summaryrefslogtreecommitdiff
path: root/crypto/p224_spake.cc
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/p224_spake.cc')
-rw-r--r--crypto/p224_spake.cc268
1 files changed, 268 insertions, 0 deletions
diff --git a/crypto/p224_spake.cc b/crypto/p224_spake.cc
new file mode 100644
index 0000000000..a6dec40568
--- /dev/null
+++ b/crypto/p224_spake.cc
@@ -0,0 +1,268 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// This code implements SPAKE2, a variant of EKE:
+// http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
+
+#include <crypto/p224_spake.h>
+
+#include <algorithm>
+
+#include <base/logging.h>
+#include <crypto/p224.h>
+#include <crypto/random.h>
+#include <crypto/secure_util.h>
+
+namespace {
+
+// The following two points (M and N in the protocol) are verifiable random
+// points on the curve and can be generated with the following code:
+
+// #include <stdint.h>
+// #include <stdio.h>
+// #include <string.h>
+//
+// #include <openssl/ec.h>
+// #include <openssl/obj_mac.h>
+// #include <openssl/sha.h>
+//
+// static const char kSeed1[] = "P224 point generation seed (M)";
+// static const char kSeed2[] = "P224 point generation seed (N)";
+//
+// void find_seed(const char* seed) {
+// SHA256_CTX sha256;
+// uint8_t digest[SHA256_DIGEST_LENGTH];
+//
+// SHA256_Init(&sha256);
+// SHA256_Update(&sha256, seed, strlen(seed));
+// SHA256_Final(digest, &sha256);
+//
+// BIGNUM x, y;
+// EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
+// EC_POINT* p = EC_POINT_new(p224);
+//
+// for (unsigned i = 0;; i++) {
+// BN_init(&x);
+// BN_bin2bn(digest, 28, &x);
+//
+// if (EC_POINT_set_compressed_coordinates_GFp(
+// p224, p, &x, digest[28] & 1, NULL)) {
+// BN_init(&y);
+// EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
+// char* x_str = BN_bn2hex(&x);
+// char* y_str = BN_bn2hex(&y);
+// printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
+// OPENSSL_free(x_str);
+// OPENSSL_free(y_str);
+// BN_free(&x);
+// BN_free(&y);
+// break;
+// }
+//
+// SHA256_Init(&sha256);
+// SHA256_Update(&sha256, digest, sizeof(digest));
+// SHA256_Final(digest, &sha256);
+//
+// BN_free(&x);
+// }
+//
+// EC_POINT_free(p);
+// EC_GROUP_free(p224);
+// }
+//
+// int main() {
+// find_seed(kSeed1);
+// find_seed(kSeed2);
+// return 0;
+// }
+
+const crypto::p224::Point kM = {
+ {174237515, 77186811, 235213682, 33849492,
+ 33188520, 48266885, 177021753, 81038478},
+ {104523827, 245682244, 266509668, 236196369,
+ 28372046, 145351378, 198520366, 113345994},
+ {1, 0, 0, 0, 0, 0, 0, 0},
+};
+
+const crypto::p224::Point kN = {
+ {136176322, 263523628, 251628795, 229292285,
+ 5034302, 185981975, 171998428, 11653062},
+ {197567436, 51226044, 60372156, 175772188,
+ 42075930, 8083165, 160827401, 65097570},
+ {1, 0, 0, 0, 0, 0, 0, 0},
+};
+
+} // anonymous namespace
+
+namespace crypto {
+
+P224EncryptedKeyExchange::P224EncryptedKeyExchange(
+ PeerType peer_type, const base::StringPiece& password)
+ : state_(kStateInitial),
+ is_server_(peer_type == kPeerTypeServer) {
+ memset(&x_, 0, sizeof(x_));
+ memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
+
+ // x_ is a random scalar.
+ RandBytes(x_, sizeof(x_));
+
+ // Calculate |password| hash to get SPAKE password value.
+ SHA256HashString(std::string(password.data(), password.length()),
+ pw_, sizeof(pw_));
+
+ Init();
+}
+
+void P224EncryptedKeyExchange::Init() {
+ // X = g**x_
+ p224::Point X;
+ p224::ScalarBaseMult(x_, &X);
+
+ // The client masks the Diffie-Hellman value, X, by adding M**pw and the
+ // server uses N**pw.
+ p224::Point MNpw;
+ p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
+
+ // X* = X + (N|M)**pw
+ p224::Point Xstar;
+ p224::Add(X, MNpw, &Xstar);
+
+ next_message_ = Xstar.ToString();
+}
+
+const std::string& P224EncryptedKeyExchange::GetNextMessage() {
+ if (state_ == kStateInitial) {
+ state_ = kStateRecvDH;
+ return next_message_;
+ } else if (state_ == kStateSendHash) {
+ state_ = kStateRecvHash;
+ return next_message_;
+ }
+
+ LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
+ " bad state " << state_;
+ next_message_ = "";
+ return next_message_;
+}
+
+P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
+ const base::StringPiece& message) {
+ if (state_ == kStateRecvHash) {
+ // This is the final state of the protocol: we are reading the peer's
+ // authentication hash and checking that it matches the one that we expect.
+ if (message.size() != sizeof(expected_authenticator_)) {
+ error_ = "peer's hash had an incorrect size";
+ return kResultFailed;
+ }
+ if (!SecureMemEqual(message.data(), expected_authenticator_,
+ message.size())) {
+ error_ = "peer's hash had incorrect value";
+ return kResultFailed;
+ }
+ state_ = kStateDone;
+ return kResultSuccess;
+ }
+
+ if (state_ != kStateRecvDH) {
+ LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
+ " bad state " << state_;
+ error_ = "internal error";
+ return kResultFailed;
+ }
+
+ // Y* is the other party's masked, Diffie-Hellman value.
+ p224::Point Ystar;
+ if (!Ystar.SetFromString(message)) {
+ error_ = "failed to parse peer's masked Diffie-Hellman value";
+ return kResultFailed;
+ }
+
+ // We calculate the mask value: (N|M)**pw
+ p224::Point MNpw, minus_MNpw, Y, k;
+ p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
+ p224::Negate(MNpw, &minus_MNpw);
+
+ // Y = Y* - (N|M)**pw
+ p224::Add(Ystar, minus_MNpw, &Y);
+
+ // K = Y**x_
+ p224::ScalarMult(Y, x_, &k);
+
+ // If everything worked out, then K is the same for both parties.
+ key_ = k.ToString();
+
+ std::string client_masked_dh, server_masked_dh;
+ if (is_server_) {
+ client_masked_dh = message.as_string();
+ server_masked_dh = next_message_;
+ } else {
+ client_masked_dh = next_message_;
+ server_masked_dh = message.as_string();
+ }
+
+ // Now we calculate the hashes that each side will use to prove to the other
+ // that they derived the correct value for K.
+ uint8 client_hash[kSHA256Length], server_hash[kSHA256Length];
+ CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
+ client_hash);
+ CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
+ server_hash);
+
+ const uint8* my_hash = is_server_ ? server_hash : client_hash;
+ const uint8* their_hash = is_server_ ? client_hash : server_hash;
+
+ next_message_ =
+ std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
+ memcpy(expected_authenticator_, their_hash, kSHA256Length);
+ state_ = kStateSendHash;
+ return kResultPending;
+}
+
+void P224EncryptedKeyExchange::CalculateHash(
+ PeerType peer_type,
+ const std::string& client_masked_dh,
+ const std::string& server_masked_dh,
+ const std::string& k,
+ uint8* out_digest) {
+ std::string hash_contents;
+
+ if (peer_type == kPeerTypeServer) {
+ hash_contents = "server";
+ } else {
+ hash_contents = "client";
+ }
+
+ hash_contents += client_masked_dh;
+ hash_contents += server_masked_dh;
+ hash_contents +=
+ std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
+ hash_contents += k;
+
+ SHA256HashString(hash_contents, out_digest, kSHA256Length);
+}
+
+const std::string& P224EncryptedKeyExchange::error() const {
+ return error_;
+}
+
+const std::string& P224EncryptedKeyExchange::GetKey() const {
+ DCHECK_EQ(state_, kStateDone);
+ return GetUnverifiedKey();
+}
+
+const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
+ // Key is already final when state is kStateSendHash. Subsequent states are
+ // used only for verification of the key. Some users may combine verification
+ // with sending verifiable data instead of |expected_authenticator_|.
+ DCHECK_GE(state_, kStateSendHash);
+ return key_;
+}
+
+void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
+ memset(&x_, 0, sizeof(x_));
+ memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
+ Init();
+}
+
+} // namespace crypto