would fail and the compiler will
  // simply ignore this overload due to SFIANE.
  //
  // The final little trick used here is the reliance on operator comma inside
  // the decltype() expression. The result of the expression is always
  // std::true_type(). The expression on the left of comma is just evaluated and
  // discarded. If it evaluates successfully (i.e. the type has operator==), the
  // return value of the function is set to be std::true_value. If it fails,
  // the whole function prototype is discarded and is not available in the
  // IsEqualityComparableHelper<T> class.
  //
  // Here we use std::declval<U&>() to make sure we have operator==() that takes
  // lvalue references to type U which is not necessarily default-constructible.
  template<typename U>
  static decltype((std::declval<U&>() == std::declval<U&>()), std::true_type())
  TriggerFunction(int dummy);

  // Finally, use the return type of the overload of TriggerFunction that
  // matches the argument (int) to be aliased to type |type|. If T is
  // comparable, there will be two overloads and the more specific (int) will
  // be chosen which returns std::true_value. If the type is non-comparable,
  // there will be only one version of TriggerFunction available which
  // returns std::false_value.
  using type = decltype(TriggerFunction<T>(0));
};

// IsEqualityComparable<T> is simply a class that derives from either
// std::true_value, if type T is comparable, or from std::false_value, if the
// type is non-comparable. We just use |type| alias from
// IsEqualityComparableHelper<T> as the base class.
template<typename T>
struct IsEqualityComparable : IsEqualityComparableHelper<T>::type {};

// EqCompare() overload for non-comparable types. Always returns false.
template<typename T>
inline typename std::enable_if<!IsEqualityComparable<T>::value, bool>::type
EqCompare(const T& /* v1 */, const T& /* v2 */) {
  return false;
}

// EqCompare overload for comparable types. Calls operator==(v1, v2) to compare.
template<typename T>
inline typename std::enable_if<IsEqualityComparable<T>::value, bool>::type
EqCompare(const T& v1, const T& v2) {
  return (v1 == v2);
}

//////////////////////////////////////////////////////////////////////////////

class Buffer;  // Forward declaration of data buffer container.

// Abstract base class for contained variant data.
struct Data {
  virtual ~Data() {}
  // Returns the type tag (name) for the contained data.
  virtual const char* GetTypeTag() const = 0;
  // Copies the contained data to the output |buffer|.
  virtual void CopyTo(Buffer* buffer) const = 0;
  // Moves the contained data to the output |buffer|.
  virtual void MoveTo(Buffer* buffer) = 0;
  // Checks if the contained data is an integer type (not necessarily an 'int').
  virtual bool IsConvertibleToInteger() const = 0;
  // Gets the contained integral value as an integer.
  virtual intmax_t GetAsInteger() const = 0;
  // Writes the contained value to the D-Bus message buffer.
  virtual void AppendToDBusMessage(dbus::MessageWriter* writer) const = 0;
  // Compares if the two data containers have objects of the same value.
  virtual bool CompareEqual(const Data* other_data) const = 0;
};

// Concrete implementation of variant data of type T.
template<typename T>
struct TypedData : public Data {
  explicit TypedData(const T& value) : value_(value) {}
  // NOLINTNEXTLINE(build/c++11)
  explicit TypedData(T&& value) : value_(std::move(value)) {}

  const char* GetTypeTag() const override { return brillo::GetTypeTag<T>(); }
  void CopyTo(Buffer* buffer) const override;
  void MoveTo(Buffer* buffer) override;
  bool IsConvertibleToInteger() const override {
    return std::is_integral<T>::value || std::is_enum<T>::value;
  }
  intmax_t GetAsInteger() const override {
    intmax_t int_val = 0;
    bool converted = TryConvert(value_, &int_val);
    CHECK(converted) << "Unable to convert value of type '"
                     << GetUndecoratedTypeName<T>() << "' to integer";
    return int_val;
  }

  template<typename U>
  static typename std::enable_if<dbus_utils::IsTypeSupported<U>::value>::type
  AppendValueHelper(dbus::MessageWriter* writer, const U& value) {
    brillo::dbus_utils::AppendValueToWriterAsVariant(writer, value);
  }
  template<typename U>
  static typename std::enable_if<!dbus_utils::IsTypeSupported<U>::value>::type
  AppendValueHelper(dbus::MessageWriter* /* writer */, const U& /* value */) {
    LOG(FATAL) << "Type '" << GetUndecoratedTypeName<U>()
               << "' is not supported by D-Bus";
  }

  void AppendToDBusMessage(dbus::MessageWriter* writer) const override {
    return AppendValueHelper(writer, value_);
  }

  bool CompareEqual(const Data* other_data) const override {
    return EqCompare<T>(value_,
                        static_cast<const TypedData<T>*>(other_data)->value_);
  }

  // Special methods to copy/move data of the same type
  // without reallocating the buffer.
  void FastAssign(const T& source) { value_ = source; }
  // NOLINTNEXTLINE(build/c++11)
  void FastAssign(T&& source) { value_ = std::move(source); }

  T value_;
};

// Buffer class that stores the contained variant data.
// To improve performance and reduce memory fragmentation, small variants
// are stored in pre-allocated memory buffers that are part of the Any class.
// If the memory requirements are larger than the set limit or the type is
// non-trivially copyable, then the contained class is allocated in a separate
// memory block and the pointer to that memory is contained within this memory
// buffer class.
class Buffer final {
 public:
  enum StorageType { kExternal, kContained };
  Buffer() : external_ptr_(nullptr), storage_(kExternal) {}
  ~Buffer() { Clear(); }

  Buffer(const Buffer& rhs) : Buffer() { rhs.CopyTo(this); }
  // NOLINTNEXTLINE(build/c++11)
  Buffer(Buffer&& rhs) : Buffer() { rhs.MoveTo(this); }
  Buffer& operator=(const Buffer& rhs) {
    rhs.CopyTo(this);
    return *this;
  }
  // NOLINTNEXTLINE(build/c++11)
  Buffer& operator=(Buffer&& rhs) {
    rhs.MoveTo(this);
    return *this;
  }

  // Returns the underlying pointer to contained data. Uses either the pointer
  // or the raw data depending on |storage_| type.
  inline Data* GetDataPtr() {
    return (storage_ == kExternal) ? external_ptr_
                                   : reinterpret_cast<Data*>(contained_buffer_);
  }
  inline const Data* GetDataPtr() const {
    return (storage_ == kExternal)
               ? external_ptr_
               : reinterpret_cast<const Data*>(contained_buffer_);
  }

  // Destroys the contained object (and frees memory if needed).
  void Clear() {
    Data* data = GetDataPtr();
    if (storage_ == kExternal) {
      delete data;
    } else {
      // Call the destructor manually, since the object was constructed inline
      // in the pre-allocated buffer. We still need to call the destructor
      // to free any associated resources, but we can't call delete |data| here.
      data->~Data();
    }
    external_ptr_ = nullptr;
    storage_ = kExternal;
  }

  // Stores a value of type T.
  template<typename T>
  void Assign(T&& value) {  // NOLINT(build/c++11)
    using Type = typename std::decay<T>::type;
    using DataType = TypedData<Type>;
    Data* ptr = GetDataPtr();
    if (ptr && strcmp(ptr->GetTypeTag(), GetTypeTag<Type>()) == 0) {
      // We assign the data to the variant container, which already
      // has the data of the same type. Do fast copy/move with no memory
      // reallocation.
      DataType* typed_ptr = static_cast<DataType*>(ptr);
      // NOLINTNEXTLINE(build/c++11)
      typed_ptr->FastAssign(std::forward<T>(value));
    } else {
      Clear();
      // TODO(avakulenko): [see crbug.com/379833]
      // Unfortunately, GCC doesn't support std::is_trivially_copyable<T> yet,
      // so using std::is_trivial instead, which is a bit more restrictive.
      // Once GCC has support for is_trivially_copyable, update the following.
      if (!std::is_trivial<Type>::value ||
          sizeof(DataType) > sizeof(contained_buffer_)) {
        // If it is too big or not trivially copyable, allocate it separately.
        // NOLINTNEXTLINE(build/c++11)
        external_ptr_ = new DataType(std::forward<T>(value));
        storage_ = kExternal;
      } else {
        // Otherwise just use the pre-allocated buffer.
        DataType* address = reinterpret_cast<DataType*>(contained_buffer_);
        // Make sure we still call the copy/move constructor.
        // Call the constructor manually by using placement 'new'.
        // NOLINTNEXTLINE(build/c++11)
        new (address) DataType(std::forward<T>(value));
        storage_ = kContained;
      }
    }
  }

  // Helper methods to retrieve a reference to contained data.
  // These assume that type checking has already been performed by Any
  // so the type cast is valid and will succeed.
  template<typename T>
  const T& GetData() const {
    using DataType = internal_details::TypedData<typename std::decay<T>::type>;
    return static_cast<const DataType*>(GetDataPtr())->value_;
  }
  template<typename T>
  T& GetData() {
    using DataType = internal_details::TypedData<typename std::decay<T>::type>;
    return static_cast<DataType*>(GetDataPtr())->value_;
  }

  // Returns true if the buffer has no contained data.
  bool IsEmpty() const {
    return (storage_ == kExternal && external_ptr_ == nullptr);
  }

  // Copies the data from the current buffer into the |destination|.
  void CopyTo(Buffer* destination) const {
    if (IsEmpty()) {
      destination->Clear();
    } else {
      GetDataPtr()->CopyTo(destination);
    }
  }

  // Moves the data from the current buffer into the |destination|.
  void MoveTo(Buffer* destination) {
    if (IsEmpty()) {
      destination->Clear();
    } else {
      if (storage_ == kExternal) {
        destination->Clear();
        destination->storage_ = kExternal;
        destination->external_ptr_ = external_ptr_;
        external_ptr_ = nullptr;
      } else {
        GetDataPtr()->MoveTo(destination);
      }
    }
  }

  union {
    // |external_ptr_| is a pointer to a larger object allocated in
    // a separate memory block.
    Data* external_ptr_;
    // |contained_buffer_| is a pre-allocated buffer for smaller/simple objects.
    // Pre-allocate enough memory to store objects as big as "double".
    unsigned char contained_buffer_[sizeof(TypedData<double>)];
  };
  // Depending on a value of |storage_|, either |external_ptr_| or
  // |contained_buffer_| above is used to get a pointer to memory containing
  // the variant data.
  StorageType storage_;  // Declare after the union to eliminate member padding.
};

template <typename T>
void TypedData<T>::CopyTo(Buffer* buffer) const {
  buffer->Assign(value_);
}
template <typename T>
void TypedData<T>::MoveTo(Buffer* buffer) {
  buffer->Assign(std::move(value_));
}

}  // namespace internal_details

}  // namespace brillo

#endif  // LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_