summaryrefslogtreecommitdiff
path: root/base/trace_event/memory_usage_estimator.h
diff options
context:
space:
mode:
Diffstat (limited to 'base/trace_event/memory_usage_estimator.h')
-rw-r--r--base/trace_event/memory_usage_estimator.h549
1 files changed, 549 insertions, 0 deletions
diff --git a/base/trace_event/memory_usage_estimator.h b/base/trace_event/memory_usage_estimator.h
new file mode 100644
index 0000000000..db4ea6956c
--- /dev/null
+++ b/base/trace_event/memory_usage_estimator.h
@@ -0,0 +1,549 @@
+// Copyright 2016 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_
+#define BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_
+
+#include <stdint.h>
+
+#include <array>
+#include <deque>
+#include <list>
+#include <map>
+#include <memory>
+#include <queue>
+#include <set>
+#include <stack>
+#include <string>
+#include <type_traits>
+#include <unordered_map>
+#include <unordered_set>
+#include <vector>
+
+#include "base/base_export.h"
+#include "base/containers/linked_list.h"
+#include "base/strings/string16.h"
+#include "base/template_util.h"
+
+// Composable memory usage estimators.
+//
+// This file defines set of EstimateMemoryUsage(object) functions that return
+// approximate memory usage of their argument.
+//
+// The ultimate goal is to make memory usage estimation for a class simply a
+// matter of aggregating EstimateMemoryUsage() results over all fields.
+//
+// That is achieved via composability: if EstimateMemoryUsage() is defined
+// for T then EstimateMemoryUsage() is also defined for any combination of
+// containers holding T (e.g. std::map<int, std::vector<T>>).
+//
+// There are two ways of defining EstimateMemoryUsage() for a type:
+//
+// 1. As a global function 'size_t EstimateMemoryUsage(T)' in
+// in base::trace_event namespace.
+//
+// 2. As 'size_t T::EstimateMemoryUsage() const' method. In this case
+// EstimateMemoryUsage(T) function in base::trace_event namespace is
+// provided automatically.
+//
+// Here is an example implementation:
+//
+// size_t foo::bar::MyClass::EstimateMemoryUsage() const {
+// return base::trace_event::EstimateMemoryUsage(name_) +
+// base::trace_event::EstimateMemoryUsage(id_) +
+// base::trace_event::EstimateMemoryUsage(items_);
+// }
+//
+// The approach is simple: first call EstimateMemoryUsage() on all members,
+// then recursively fix compilation errors that are caused by types not
+// implementing EstimateMemoryUsage().
+
+namespace base {
+namespace trace_event {
+
+// Declarations
+
+// If T declares 'EstimateMemoryUsage() const' member function, then
+// global function EstimateMemoryUsage(T) is available, and just calls
+// the member function.
+template <class T>
+auto EstimateMemoryUsage(const T& object)
+ -> decltype(object.EstimateMemoryUsage());
+
+// String
+
+template <class C, class T, class A>
+size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string);
+
+// Arrays
+
+template <class T, size_t N>
+size_t EstimateMemoryUsage(const std::array<T, N>& array);
+
+template <class T, size_t N>
+size_t EstimateMemoryUsage(T (&array)[N]);
+
+template <class T>
+size_t EstimateMemoryUsage(const T* array, size_t array_length);
+
+// std::unique_ptr
+
+template <class T, class D>
+size_t EstimateMemoryUsage(const std::unique_ptr<T, D>& ptr);
+
+template <class T, class D>
+size_t EstimateMemoryUsage(const std::unique_ptr<T[], D>& array,
+ size_t array_length);
+
+// std::shared_ptr
+
+template <class T>
+size_t EstimateMemoryUsage(const std::shared_ptr<T>& ptr);
+
+// Containers
+
+template <class F, class S>
+size_t EstimateMemoryUsage(const std::pair<F, S>& pair);
+
+template <class T, class A>
+size_t EstimateMemoryUsage(const std::vector<T, A>& vector);
+
+template <class T, class A>
+size_t EstimateMemoryUsage(const std::list<T, A>& list);
+
+template <class T>
+size_t EstimateMemoryUsage(const base::LinkedList<T>& list);
+
+template <class T, class C, class A>
+size_t EstimateMemoryUsage(const std::set<T, C, A>& set);
+
+template <class T, class C, class A>
+size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set);
+
+template <class K, class V, class C, class A>
+size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map);
+
+template <class K, class V, class C, class A>
+size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map);
+
+template <class T, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_set<T, H, KE, A>& set);
+
+template <class T, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_multiset<T, H, KE, A>& set);
+
+template <class K, class V, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map);
+
+template <class K, class V, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map);
+
+template <class T, class A>
+size_t EstimateMemoryUsage(const std::deque<T, A>& deque);
+
+template <class T, class C>
+size_t EstimateMemoryUsage(const std::queue<T, C>& queue);
+
+template <class T, class C>
+size_t EstimateMemoryUsage(const std::priority_queue<T, C>& queue);
+
+template <class T, class C>
+size_t EstimateMemoryUsage(const std::stack<T, C>& stack);
+
+// TODO(dskiba):
+// std::forward_list
+
+// Definitions
+
+namespace internal {
+
+// HasEMU<T>::value is true iff EstimateMemoryUsage(T) is available.
+// (This is the default version, which is false.)
+template <class T, class X = void>
+struct HasEMU : std::false_type {};
+
+// This HasEMU specialization is only picked up if there exists function
+// EstimateMemoryUsage(const T&) that returns size_t. Simpler ways to
+// achieve this don't work on MSVC.
+template <class T>
+struct HasEMU<
+ T,
+ typename std::enable_if<std::is_same<
+ size_t,
+ decltype(EstimateMemoryUsage(std::declval<const T&>()))>::value>::type>
+ : std::true_type {};
+
+// EMUCaller<T> does three things:
+// 1. Defines Call() method that calls EstimateMemoryUsage(T) if it's
+// available.
+// 2. If EstimateMemoryUsage(T) is not available, but T has trivial dtor
+// (i.e. it's POD, integer, pointer, enum, etc.) then it defines Call()
+// method that returns 0. This is useful for containers, which allocate
+// memory regardless of T (also for cases like std::map<int, MyClass>).
+// 3. Finally, if EstimateMemoryUsage(T) is not available, then it triggers
+// a static_assert with a helpful message. That cuts numbers of errors
+// considerably - if you just call EstimateMemoryUsage(T) but it's not
+// available for T, then compiler will helpfully list *all* possible
+// variants of it, with an explanation for each.
+template <class T, class X = void>
+struct EMUCaller {
+ // std::is_same<> below makes static_assert depend on T, in order to
+ // prevent it from asserting regardless instantiation.
+ static_assert(std::is_same<T, std::false_type>::value,
+ "Neither global function 'size_t EstimateMemoryUsage(T)' "
+ "nor member function 'size_t T::EstimateMemoryUsage() const' "
+ "is defined for the type.");
+
+ static size_t Call(const T&) { return 0; }
+};
+
+template <class T>
+struct EMUCaller<T, typename std::enable_if<HasEMU<T>::value>::type> {
+ static size_t Call(const T& value) { return EstimateMemoryUsage(value); }
+};
+
+template <class T>
+struct EMUCaller<
+ T,
+ typename std::enable_if<!HasEMU<T>::value &&
+ is_trivially_destructible<T>::value>::type> {
+ static size_t Call(const T&) { return 0; }
+};
+
+// Returns reference to the underlying container of a container adapter.
+// Works for std::stack, std::queue and std::priority_queue.
+template <class A>
+const typename A::container_type& GetUnderlyingContainer(const A& adapter) {
+ struct ExposedAdapter : A {
+ using A::c;
+ };
+ return adapter.*&ExposedAdapter::c;
+}
+
+} // namespace internal
+
+// Proxy that deducts T and calls EMUCaller<T>.
+// To be used by EstimateMemoryUsage() implementations for containers.
+template <class T>
+size_t EstimateItemMemoryUsage(const T& value) {
+ return internal::EMUCaller<T>::Call(value);
+}
+
+template <class I>
+size_t EstimateIterableMemoryUsage(const I& iterable) {
+ size_t memory_usage = 0;
+ for (const auto& item : iterable) {
+ memory_usage += EstimateItemMemoryUsage(item);
+ }
+ return memory_usage;
+}
+
+// Global EstimateMemoryUsage(T) that just calls T::EstimateMemoryUsage().
+template <class T>
+auto EstimateMemoryUsage(const T& object)
+ -> decltype(object.EstimateMemoryUsage()) {
+ static_assert(
+ std::is_same<decltype(object.EstimateMemoryUsage()), size_t>::value,
+ "'T::EstimateMemoryUsage() const' must return size_t.");
+ return object.EstimateMemoryUsage();
+}
+
+// String
+
+template <class C, class T, class A>
+size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string) {
+ using string_type = std::basic_string<C, T, A>;
+ using value_type = typename string_type::value_type;
+ // C++11 doesn't leave much room for implementors - std::string can
+ // use short string optimization, but that's about it. We detect SSO
+ // by checking that c_str() points inside |string|.
+ const uint8_t* cstr = reinterpret_cast<const uint8_t*>(string.c_str());
+ const uint8_t* inline_cstr = reinterpret_cast<const uint8_t*>(&string);
+ if (cstr >= inline_cstr && cstr < inline_cstr + sizeof(string)) {
+ // SSO string
+ return 0;
+ }
+ return (string.capacity() + 1) * sizeof(value_type);
+}
+
+// Use explicit instantiations from the .cc file (reduces bloat).
+extern template BASE_EXPORT size_t EstimateMemoryUsage(const std::string&);
+extern template BASE_EXPORT size_t EstimateMemoryUsage(const string16&);
+
+// Arrays
+
+template <class T, size_t N>
+size_t EstimateMemoryUsage(const std::array<T, N>& array) {
+ return EstimateIterableMemoryUsage(array);
+}
+
+template <class T, size_t N>
+size_t EstimateMemoryUsage(T (&array)[N]) {
+ return EstimateIterableMemoryUsage(array);
+}
+
+template <class T>
+size_t EstimateMemoryUsage(const T* array, size_t array_length) {
+ size_t memory_usage = sizeof(T) * array_length;
+ for (size_t i = 0; i != array_length; ++i) {
+ memory_usage += EstimateItemMemoryUsage(array[i]);
+ }
+ return memory_usage;
+}
+
+// std::unique_ptr
+
+template <class T, class D>
+size_t EstimateMemoryUsage(const std::unique_ptr<T, D>& ptr) {
+ return ptr ? (sizeof(T) + EstimateItemMemoryUsage(*ptr)) : 0;
+}
+
+template <class T, class D>
+size_t EstimateMemoryUsage(const std::unique_ptr<T[], D>& array,
+ size_t array_length) {
+ return EstimateMemoryUsage(array.get(), array_length);
+}
+
+// std::shared_ptr
+
+template <class T>
+size_t EstimateMemoryUsage(const std::shared_ptr<T>& ptr) {
+ auto use_count = ptr.use_count();
+ if (use_count == 0) {
+ return 0;
+ }
+ // Model shared_ptr after libc++,
+ // see __shared_ptr_pointer from include/memory
+ struct SharedPointer {
+ void* vtbl;
+ long shared_owners;
+ long shared_weak_owners;
+ T* value;
+ };
+ // If object of size S shared N > S times we prefer to (potentially)
+ // overestimate than to return 0.
+ return sizeof(SharedPointer) +
+ (EstimateItemMemoryUsage(*ptr) + (use_count - 1)) / use_count;
+}
+
+// std::pair
+
+template <class F, class S>
+size_t EstimateMemoryUsage(const std::pair<F, S>& pair) {
+ return EstimateItemMemoryUsage(pair.first) +
+ EstimateItemMemoryUsage(pair.second);
+}
+
+// std::vector
+
+template <class T, class A>
+size_t EstimateMemoryUsage(const std::vector<T, A>& vector) {
+ return sizeof(T) * vector.capacity() + EstimateIterableMemoryUsage(vector);
+}
+
+// std::list
+
+template <class T, class A>
+size_t EstimateMemoryUsage(const std::list<T, A>& list) {
+ using value_type = typename std::list<T, A>::value_type;
+ struct Node {
+ Node* prev;
+ Node* next;
+ value_type value;
+ };
+ return sizeof(Node) * list.size() +
+ EstimateIterableMemoryUsage(list);
+}
+
+template <class T>
+size_t EstimateMemoryUsage(const base::LinkedList<T>& list) {
+ size_t memory_usage = 0u;
+ for (base::LinkNode<T>* node = list.head(); node != list.end();
+ node = node->next()) {
+ // Since we increment by calling node = node->next() we know that node
+ // isn't nullptr.
+ memory_usage += EstimateMemoryUsage(*node->value()) + sizeof(T);
+ }
+ return memory_usage;
+}
+
+// Tree containers
+
+template <class V>
+size_t EstimateTreeMemoryUsage(size_t size) {
+ // Tree containers are modeled after libc++
+ // (__tree_node from include/__tree)
+ struct Node {
+ Node* left;
+ Node* right;
+ Node* parent;
+ bool is_black;
+ V value;
+ };
+ return sizeof(Node) * size;
+}
+
+template <class T, class C, class A>
+size_t EstimateMemoryUsage(const std::set<T, C, A>& set) {
+ using value_type = typename std::set<T, C, A>::value_type;
+ return EstimateTreeMemoryUsage<value_type>(set.size()) +
+ EstimateIterableMemoryUsage(set);
+}
+
+template <class T, class C, class A>
+size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set) {
+ using value_type = typename std::multiset<T, C, A>::value_type;
+ return EstimateTreeMemoryUsage<value_type>(set.size()) +
+ EstimateIterableMemoryUsage(set);
+}
+
+template <class K, class V, class C, class A>
+size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map) {
+ using value_type = typename std::map<K, V, C, A>::value_type;
+ return EstimateTreeMemoryUsage<value_type>(map.size()) +
+ EstimateIterableMemoryUsage(map);
+}
+
+template <class K, class V, class C, class A>
+size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map) {
+ using value_type = typename std::multimap<K, V, C, A>::value_type;
+ return EstimateTreeMemoryUsage<value_type>(map.size()) +
+ EstimateIterableMemoryUsage(map);
+}
+
+// HashMap containers
+
+namespace internal {
+
+// While hashtable containers model doesn't depend on STL implementation, one
+// detail still crept in: bucket_count. It's used in size estimation, but its
+// value after inserting N items is not predictable.
+// This function is specialized by unittests to return constant value, thus
+// excluding bucket_count from testing.
+template <class V>
+size_t HashMapBucketCountForTesting(size_t bucket_count) {
+ return bucket_count;
+}
+
+} // namespace internal
+
+template <class V>
+size_t EstimateHashMapMemoryUsage(size_t bucket_count, size_t size) {
+ // Hashtable containers are modeled after libc++
+ // (__hash_node from include/__hash_table)
+ struct Node {
+ void* next;
+ size_t hash;
+ V value;
+ };
+ using Bucket = void*;
+ bucket_count = internal::HashMapBucketCountForTesting<V>(bucket_count);
+ return sizeof(Bucket) * bucket_count + sizeof(Node) * size;
+}
+
+template <class K, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_set<K, H, KE, A>& set) {
+ using value_type = typename std::unordered_set<K, H, KE, A>::value_type;
+ return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(),
+ set.size()) +
+ EstimateIterableMemoryUsage(set);
+}
+
+template <class K, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_multiset<K, H, KE, A>& set) {
+ using value_type = typename std::unordered_multiset<K, H, KE, A>::value_type;
+ return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(),
+ set.size()) +
+ EstimateIterableMemoryUsage(set);
+}
+
+template <class K, class V, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map) {
+ using value_type = typename std::unordered_map<K, V, H, KE, A>::value_type;
+ return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(),
+ map.size()) +
+ EstimateIterableMemoryUsage(map);
+}
+
+template <class K, class V, class H, class KE, class A>
+size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map) {
+ using value_type =
+ typename std::unordered_multimap<K, V, H, KE, A>::value_type;
+ return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(),
+ map.size()) +
+ EstimateIterableMemoryUsage(map);
+}
+
+// std::deque
+
+template <class T, class A>
+size_t EstimateMemoryUsage(const std::deque<T, A>& deque) {
+// Since std::deque implementations are wildly different
+// (see crbug.com/674287), we can't have one "good enough"
+// way to estimate.
+
+// kBlockSize - minimum size of a block, in bytes
+// kMinBlockLength - number of elements in a block
+// if sizeof(T) > kBlockSize
+#if defined(_LIBCPP_VERSION)
+ size_t kBlockSize = 4096;
+ size_t kMinBlockLength = 16;
+#elif defined(__GLIBCXX__)
+ size_t kBlockSize = 512;
+ size_t kMinBlockLength = 1;
+#elif defined(_MSC_VER)
+ size_t kBlockSize = 16;
+ size_t kMinBlockLength = 1;
+#else
+ size_t kBlockSize = 0;
+ size_t kMinBlockLength = 1;
+#endif
+
+ size_t block_length =
+ (sizeof(T) > kBlockSize) ? kMinBlockLength : kBlockSize / sizeof(T);
+
+ size_t blocks = (deque.size() + block_length - 1) / block_length;
+
+#if defined(__GLIBCXX__)
+ // libstdc++: deque always has at least one block
+ if (!blocks)
+ blocks = 1;
+#endif
+
+#if defined(_LIBCPP_VERSION)
+ // libc++: deque keeps at most two blocks when it shrinks,
+ // so even if the size is zero, deque might be holding up
+ // to 4096 * 2 bytes. One way to know whether deque has
+ // ever allocated (and hence has 1 or 2 blocks) is to check
+ // iterator's pointer. Non-zero value means that deque has
+ // at least one block.
+ if (!blocks && deque.begin().operator->())
+ blocks = 1;
+#endif
+
+ return (blocks * block_length * sizeof(T)) +
+ EstimateIterableMemoryUsage(deque);
+}
+
+// Container adapters
+
+template <class T, class C>
+size_t EstimateMemoryUsage(const std::queue<T, C>& queue) {
+ return EstimateMemoryUsage(internal::GetUnderlyingContainer(queue));
+}
+
+template <class T, class C>
+size_t EstimateMemoryUsage(const std::priority_queue<T, C>& queue) {
+ return EstimateMemoryUsage(internal::GetUnderlyingContainer(queue));
+}
+
+template <class T, class C>
+size_t EstimateMemoryUsage(const std::stack<T, C>& stack) {
+ return EstimateMemoryUsage(internal::GetUnderlyingContainer(stack));
+}
+
+} // namespace trace_event
+} // namespace base
+
+#endif // BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_