summaryrefslogtreecommitdiff
path: root/mojo/public/cpp/system/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'mojo/public/cpp/system/README.md')
-rw-r--r--mojo/public/cpp/system/README.md396
1 files changed, 396 insertions, 0 deletions
diff --git a/mojo/public/cpp/system/README.md b/mojo/public/cpp/system/README.md
new file mode 100644
index 0000000000..782744f0b1
--- /dev/null
+++ b/mojo/public/cpp/system/README.md
@@ -0,0 +1,396 @@
+# ![Mojo Graphic](https://goo.gl/6CdlbH) Mojo C++ System API
+This document is a subset of the [Mojo documentation](/mojo).
+
+[TOC]
+
+## Overview
+The Mojo C++ System API provides a convenient set of helper classes and
+functions for working with Mojo primitives. Unlike the low-level
+[C API](/mojo/public/c/system) (upon which this is built) this library takes
+advantage of C++ language features and common STL and `//base` types to provide
+a slightly more idiomatic interface to the Mojo system layer, making it
+generally easier to use.
+
+This document provides a brief guide to API usage with example code snippets.
+For a detailed API references please consult the headers in
+[//mojo/public/cpp/system](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/).
+
+Note that all API symbols referenced in this document are implicitly in the
+top-level `mojo` namespace.
+
+## Scoped, Typed Handles
+
+All types of Mojo handles in the C API are simply opaque, integral `MojoHandle`
+values. The C++ API has more strongly typed wrappers defined for different
+handle types: `MessagePipeHandle`, `SharedBufferHandle`,
+`DataPipeConsumerHandle`, `DataPipeProducerHandle`, and `WatcherHandle`.
+
+Each of these also has a corresponding, move-only, scoped type for safer usage:
+`ScopedMessagePipeHandle`, `ScopedSharedBufferHandle`, and so on. When a scoped
+handle type is destroyed, its handle is automatically closed via `MojoClose`.
+When working with raw handles you should **always** prefer to use one of the
+scoped types for ownership.
+
+Similar to `std::unique_ptr`, scoped handle types expose a `get()` method to get
+at the underlying unscoped handle type as well as the `->` operator to
+dereference the scoper and make calls directly on the underlying handle type.
+
+## Message Pipes
+
+There are two ways to create a new message pipe using the C++ API. You may
+construct a `MessagePipe` object:
+
+``` cpp
+mojo::MessagePipe pipe;
+
+// NOTE: Because pipes are bi-directional there is no implicit semantic
+// difference between |handle0| or |handle1| here. They're just two ends of a
+// pipe. The choice to treat one as a "client" and one as a "server" is entirely
+// a the API user's decision.
+mojo::ScopedMessagePipeHandle client = std::move(pipe.handle0);
+mojo::ScopedMessagePipeHandle server = std::move(pipe.handle1);
+```
+
+or you may call `CreateMessagePipe`:
+
+``` cpp
+mojo::ScopedMessagePipeHandle client;
+mojo::ScopedMessagePipeHandle server;
+mojo::CreateMessagePipe(nullptr, &client, &server);
+```
+
+There are also some helper functions for constructing message objects and
+reading/writing them on pipes using the library's more strongly-typed C++
+handles:
+
+``` cpp
+mojo::ScopedMessageHandle message;
+mojo::AllocMessage(6, nullptr, 0, MOJO_ALLOC_MESSAGE_FLAG_NONE, &message);
+
+void *buffer;
+mojo::GetMessageBuffer(message.get(), &buffer);
+
+const std::string kMessage = "hello";
+std::copy(kMessage.begin(), kMessage.end(), static_cast<char*>(buffer));
+
+mojo::WriteMessageNew(client.get(), std::move(message),
+ MOJO_WRITE_MESSAGE_FLAG_NONE);
+
+// Some time later...
+
+mojo::ScopedMessageHandle received_message;
+uint32_t num_bytes;
+mojo::ReadMessageNew(server.get(), &received_message, &num_bytes, nullptr,
+ nullptr, MOJO_READ_MESSAGE_FLAG_NONE);
+```
+
+See [message_pipe.h](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/message_pipe.h)
+for detailed C++ message pipe API documentation.
+
+## Data Pipes
+
+Similar to [Message Pipes](#Message-Pipes), the C++ library has some simple
+helpers for more strongly-typed data pipe usage:
+
+``` cpp
+mojo::DataPipe pipe;
+mojo::ScopedDataPipeProducerHandle producer = std::move(pipe.producer);
+mojo::ScopedDataPipeConsumerHandle consumer = std::move(pipe.consumer);
+
+// Or alternatively:
+mojo::ScopedDataPipeProducerHandle producer;
+mojo::ScopedDataPipeConsumerHandle consumer;
+mojo::CreateDataPipe(null, &producer, &consumer);
+```
+
+// Reads from a data pipe. See |MojoReadData()| for complete documentation.
+inline MojoResult ReadDataRaw(DataPipeConsumerHandle data_pipe_consumer,
+ void* elements,
+ uint32_t* num_bytes,
+ MojoReadDataFlags flags) {
+ return MojoReadData(data_pipe_consumer.value(), elements, num_bytes, flags);
+}
+
+// Begins a two-phase read
+C++ helpers which correspond directly to the
+[Data Pipe C API](/mojo/public/c/system#Data-Pipes) for immediate and two-phase
+I/O are provided as well. For example:
+
+``` cpp
+uint32_t num_bytes = 7;
+mojo::WriteDataRaw(producer.get(), "hihihi",
+ &num_bytes, MOJO_WRITE_DATA_FLAG_NONE);
+
+// Some time later...
+
+char buffer[64];
+uint32_t num_bytes = 64;
+mojo::ReadDataRaw(consumer.get(), buffer, &num_bytes, MOJO_READ_DATA_FLAG_NONE);
+```
+
+See [data_pipe.h](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/data_pipe.h)
+for detailed C++ data pipe API documentation.
+
+## Shared Buffers
+
+A new shared buffers can be allocated like so:
+
+``` cpp
+mojo::ScopedSharedBufferHandle buffer =
+ mojo::ScopedSharedBufferHandle::Create(4096);
+```
+
+This new handle can be cloned arbitrarily many times by using the underlying
+handle's `Clone` method:
+
+``` cpp
+mojo::ScopedSharedBufferHandle another_handle = buffer->Clone();
+mojo::ScopedSharedBufferHandle read_only_handle =
+ buffer->Clone(mojo::SharedBufferHandle::AccessMode::READ_ONLY);
+```
+
+And finally the library also provides a scoper for mapping the shared buffer's
+memory:
+
+``` cpp
+mojo::ScopedSharedBufferMapping mapping = buffer->Map(64);
+static_cast<int*>(mapping.get()) = 42;
+
+mojo::ScopedSharedBufferMapping another_mapping = buffer->MapAtOffset(64, 4);
+static_cast<int*>(mapping.get()) = 43;
+```
+
+When `mapping` and `another_mapping` are destroyed, they automatically unmap
+their respective memory regions.
+
+See [buffer.h](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/buffer.h)
+for detailed C++ shared buffer API documentation.
+
+## Native Platform Handles (File Descriptors, Windows Handles, *etc.*)
+
+The C++ library provides several helpers for wrapping system handle types.
+These are specifically useful when working with a few `//base` types, namely
+`base::PlatformFile` and `base::SharedMemoryHandle`. See
+[platform_handle.h](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/platform_handle.h)
+for detailed C++ platform handle API documentation.
+
+## Signals & Watchers
+
+For an introduction to the concepts of handle signals and watchers, check out
+the C API's documentation on [Signals & Watchers](/mojo/public/c/system#Signals-Watchers).
+
+### Querying Signals
+
+Any C++ handle type's last known signaling state can be queried by calling the
+`QuerySignalsState` method on the handle:
+
+``` cpp
+mojo::MessagePipe message_pipe;
+mojo::DataPipe data_pipe;
+mojo::HandleSignalsState a = message_pipe.handle0->QuerySignalsState();
+mojo::HandleSignalsState b = data_pipe.consumer->QuerySignalsState();
+```
+
+The `HandleSignalsState` is a thin wrapper interface around the C API's
+`MojoHandleSignalsState` structure with convenient accessors for testing
+the signal bitmasks. Whereas when using the C API you might write:
+
+``` c
+struct MojoHandleSignalsState state;
+MojoQueryHandleSignalsState(handle0, &state);
+if (state.satisfied_signals & MOJO_HANDLE_SIGNAL_READABLE) {
+ // ...
+}
+```
+
+the C++ API equivalent would be:
+
+``` cpp
+if (message_pipe.handle0->QuerySignalsState().readable()) {
+ // ...
+}
+```
+
+### Watching Handles
+
+The [`mojo::SimpleWatcher`](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/simple_watcher.h)
+class serves as a convenient helper for using the [low-level watcher API](/mojo/public/c/system#Signals-Watchers)
+to watch a handle for signaling state changes. A `SimpleWatcher` is bound to a
+single thread and always dispatches its notifications on a
+`base::SingleThreadTaskRunner`.
+
+`SimpleWatcher` has two possible modes of operation, selected at construction
+time by the `mojo::SimpleWatcher::ArmingPolicy` enum:
+
+* `MANUAL` mode requires the user to manually call `Arm` and/or `ArmOrNotify`
+ before any notifications will fire regarding the state of the watched handle.
+ Every time the notification callback is run, the `SimpleWatcher` must be
+ rearmed again before the next one can fire. See
+ [Arming a Watcher](/mojo/public/c/system#Arming-a-Watcher) and the
+ documentation in `SimpleWatcher`'s header.
+
+* `AUTOMATIC` mode ensures that the `SimpleWatcher` always either is armed or
+ has a pending notification task queued for execution.
+
+`AUTOMATIC` mode is more convenient but can result in redundant notification
+tasks, especially if the provided callback does not make a strong effort to
+return the watched handle to an uninteresting signaling state (by *e.g.*,
+reading all its available messages when notified of readability.)
+
+Example usage:
+
+``` cpp
+class PipeReader {
+ public:
+ PipeReader(mojo::ScopedMessagePipeHandle pipe)
+ : pipe_(std::move(pipe)),
+ watcher_(mojo::SimpleWatcher::ArmingPolicy::AUTOMATIC) {
+ // NOTE: base::Unretained is safe because the callback can never be run
+ // after SimpleWatcher destruction.
+ watcher_.Watch(pipe_.get(), MOJO_HANDLE_SIGNAL_READABLE,
+ base::Bind(&PipeReader::OnReadable, base::Unretained(this)));
+ }
+
+ ~PipeReader() {}
+
+ private:
+ void OnReadable(MojoResult result) {
+ while (result == MOJO_RESULT_OK) {
+ mojo::ScopedMessageHandle message;
+ uint32_t num_bytes;
+ result = mojo::ReadMessageNew(pipe_.get(), &message, &num_bytes, nullptr,
+ nullptr, MOJO_READ_MESSAGE_FLAG_NONE);
+ DCHECK_EQ(result, MOJO_RESULT_OK);
+ messages_.emplace_back(std::move(message));
+ }
+ }
+
+ mojo::ScopedMessagePipeHandle pipe_;
+ mojo::SimpleWatcher watcher_;
+ std::vector<mojo::ScopedMessageHandle> messages_;
+};
+
+mojo::MessagePipe pipe;
+PipeReader reader(std::move(pipe.handle0));
+
+// Written messages will asynchronously end up in |reader.messages_|.
+WriteABunchOfStuff(pipe.handle1.get());
+```
+
+## Synchronous Waiting
+
+The C++ System API defines some utilities to block a calling thread while
+waiting for one or more handles to change signaling state in an interesting way.
+These threads combine usage of the [low-level Watcher API](/mojo/public/c/system#Signals-Watchers)
+with common synchronization primitives (namely `base::WaitableEvent`.)
+
+While these API features should be used sparingly, they are sometimes necessary.
+
+See the documentation in
+[wait.h](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/wait.h)
+and [wait_set.h](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/wait_set.h)
+for a more detailed API reference.
+
+### Waiting On a Single Handle
+
+The `mojo::Wait` function simply blocks the calling thread until a given signal
+mask is either partially satisfied or fully unsatisfiable on a given handle.
+
+``` cpp
+mojo::MessagePipe pipe;
+mojo::WriteMessageRaw(pipe.handle0.get(), "hey", 3, nullptr, nullptr,
+ MOJO_WRITE_MESSAGE_FLAG_NONE);
+MojoResult result = mojo::Wait(pipe.handle1.get(), MOJO_HANDLE_SIGNAL_READABLE);
+DCHECK_EQ(result, MOJO_RESULT_OK);
+
+// Guaranteed to succeed because we know |handle1| is readable now.
+mojo::ScopedMessageHandle message;
+uint32_t num_bytes;
+mojo::ReadMessageNew(pipe.handle1.get(), &num_bytes, nullptr, nullptr,
+ MOJO_READ_MESSAGE_FLAG_NONE);
+```
+
+`mojo::Wait` is most typically useful in limited testing scenarios.
+
+### Waiting On Multiple Handles
+
+`mojo::WaitMany` provides a simple API to wait on multiple handles
+simultaneously, returning when any handle's given signal mask is either
+partially satisfied or fully unsatisfiable.
+
+``` cpp
+mojo::MessagePipe a, b;
+GoDoSomethingWithPipes(std:move(a.handle1), std::move(b.handle1));
+
+mojo::MessagePipeHandle handles[2] = {a.handle0.get(), b.handle0.get()};
+MojoHandleSignals signals[2] = {MOJO_HANDLE_SIGNAL_READABLE,
+ MOJO_HANDLE_SIGNAL_READABLE};
+size_t ready_index;
+MojoResult result = mojo::WaitMany(handles, signals, 2, &ready_index);
+if (ready_index == 0) {
+ // a.handle0 was ready.
+} else {
+ // b.handle0 was ready.
+}
+```
+
+Similar to `mojo::Wait`, `mojo::WaitMany` is primarily useful in testing. When
+waiting on multiple handles in production code, you should almost always instead
+use a more efficient and more flexible `mojo::WaitSet` as described in the next
+section.
+
+### Waiting On Handles and Events Simultaneously
+
+Typically when waiting on one or more handles to signal, the set of handles and
+conditions being waited upon do not change much between consecutive blocking
+waits. It's also often useful to be able to interrupt the blocking operation
+as efficiently as possible.
+
+[`mojo::WaitSet`](https://cs.chromium.org/chromium/src/mojo/public/cpp/system/wait_set.h)
+is designed with these conditions in mind. A `WaitSet` maintains a persistent
+set of (not-owned) Mojo handles and `base::WaitableEvent`s, which may be
+explicitly added to or removed from the set at any time.
+
+The `WaitSet` may be waited upon repeatedly, each time blocking the calling
+thread until either one of the handles attains an interesting signaling state or
+one of the events is signaled. For example let's suppose we want to wait up to 5
+seconds for either one of two handles to become readable:
+
+``` cpp
+base::WaitableEvent timeout_event(
+ base::WaitableEvent::ResetPolicy::MANUAL,
+ base::WaitableEvent::InitialState::NOT_SIGNALED);
+mojo::MessagePipe a, b;
+
+GoDoStuffWithPipes(std::move(a.handle1), std::move(b.handle1));
+
+mojo::WaitSet wait_set;
+wait_set.AddHandle(a.handle0.get(), MOJO_HANDLE_SIGNAL_READABLE);
+wait_set.AddHandle(b.handle0.get(), MOJO_HANDLE_SIGNAL_READABLE);
+wait_set.AddEvent(&timeout_event);
+
+// Ensure the Wait() lasts no more than 5 seconds.
+bg_thread->task_runner()->PostDelayedTask(
+ FROM_HERE,
+ base::Bind([](base::WaitableEvent* e) { e->Signal(); }, &timeout_event);
+ base::TimeDelta::FromSeconds(5));
+
+base::WaitableEvent* ready_event = nullptr;
+size_t num_ready_handles = 1;
+mojo::Handle ready_handle;
+MojoResult ready_result;
+wait_set.Wait(&ready_event, &num_ready_handles, &ready_handle, &ready_result);
+
+// The apex of thread-safety.
+bg_thread->Stop();
+
+if (ready_event) {
+ // The event signaled...
+}
+
+if (num_ready_handles > 0) {
+ // At least one of the handles signaled...
+ // NOTE: This and the above condition are not mutually exclusive. If handle
+ // signaling races with timeout, both things might be true.
+}
+```