summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Vakulenko <avakulenko@google.com>2016-01-20 17:39:50 -0800
committerAlex Vakulenko <avakulenko@google.com>2016-01-20 17:40:51 -0800
commit8103ab12a472dbb30df17d4ac98fa78d976ec00b (patch)
treef50dbc4f84a402d82142bc1fe588c4d995673cc9
parent0d205d712abd16eeed2f5d5b1052a367d23a223f (diff)
downloadlibchrome-8103ab12a472dbb30df17d4ac98fa78d976ec00b.tar.gz
Restore MessagePumpGlib files
These are apparently used on Chrome OS and were deleted from AOSP by mistake... Recovering. Change-Id: I257eee62a27d1dbb6029c776ac56af78ca110213
-rw-r--r--base/message_loop/message_pump_glib.cc363
-rw-r--r--base/message_loop/message_pump_glib.h78
-rw-r--r--base/message_loop/message_pump_glib_unittest.cc534
3 files changed, 975 insertions, 0 deletions
diff --git a/base/message_loop/message_pump_glib.cc b/base/message_loop/message_pump_glib.cc
new file mode 100644
index 0000000000..f06f60d8cf
--- /dev/null
+++ b/base/message_loop/message_pump_glib.cc
@@ -0,0 +1,363 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "base/message_loop/message_pump_glib.h"
+
+#include <fcntl.h>
+#include <math.h>
+
+#include <glib.h>
+
+#include "base/lazy_instance.h"
+#include "base/logging.h"
+#include "base/posix/eintr_wrapper.h"
+#include "base/synchronization/lock.h"
+#include "base/threading/platform_thread.h"
+
+namespace base {
+
+namespace {
+
+// Return a timeout suitable for the glib loop, -1 to block forever,
+// 0 to return right away, or a timeout in milliseconds from now.
+int GetTimeIntervalMilliseconds(const TimeTicks& from) {
+ if (from.is_null())
+ return -1;
+
+ // Be careful here. TimeDelta has a precision of microseconds, but we want a
+ // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
+ // 6? It should be 6 to avoid executing delayed work too early.
+ int delay = static_cast<int>(
+ ceil((from - TimeTicks::Now()).InMillisecondsF()));
+
+ // If this value is negative, then we need to run delayed work soon.
+ return delay < 0 ? 0 : delay;
+}
+
+// A brief refresher on GLib:
+// GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
+// On each iteration of the GLib pump, it calls each source's Prepare function.
+// This function should return TRUE if it wants GLib to call its Dispatch, and
+// FALSE otherwise. It can also set a timeout in this case for the next time
+// Prepare should be called again (it may be called sooner).
+// After the Prepare calls, GLib does a poll to check for events from the
+// system. File descriptors can be attached to the sources. The poll may block
+// if none of the Prepare calls returned TRUE. It will block indefinitely, or
+// by the minimum time returned by a source in Prepare.
+// After the poll, GLib calls Check for each source that returned FALSE
+// from Prepare. The return value of Check has the same meaning as for Prepare,
+// making Check a second chance to tell GLib we are ready for Dispatch.
+// Finally, GLib calls Dispatch for each source that is ready. If Dispatch
+// returns FALSE, GLib will destroy the source. Dispatch calls may be recursive
+// (i.e., you can call Run from them), but Prepare and Check cannot.
+// Finalize is called when the source is destroyed.
+// NOTE: It is common for subsytems to want to process pending events while
+// doing intensive work, for example the flash plugin. They usually use the
+// following pattern (recommended by the GTK docs):
+// while (gtk_events_pending()) {
+// gtk_main_iteration();
+// }
+//
+// gtk_events_pending just calls g_main_context_pending, which does the
+// following:
+// - Call prepare on all the sources.
+// - Do the poll with a timeout of 0 (not blocking).
+// - Call check on all the sources.
+// - *Does not* call dispatch on the sources.
+// - Return true if any of prepare() or check() returned true.
+//
+// gtk_main_iteration just calls g_main_context_iteration, which does the whole
+// thing, respecting the timeout for the poll (and block, although it is
+// expected not to if gtk_events_pending returned true), and call dispatch.
+//
+// Thus it is important to only return true from prepare or check if we
+// actually have events or work to do. We also need to make sure we keep
+// internal state consistent so that if prepare/check return true when called
+// from gtk_events_pending, they will still return true when called right
+// after, from gtk_main_iteration.
+//
+// For the GLib pump we try to follow the Windows UI pump model:
+// - Whenever we receive a wakeup event or the timer for delayed work expires,
+// we run DoWork and/or DoDelayedWork. That part will also run in the other
+// event pumps.
+// - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
+// loop, around event handling.
+
+struct WorkSource : public GSource {
+ MessagePumpGlib* pump;
+};
+
+gboolean WorkSourcePrepare(GSource* source,
+ gint* timeout_ms) {
+ *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
+ // We always return FALSE, so that our timeout is honored. If we were
+ // to return TRUE, the timeout would be considered to be 0 and the poll
+ // would never block. Once the poll is finished, Check will be called.
+ return FALSE;
+}
+
+gboolean WorkSourceCheck(GSource* source) {
+ // Only return TRUE if Dispatch should be called.
+ return static_cast<WorkSource*>(source)->pump->HandleCheck();
+}
+
+gboolean WorkSourceDispatch(GSource* source,
+ GSourceFunc unused_func,
+ gpointer unused_data) {
+
+ static_cast<WorkSource*>(source)->pump->HandleDispatch();
+ // Always return TRUE so our source stays registered.
+ return TRUE;
+}
+
+// I wish these could be const, but g_source_new wants non-const.
+GSourceFuncs WorkSourceFuncs = {
+ WorkSourcePrepare,
+ WorkSourceCheck,
+ WorkSourceDispatch,
+ NULL
+};
+
+// The following is used to make sure we only run the MessagePumpGlib on one
+// thread. X only has one message pump so we can only have one UI loop per
+// process.
+#ifndef NDEBUG
+
+// Tracks the pump the most recent pump that has been run.
+struct ThreadInfo {
+ // The pump.
+ MessagePumpGlib* pump;
+
+ // ID of the thread the pump was run on.
+ PlatformThreadId thread_id;
+};
+
+// Used for accesing |thread_info|.
+static LazyInstance<Lock>::Leaky thread_info_lock = LAZY_INSTANCE_INITIALIZER;
+
+// If non-NULL it means a MessagePumpGlib exists and has been Run. This is
+// destroyed when the MessagePump is destroyed.
+ThreadInfo* thread_info = NULL;
+
+void CheckThread(MessagePumpGlib* pump) {
+ AutoLock auto_lock(thread_info_lock.Get());
+ if (!thread_info) {
+ thread_info = new ThreadInfo;
+ thread_info->pump = pump;
+ thread_info->thread_id = PlatformThread::CurrentId();
+ }
+ DCHECK(thread_info->thread_id == PlatformThread::CurrentId()) <<
+ "Running MessagePumpGlib on two different threads; "
+ "this is unsupported by GLib!";
+}
+
+void PumpDestroyed(MessagePumpGlib* pump) {
+ AutoLock auto_lock(thread_info_lock.Get());
+ if (thread_info && thread_info->pump == pump) {
+ delete thread_info;
+ thread_info = NULL;
+ }
+}
+
+#endif
+
+} // namespace
+
+struct MessagePumpGlib::RunState {
+ Delegate* delegate;
+
+ // Used to flag that the current Run() invocation should return ASAP.
+ bool should_quit;
+
+ // Used to count how many Run() invocations are on the stack.
+ int run_depth;
+
+ // This keeps the state of whether the pump got signaled that there was new
+ // work to be done. Since we eat the message on the wake up pipe as soon as
+ // we get it, we keep that state here to stay consistent.
+ bool has_work;
+};
+
+MessagePumpGlib::MessagePumpGlib()
+ : state_(NULL),
+ context_(g_main_context_default()),
+ wakeup_gpollfd_(new GPollFD) {
+ // Create our wakeup pipe, which is used to flag when work was scheduled.
+ int fds[2];
+ int ret = pipe(fds);
+ DCHECK_EQ(ret, 0);
+ (void)ret; // Prevent warning in release mode.
+
+ wakeup_pipe_read_ = fds[0];
+ wakeup_pipe_write_ = fds[1];
+ wakeup_gpollfd_->fd = wakeup_pipe_read_;
+ wakeup_gpollfd_->events = G_IO_IN;
+
+ work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
+ static_cast<WorkSource*>(work_source_)->pump = this;
+ g_source_add_poll(work_source_, wakeup_gpollfd_.get());
+ // Use a low priority so that we let other events in the queue go first.
+ g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
+ // This is needed to allow Run calls inside Dispatch.
+ g_source_set_can_recurse(work_source_, TRUE);
+ g_source_attach(work_source_, context_);
+}
+
+MessagePumpGlib::~MessagePumpGlib() {
+#ifndef NDEBUG
+ PumpDestroyed(this);
+#endif
+ g_source_destroy(work_source_);
+ g_source_unref(work_source_);
+ close(wakeup_pipe_read_);
+ close(wakeup_pipe_write_);
+}
+
+// Return the timeout we want passed to poll.
+int MessagePumpGlib::HandlePrepare() {
+ // We know we have work, but we haven't called HandleDispatch yet. Don't let
+ // the pump block so that we can do some processing.
+ if (state_ && // state_ may be null during tests.
+ state_->has_work)
+ return 0;
+
+ // We don't think we have work to do, but make sure not to block
+ // longer than the next time we need to run delayed work.
+ return GetTimeIntervalMilliseconds(delayed_work_time_);
+}
+
+bool MessagePumpGlib::HandleCheck() {
+ if (!state_) // state_ may be null during tests.
+ return false;
+
+ // We usually have a single message on the wakeup pipe, since we are only
+ // signaled when the queue went from empty to non-empty, but there can be
+ // two messages if a task posted a task, hence we read at most two bytes.
+ // The glib poll will tell us whether there was data, so this read
+ // shouldn't block.
+ if (wakeup_gpollfd_->revents & G_IO_IN) {
+ char msg[2];
+ const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
+ if (num_bytes < 1) {
+ NOTREACHED() << "Error reading from the wakeup pipe.";
+ }
+ DCHECK((num_bytes == 1 && msg[0] == '!') ||
+ (num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
+ // Since we ate the message, we need to record that we have more work,
+ // because HandleCheck() may be called without HandleDispatch being called
+ // afterwards.
+ state_->has_work = true;
+ }
+
+ if (state_->has_work)
+ return true;
+
+ if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
+ // The timer has expired. That condition will stay true until we process
+ // that delayed work, so we don't need to record this differently.
+ return true;
+ }
+
+ return false;
+}
+
+void MessagePumpGlib::HandleDispatch() {
+ state_->has_work = false;
+ if (state_->delegate->DoWork()) {
+ // NOTE: on Windows at this point we would call ScheduleWork (see
+ // MessagePumpGlib::HandleWorkMessage in message_pump_win.cc). But here,
+ // instead of posting a message on the wakeup pipe, we can avoid the
+ // syscalls and just signal that we have more work.
+ state_->has_work = true;
+ }
+
+ if (state_->should_quit)
+ return;
+
+ state_->delegate->DoDelayedWork(&delayed_work_time_);
+}
+
+void MessagePumpGlib::Run(Delegate* delegate) {
+#ifndef NDEBUG
+ CheckThread(this);
+#endif
+
+ RunState state;
+ state.delegate = delegate;
+ state.should_quit = false;
+ state.run_depth = state_ ? state_->run_depth + 1 : 1;
+ state.has_work = false;
+
+ RunState* previous_state = state_;
+ state_ = &state;
+
+ // We really only do a single task for each iteration of the loop. If we
+ // have done something, assume there is likely something more to do. This
+ // will mean that we don't block on the message pump until there was nothing
+ // more to do. We also set this to true to make sure not to block on the
+ // first iteration of the loop, so RunUntilIdle() works correctly.
+ bool more_work_is_plausible = true;
+
+ // We run our own loop instead of using g_main_loop_quit in one of the
+ // callbacks. This is so we only quit our own loops, and we don't quit
+ // nested loops run by others. TODO(deanm): Is this what we want?
+ for (;;) {
+ // Don't block if we think we have more work to do.
+ bool block = !more_work_is_plausible;
+
+ more_work_is_plausible = g_main_context_iteration(context_, block);
+ if (state_->should_quit)
+ break;
+
+ more_work_is_plausible |= state_->delegate->DoWork();
+ if (state_->should_quit)
+ break;
+
+ more_work_is_plausible |=
+ state_->delegate->DoDelayedWork(&delayed_work_time_);
+ if (state_->should_quit)
+ break;
+
+ if (more_work_is_plausible)
+ continue;
+
+ more_work_is_plausible = state_->delegate->DoIdleWork();
+ if (state_->should_quit)
+ break;
+ }
+
+ state_ = previous_state;
+}
+
+void MessagePumpGlib::Quit() {
+ if (state_) {
+ state_->should_quit = true;
+ } else {
+ NOTREACHED() << "Quit called outside Run!";
+ }
+}
+
+void MessagePumpGlib::ScheduleWork() {
+ // This can be called on any thread, so we don't want to touch any state
+ // variables as we would then need locks all over. This ensures that if
+ // we are sleeping in a poll that we will wake up.
+ char msg = '!';
+ if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
+ NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
+ }
+}
+
+void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
+ // We need to wake up the loop in case the poll timeout needs to be
+ // adjusted. This will cause us to try to do work, but that's ok.
+ delayed_work_time_ = delayed_work_time;
+ ScheduleWork();
+}
+
+bool MessagePumpGlib::ShouldQuit() const {
+ CHECK(state_);
+ return state_->should_quit;
+}
+
+} // namespace base
diff --git a/base/message_loop/message_pump_glib.h b/base/message_loop/message_pump_glib.h
new file mode 100644
index 0000000000..9f4457141d
--- /dev/null
+++ b/base/message_loop/message_pump_glib.h
@@ -0,0 +1,78 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_GLIB_H_
+#define BASE_MESSAGE_LOOP_MESSAGE_PUMP_GLIB_H_
+
+#include "base/base_export.h"
+#include "base/memory/scoped_ptr.h"
+#include "base/message_loop/message_pump.h"
+#include "base/observer_list.h"
+#include "base/time/time.h"
+
+typedef struct _GMainContext GMainContext;
+typedef struct _GPollFD GPollFD;
+typedef struct _GSource GSource;
+
+namespace base {
+
+// This class implements a base MessagePump needed for TYPE_UI MessageLoops on
+// platforms using GLib.
+class BASE_EXPORT MessagePumpGlib : public MessagePump {
+ public:
+ MessagePumpGlib();
+ ~MessagePumpGlib() override;
+
+ // Internal methods used for processing the pump callbacks. They are
+ // public for simplicity but should not be used directly. HandlePrepare
+ // is called during the prepare step of glib, and returns a timeout that
+ // will be passed to the poll. HandleCheck is called after the poll
+ // has completed, and returns whether or not HandleDispatch should be called.
+ // HandleDispatch is called if HandleCheck returned true.
+ int HandlePrepare();
+ bool HandleCheck();
+ void HandleDispatch();
+
+ // Overridden from MessagePump:
+ void Run(Delegate* delegate) override;
+ void Quit() override;
+ void ScheduleWork() override;
+ void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override;
+
+ private:
+ bool ShouldQuit() const;
+
+ // We may make recursive calls to Run, so we save state that needs to be
+ // separate between them in this structure type.
+ struct RunState;
+
+ RunState* state_;
+
+ // This is a GLib structure that we can add event sources to. We use the
+ // default GLib context, which is the one to which all GTK events are
+ // dispatched.
+ GMainContext* context_;
+
+ // This is the time when we need to do delayed work.
+ TimeTicks delayed_work_time_;
+
+ // The work source. It is shared by all calls to Run and destroyed when
+ // the message pump is destroyed.
+ GSource* work_source_;
+
+ // We use a wakeup pipe to make sure we'll get out of the glib polling phase
+ // when another thread has scheduled us to do some work. There is a glib
+ // mechanism g_main_context_wakeup, but this won't guarantee that our event's
+ // Dispatch() will be called.
+ int wakeup_pipe_read_;
+ int wakeup_pipe_write_;
+ // Use a scoped_ptr to avoid needing the definition of GPollFD in the header.
+ scoped_ptr<GPollFD> wakeup_gpollfd_;
+
+ DISALLOW_COPY_AND_ASSIGN(MessagePumpGlib);
+};
+
+} // namespace base
+
+#endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_GLIB_H_
diff --git a/base/message_loop/message_pump_glib_unittest.cc b/base/message_loop/message_pump_glib_unittest.cc
new file mode 100644
index 0000000000..7ddd4f08a0
--- /dev/null
+++ b/base/message_loop/message_pump_glib_unittest.cc
@@ -0,0 +1,534 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "base/message_loop/message_pump_glib.h"
+
+#include <glib.h>
+#include <math.h>
+
+#include <algorithm>
+#include <vector>
+
+#include "base/bind.h"
+#include "base/bind_helpers.h"
+#include "base/callback.h"
+#include "base/memory/ref_counted.h"
+#include "base/message_loop/message_loop.h"
+#include "base/run_loop.h"
+#include "base/threading/thread.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+namespace base {
+namespace {
+
+// This class injects dummy "events" into the GLib loop. When "handled" these
+// events can run tasks. This is intended to mock gtk events (the corresponding
+// GLib source runs at the same priority).
+class EventInjector {
+ public:
+ EventInjector() : processed_events_(0) {
+ source_ = static_cast<Source*>(g_source_new(&SourceFuncs, sizeof(Source)));
+ source_->injector = this;
+ g_source_attach(source_, NULL);
+ g_source_set_can_recurse(source_, TRUE);
+ }
+
+ ~EventInjector() {
+ g_source_destroy(source_);
+ g_source_unref(source_);
+ }
+
+ int HandlePrepare() {
+ // If the queue is empty, block.
+ if (events_.empty())
+ return -1;
+ TimeDelta delta = events_[0].time - Time::NowFromSystemTime();
+ return std::max(0, static_cast<int>(ceil(delta.InMillisecondsF())));
+ }
+
+ bool HandleCheck() {
+ if (events_.empty())
+ return false;
+ return events_[0].time <= Time::NowFromSystemTime();
+ }
+
+ void HandleDispatch() {
+ if (events_.empty())
+ return;
+ Event event = events_[0];
+ events_.erase(events_.begin());
+ ++processed_events_;
+ if (!event.callback.is_null())
+ event.callback.Run();
+ else if (!event.task.is_null())
+ event.task.Run();
+ }
+
+ // Adds an event to the queue. When "handled", executes |callback|.
+ // delay_ms is relative to the last event if any, or to Now() otherwise.
+ void AddEvent(int delay_ms, const Closure& callback) {
+ AddEventHelper(delay_ms, callback, Closure());
+ }
+
+ void AddDummyEvent(int delay_ms) {
+ AddEventHelper(delay_ms, Closure(), Closure());
+ }
+
+ void AddEventAsTask(int delay_ms, const Closure& task) {
+ AddEventHelper(delay_ms, Closure(), task);
+ }
+
+ void Reset() {
+ processed_events_ = 0;
+ events_.clear();
+ }
+
+ int processed_events() const { return processed_events_; }
+
+ private:
+ struct Event {
+ Time time;
+ Closure callback;
+ Closure task;
+ };
+
+ struct Source : public GSource {
+ EventInjector* injector;
+ };
+
+ void AddEventHelper(
+ int delay_ms, const Closure& callback, const Closure& task) {
+ Time last_time;
+ if (!events_.empty())
+ last_time = (events_.end()-1)->time;
+ else
+ last_time = Time::NowFromSystemTime();
+
+ Time future = last_time + TimeDelta::FromMilliseconds(delay_ms);
+ EventInjector::Event event = {future, callback, task};
+ events_.push_back(event);
+ }
+
+ static gboolean Prepare(GSource* source, gint* timeout_ms) {
+ *timeout_ms = static_cast<Source*>(source)->injector->HandlePrepare();
+ return FALSE;
+ }
+
+ static gboolean Check(GSource* source) {
+ return static_cast<Source*>(source)->injector->HandleCheck();
+ }
+
+ static gboolean Dispatch(GSource* source,
+ GSourceFunc unused_func,
+ gpointer unused_data) {
+ static_cast<Source*>(source)->injector->HandleDispatch();
+ return TRUE;
+ }
+
+ Source* source_;
+ std::vector<Event> events_;
+ int processed_events_;
+ static GSourceFuncs SourceFuncs;
+ DISALLOW_COPY_AND_ASSIGN(EventInjector);
+};
+
+GSourceFuncs EventInjector::SourceFuncs = {
+ EventInjector::Prepare,
+ EventInjector::Check,
+ EventInjector::Dispatch,
+ NULL
+};
+
+void IncrementInt(int *value) {
+ ++*value;
+}
+
+// Checks how many events have been processed by the injector.
+void ExpectProcessedEvents(EventInjector* injector, int count) {
+ EXPECT_EQ(injector->processed_events(), count);
+}
+
+// Posts a task on the current message loop.
+void PostMessageLoopTask(const tracked_objects::Location& from_here,
+ const Closure& task) {
+ MessageLoop::current()->PostTask(from_here, task);
+}
+
+// Test fixture.
+class MessagePumpGLibTest : public testing::Test {
+ public:
+ MessagePumpGLibTest() : loop_(NULL), injector_(NULL) { }
+
+ // Overridden from testing::Test:
+ void SetUp() override {
+ loop_ = new MessageLoop(MessageLoop::TYPE_UI);
+ injector_ = new EventInjector();
+ }
+ void TearDown() override {
+ delete injector_;
+ injector_ = NULL;
+ delete loop_;
+ loop_ = NULL;
+ }
+
+ MessageLoop* loop() const { return loop_; }
+ EventInjector* injector() const { return injector_; }
+
+ private:
+ MessageLoop* loop_;
+ EventInjector* injector_;
+ DISALLOW_COPY_AND_ASSIGN(MessagePumpGLibTest);
+};
+
+} // namespace
+
+TEST_F(MessagePumpGLibTest, TestQuit) {
+ // Checks that Quit works and that the basic infrastructure is working.
+
+ // Quit from a task
+ RunLoop().RunUntilIdle();
+ EXPECT_EQ(0, injector()->processed_events());
+
+ injector()->Reset();
+ // Quit from an event
+ injector()->AddEvent(0, MessageLoop::QuitWhenIdleClosure());
+ loop()->Run();
+ EXPECT_EQ(1, injector()->processed_events());
+}
+
+TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) {
+ // Checks that tasks posted by events are executed before the next event if
+ // the posted task queue is empty.
+ // MessageLoop doesn't make strong guarantees that it is the case, but the
+ // current implementation ensures it and the tests below rely on it.
+ // If changes cause this test to fail, it is reasonable to change it, but
+ // TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be
+ // changed accordingly, otherwise they can become flaky.
+ injector()->AddEventAsTask(0, Bind(&DoNothing));
+ Closure check_task =
+ Bind(&ExpectProcessedEvents, Unretained(injector()), 2);
+ Closure posted_task =
+ Bind(&PostMessageLoopTask, FROM_HERE, check_task);
+ injector()->AddEventAsTask(0, posted_task);
+ injector()->AddEventAsTask(0, Bind(&DoNothing));
+ injector()->AddEvent(0, MessageLoop::QuitWhenIdleClosure());
+ loop()->Run();
+ EXPECT_EQ(4, injector()->processed_events());
+
+ injector()->Reset();
+ injector()->AddEventAsTask(0, Bind(&DoNothing));
+ check_task =
+ Bind(&ExpectProcessedEvents, Unretained(injector()), 2);
+ posted_task = Bind(&PostMessageLoopTask, FROM_HERE, check_task);
+ injector()->AddEventAsTask(0, posted_task);
+ injector()->AddEventAsTask(10, Bind(&DoNothing));
+ injector()->AddEvent(0, MessageLoop::QuitWhenIdleClosure());
+ loop()->Run();
+ EXPECT_EQ(4, injector()->processed_events());
+}
+
+TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) {
+ int task_count = 0;
+ // Tests that we process tasks while waiting for new events.
+ // The event queue is empty at first.
+ for (int i = 0; i < 10; ++i) {
+ loop()->PostTask(FROM_HERE, Bind(&IncrementInt, &task_count));
+ }
+ // After all the previous tasks have executed, enqueue an event that will
+ // quit.
+ loop()->PostTask(
+ FROM_HERE,
+ Bind(&EventInjector::AddEvent, Unretained(injector()), 0,
+ MessageLoop::QuitWhenIdleClosure()));
+ loop()->Run();
+ ASSERT_EQ(10, task_count);
+ EXPECT_EQ(1, injector()->processed_events());
+
+ // Tests that we process delayed tasks while waiting for new events.
+ injector()->Reset();
+ task_count = 0;
+ for (int i = 0; i < 10; ++i) {
+ loop()->PostDelayedTask(
+ FROM_HERE,
+ Bind(&IncrementInt, &task_count),
+ TimeDelta::FromMilliseconds(10*i));
+ }
+ // After all the previous tasks have executed, enqueue an event that will
+ // quit.
+ // This relies on the fact that delayed tasks are executed in delay order.
+ // That is verified in message_loop_unittest.cc.
+ loop()->PostDelayedTask(
+ FROM_HERE,
+ Bind(&EventInjector::AddEvent, Unretained(injector()), 10,
+ MessageLoop::QuitWhenIdleClosure()),
+ TimeDelta::FromMilliseconds(150));
+ loop()->Run();
+ ASSERT_EQ(10, task_count);
+ EXPECT_EQ(1, injector()->processed_events());
+}
+
+TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) {
+ // Tests that we process events while waiting for work.
+ // The event queue is empty at first.
+ for (int i = 0; i < 10; ++i) {
+ injector()->AddDummyEvent(0);
+ }
+ // After all the events have been processed, post a task that will check that
+ // the events have been processed (note: the task executes after the event
+ // that posted it has been handled, so we expect 11 at that point).
+ Closure check_task =
+ Bind(&ExpectProcessedEvents, Unretained(injector()), 11);
+ Closure posted_task =
+ Bind(&PostMessageLoopTask, FROM_HERE, check_task);
+ injector()->AddEventAsTask(10, posted_task);
+
+ // And then quit (relies on the condition tested by TestEventTaskInterleave).
+ injector()->AddEvent(10, MessageLoop::QuitWhenIdleClosure());
+ loop()->Run();
+
+ EXPECT_EQ(12, injector()->processed_events());
+}
+
+namespace {
+
+// This class is a helper for the concurrent events / posted tasks test below.
+// It will quit the main loop once enough tasks and events have been processed,
+// while making sure there is always work to do and events in the queue.
+class ConcurrentHelper : public RefCounted<ConcurrentHelper> {
+ public:
+ explicit ConcurrentHelper(EventInjector* injector)
+ : injector_(injector),
+ event_count_(kStartingEventCount),
+ task_count_(kStartingTaskCount) {
+ }
+
+ void FromTask() {
+ if (task_count_ > 0) {
+ --task_count_;
+ }
+ if (task_count_ == 0 && event_count_ == 0) {
+ MessageLoop::current()->QuitWhenIdle();
+ } else {
+ MessageLoop::current()->PostTask(
+ FROM_HERE, Bind(&ConcurrentHelper::FromTask, this));
+ }
+ }
+
+ void FromEvent() {
+ if (event_count_ > 0) {
+ --event_count_;
+ }
+ if (task_count_ == 0 && event_count_ == 0) {
+ MessageLoop::current()->QuitWhenIdle();
+ } else {
+ injector_->AddEventAsTask(
+ 0, Bind(&ConcurrentHelper::FromEvent, this));
+ }
+ }
+
+ int event_count() const { return event_count_; }
+ int task_count() const { return task_count_; }
+
+ private:
+ friend class RefCounted<ConcurrentHelper>;
+
+ ~ConcurrentHelper() {}
+
+ static const int kStartingEventCount = 20;
+ static const int kStartingTaskCount = 20;
+
+ EventInjector* injector_;
+ int event_count_;
+ int task_count_;
+};
+
+} // namespace
+
+TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) {
+ // Tests that posted tasks don't starve events, nor the opposite.
+ // We use the helper class above. We keep both event and posted task queues
+ // full, the helper verifies that both tasks and events get processed.
+ // If that is not the case, either event_count_ or task_count_ will not get
+ // to 0, and MessageLoop::QuitWhenIdle() will never be called.
+ scoped_refptr<ConcurrentHelper> helper = new ConcurrentHelper(injector());
+
+ // Add 2 events to the queue to make sure it is always full (when we remove
+ // the event before processing it).
+ injector()->AddEventAsTask(
+ 0, Bind(&ConcurrentHelper::FromEvent, helper.get()));
+ injector()->AddEventAsTask(
+ 0, Bind(&ConcurrentHelper::FromEvent, helper.get()));
+
+ // Similarly post 2 tasks.
+ loop()->PostTask(
+ FROM_HERE, Bind(&ConcurrentHelper::FromTask, helper.get()));
+ loop()->PostTask(
+ FROM_HERE, Bind(&ConcurrentHelper::FromTask, helper.get()));
+
+ loop()->Run();
+ EXPECT_EQ(0, helper->event_count());
+ EXPECT_EQ(0, helper->task_count());
+}
+
+namespace {
+
+void AddEventsAndDrainGLib(EventInjector* injector) {
+ // Add a couple of dummy events
+ injector->AddDummyEvent(0);
+ injector->AddDummyEvent(0);
+ // Then add an event that will quit the main loop.
+ injector->AddEvent(0, MessageLoop::QuitWhenIdleClosure());
+
+ // Post a couple of dummy tasks
+ MessageLoop::current()->PostTask(FROM_HERE, Bind(&DoNothing));
+ MessageLoop::current()->PostTask(FROM_HERE, Bind(&DoNothing));
+
+ // Drain the events
+ while (g_main_context_pending(NULL)) {
+ g_main_context_iteration(NULL, FALSE);
+ }
+}
+
+} // namespace
+
+TEST_F(MessagePumpGLibTest, TestDrainingGLib) {
+ // Tests that draining events using GLib works.
+ loop()->PostTask(
+ FROM_HERE,
+ Bind(&AddEventsAndDrainGLib, Unretained(injector())));
+ loop()->Run();
+
+ EXPECT_EQ(3, injector()->processed_events());
+}
+
+namespace {
+
+// Helper class that lets us run the GLib message loop.
+class GLibLoopRunner : public RefCounted<GLibLoopRunner> {
+ public:
+ GLibLoopRunner() : quit_(false) { }
+
+ void RunGLib() {
+ while (!quit_) {
+ g_main_context_iteration(NULL, TRUE);
+ }
+ }
+
+ void RunLoop() {
+ while (!quit_) {
+ g_main_context_iteration(NULL, TRUE);
+ }
+ }
+
+ void Quit() {
+ quit_ = true;
+ }
+
+ void Reset() {
+ quit_ = false;
+ }
+
+ private:
+ friend class RefCounted<GLibLoopRunner>;
+
+ ~GLibLoopRunner() {}
+
+ bool quit_;
+};
+
+void TestGLibLoopInternal(EventInjector* injector) {
+ // Allow tasks to be processed from 'native' event loops.
+ MessageLoop::current()->SetNestableTasksAllowed(true);
+ scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
+
+ int task_count = 0;
+ // Add a couple of dummy events
+ injector->AddDummyEvent(0);
+ injector->AddDummyEvent(0);
+ // Post a couple of dummy tasks
+ MessageLoop::current()->PostTask(
+ FROM_HERE, Bind(&IncrementInt, &task_count));
+ MessageLoop::current()->PostTask(
+ FROM_HERE, Bind(&IncrementInt, &task_count));
+ // Delayed events
+ injector->AddDummyEvent(10);
+ injector->AddDummyEvent(10);
+ // Delayed work
+ MessageLoop::current()->PostDelayedTask(
+ FROM_HERE,
+ Bind(&IncrementInt, &task_count),
+ TimeDelta::FromMilliseconds(30));
+ MessageLoop::current()->PostDelayedTask(
+ FROM_HERE,
+ Bind(&GLibLoopRunner::Quit, runner.get()),
+ TimeDelta::FromMilliseconds(40));
+
+ // Run a nested, straight GLib message loop.
+ runner->RunGLib();
+
+ ASSERT_EQ(3, task_count);
+ EXPECT_EQ(4, injector->processed_events());
+ MessageLoop::current()->QuitWhenIdle();
+}
+
+void TestGtkLoopInternal(EventInjector* injector) {
+ // Allow tasks to be processed from 'native' event loops.
+ MessageLoop::current()->SetNestableTasksAllowed(true);
+ scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
+
+ int task_count = 0;
+ // Add a couple of dummy events
+ injector->AddDummyEvent(0);
+ injector->AddDummyEvent(0);
+ // Post a couple of dummy tasks
+ MessageLoop::current()->PostTask(
+ FROM_HERE, Bind(&IncrementInt, &task_count));
+ MessageLoop::current()->PostTask(
+ FROM_HERE, Bind(&IncrementInt, &task_count));
+ // Delayed events
+ injector->AddDummyEvent(10);
+ injector->AddDummyEvent(10);
+ // Delayed work
+ MessageLoop::current()->PostDelayedTask(
+ FROM_HERE,
+ Bind(&IncrementInt, &task_count),
+ TimeDelta::FromMilliseconds(30));
+ MessageLoop::current()->PostDelayedTask(
+ FROM_HERE,
+ Bind(&GLibLoopRunner::Quit, runner.get()),
+ TimeDelta::FromMilliseconds(40));
+
+ // Run a nested, straight Gtk message loop.
+ runner->RunLoop();
+
+ ASSERT_EQ(3, task_count);
+ EXPECT_EQ(4, injector->processed_events());
+ MessageLoop::current()->QuitWhenIdle();
+}
+
+} // namespace
+
+TEST_F(MessagePumpGLibTest, TestGLibLoop) {
+ // Tests that events and posted tasks are correctly executed if the message
+ // loop is not run by MessageLoop::Run() but by a straight GLib loop.
+ // Note that in this case we don't make strong guarantees about niceness
+ // between events and posted tasks.
+ loop()->PostTask(
+ FROM_HERE,
+ Bind(&TestGLibLoopInternal, Unretained(injector())));
+ loop()->Run();
+}
+
+TEST_F(MessagePumpGLibTest, TestGtkLoop) {
+ // Tests that events and posted tasks are correctly executed if the message
+ // loop is not run by MessageLoop::Run() but by a straight Gtk loop.
+ // Note that in this case we don't make strong guarantees about niceness
+ // between events and posted tasks.
+ loop()->PostTask(
+ FROM_HERE,
+ Bind(&TestGtkLoopInternal, Unretained(injector())));
+ loop()->Run();
+}
+
+} // namespace base