// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/compiler_specific.h" #include "base/logging.h" #include "base/macros.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_POSIX) #include #include #include "base/posix/eintr_wrapper.h" #endif // OS_POSIX #if defined(OS_LINUX) || defined(OS_ANDROID) #include #endif #if defined(OS_WIN) #include #include #endif // OS_WIN namespace logging { namespace { using ::testing::Return; // Needs to be global since log assert handlers can't maintain state. int log_sink_call_count = 0; #if !defined(OFFICIAL_BUILD) || defined(DCHECK_ALWAYS_ON) || !defined(NDEBUG) void LogSink(const std::string& str) { ++log_sink_call_count; } #endif // Class to make sure any manipulations we do to the min log level are // contained (i.e., do not affect other unit tests). class LogStateSaver { public: LogStateSaver() : old_min_log_level_(GetMinLogLevel()) {} ~LogStateSaver() { SetMinLogLevel(old_min_log_level_); SetLogAssertHandler(NULL); log_sink_call_count = 0; } private: int old_min_log_level_; DISALLOW_COPY_AND_ASSIGN(LogStateSaver); }; class LoggingTest : public testing::Test { private: LogStateSaver log_state_saver_; }; class MockLogSource { public: MOCK_METHOD0(Log, const char*()); }; TEST_F(LoggingTest, BasicLogging) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()) .Times(DCHECK_IS_ON() ? 16 : 8) .WillRepeatedly(Return("log message")); SetMinLogLevel(LOG_INFO); EXPECT_TRUE(LOG_IS_ON(INFO)); EXPECT_TRUE((DCHECK_IS_ON() != 0) == DLOG_IS_ON(INFO)); EXPECT_TRUE(VLOG_IS_ON(0)); LOG(INFO) << mock_log_source.Log(); LOG_IF(INFO, true) << mock_log_source.Log(); PLOG(INFO) << mock_log_source.Log(); PLOG_IF(INFO, true) << mock_log_source.Log(); VLOG(0) << mock_log_source.Log(); VLOG_IF(0, true) << mock_log_source.Log(); VPLOG(0) << mock_log_source.Log(); VPLOG_IF(0, true) << mock_log_source.Log(); DLOG(INFO) << mock_log_source.Log(); DLOG_IF(INFO, true) << mock_log_source.Log(); DPLOG(INFO) << mock_log_source.Log(); DPLOG_IF(INFO, true) << mock_log_source.Log(); DVLOG(0) << mock_log_source.Log(); DVLOG_IF(0, true) << mock_log_source.Log(); DVPLOG(0) << mock_log_source.Log(); DVPLOG_IF(0, true) << mock_log_source.Log(); } TEST_F(LoggingTest, LogIsOn) { #if defined(NDEBUG) const bool kDfatalIsFatal = false; #else // defined(NDEBUG) const bool kDfatalIsFatal = true; #endif // defined(NDEBUG) SetMinLogLevel(LOG_INFO); EXPECT_TRUE(LOG_IS_ON(INFO)); EXPECT_TRUE(LOG_IS_ON(WARNING)); EXPECT_TRUE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(LOG_IS_ON(DFATAL)); SetMinLogLevel(LOG_WARNING); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_TRUE(LOG_IS_ON(WARNING)); EXPECT_TRUE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(LOG_IS_ON(DFATAL)); SetMinLogLevel(LOG_ERROR); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_FALSE(LOG_IS_ON(WARNING)); EXPECT_TRUE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(LOG_IS_ON(DFATAL)); // LOG_IS_ON(FATAL) should always be true. SetMinLogLevel(LOG_FATAL + 1); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_FALSE(LOG_IS_ON(WARNING)); EXPECT_FALSE(LOG_IS_ON(ERROR)); EXPECT_TRUE(LOG_IS_ON(FATAL)); EXPECT_TRUE(kDfatalIsFatal == LOG_IS_ON(DFATAL)); } TEST_F(LoggingTest, LoggingIsLazyBySeverity) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(0); SetMinLogLevel(LOG_WARNING); EXPECT_FALSE(LOG_IS_ON(INFO)); EXPECT_FALSE(DLOG_IS_ON(INFO)); EXPECT_FALSE(VLOG_IS_ON(1)); LOG(INFO) << mock_log_source.Log(); LOG_IF(INFO, false) << mock_log_source.Log(); PLOG(INFO) << mock_log_source.Log(); PLOG_IF(INFO, false) << mock_log_source.Log(); VLOG(1) << mock_log_source.Log(); VLOG_IF(1, true) << mock_log_source.Log(); VPLOG(1) << mock_log_source.Log(); VPLOG_IF(1, true) << mock_log_source.Log(); DLOG(INFO) << mock_log_source.Log(); DLOG_IF(INFO, true) << mock_log_source.Log(); DPLOG(INFO) << mock_log_source.Log(); DPLOG_IF(INFO, true) << mock_log_source.Log(); DVLOG(1) << mock_log_source.Log(); DVLOG_IF(1, true) << mock_log_source.Log(); DVPLOG(1) << mock_log_source.Log(); DVPLOG_IF(1, true) << mock_log_source.Log(); } TEST_F(LoggingTest, LoggingIsLazyByDestination) { MockLogSource mock_log_source; MockLogSource mock_log_source_error; EXPECT_CALL(mock_log_source, Log()).Times(0); // Severity >= ERROR is always printed to stderr. EXPECT_CALL(mock_log_source_error, Log()).Times(1). WillRepeatedly(Return("log message")); LoggingSettings settings; settings.logging_dest = LOG_NONE; InitLogging(settings); LOG(INFO) << mock_log_source.Log(); LOG(WARNING) << mock_log_source.Log(); LOG(ERROR) << mock_log_source_error.Log(); } // Official builds have CHECKs directly call BreakDebugger. #if !defined(OFFICIAL_BUILD) TEST_F(LoggingTest, CheckStreamsAreLazy) { MockLogSource mock_log_source, uncalled_mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(8). WillRepeatedly(Return("check message")); EXPECT_CALL(uncalled_mock_log_source, Log()).Times(0); SetLogAssertHandler(&LogSink); CHECK(mock_log_source.Log()) << uncalled_mock_log_source.Log(); PCHECK(!mock_log_source.Log()) << mock_log_source.Log(); CHECK_EQ(mock_log_source.Log(), mock_log_source.Log()) << uncalled_mock_log_source.Log(); CHECK_NE(mock_log_source.Log(), mock_log_source.Log()) << mock_log_source.Log(); } #endif #if defined(OFFICIAL_BUILD) && defined(OS_WIN) NOINLINE void CheckContainingFunc(int death_location) { CHECK(death_location != 1); CHECK(death_location != 2); CHECK(death_location != 3); } int GetCheckExceptionData(EXCEPTION_POINTERS* p, DWORD* code, void** addr) { *code = p->ExceptionRecord->ExceptionCode; *addr = p->ExceptionRecord->ExceptionAddress; return EXCEPTION_EXECUTE_HANDLER; } TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) { DWORD code1 = 0; DWORD code2 = 0; DWORD code3 = 0; void* addr1 = nullptr; void* addr2 = nullptr; void* addr3 = nullptr; // Record the exception code and addresses. __try { CheckContainingFunc(1); } __except ( GetCheckExceptionData(GetExceptionInformation(), &code1, &addr1)) { } __try { CheckContainingFunc(2); } __except ( GetCheckExceptionData(GetExceptionInformation(), &code2, &addr2)) { } __try { CheckContainingFunc(3); } __except ( GetCheckExceptionData(GetExceptionInformation(), &code3, &addr3)) { } // Ensure that the exception codes are correct (in particular, breakpoints, // not access violations). EXPECT_EQ(STATUS_BREAKPOINT, code1); EXPECT_EQ(STATUS_BREAKPOINT, code2); EXPECT_EQ(STATUS_BREAKPOINT, code3); // Ensure that none of the CHECKs are colocated. EXPECT_NE(addr1, addr2); EXPECT_NE(addr1, addr3); EXPECT_NE(addr2, addr3); } #elif defined(OS_POSIX) && !defined(OS_NACL) && !defined(OS_IOS) && \ (defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY)) int g_child_crash_pipe; void CheckCrashTestSighandler(int, siginfo_t* info, void* context_ptr) { // Conversely to what clearly stated in "man 2 sigaction", some Linux kernels // do NOT populate the |info->si_addr| in the case of a SIGTRAP. Hence we // need the arch-specific boilerplate below, which is inspired by breakpad. // At the same time, on OSX, ucontext.h is deprecated but si_addr works fine. uintptr_t crash_addr = 0; #if defined(OS_MACOSX) crash_addr = reinterpret_cast(info->si_addr); #else // OS_POSIX && !OS_MACOSX struct ucontext* context = reinterpret_cast(context_ptr); #if defined(ARCH_CPU_X86) crash_addr = static_cast(context->uc_mcontext.gregs[REG_EIP]); #elif defined(ARCH_CPU_X86_64) crash_addr = static_cast(context->uc_mcontext.gregs[REG_RIP]); #elif defined(ARCH_CPU_ARMEL) crash_addr = static_cast(context->uc_mcontext.arm_pc); #elif defined(ARCH_CPU_ARM64) crash_addr = static_cast(context->uc_mcontext.pc); #endif // ARCH_* #endif // OS_POSIX && !OS_MACOSX HANDLE_EINTR(write(g_child_crash_pipe, &crash_addr, sizeof(uintptr_t))); _exit(0); } // CHECK causes a direct crash (without jumping to another function) only in // official builds. Unfortunately, continuous test coverage on official builds // is lower. DO_CHECK here falls back on a home-brewed implementation in // non-official builds, to catch regressions earlier in the CQ. #if defined(OFFICIAL_BUILD) #define DO_CHECK CHECK #else #define DO_CHECK(cond) \ if (!(cond)) \ IMMEDIATE_CRASH() #endif void CrashChildMain(int death_location) { struct sigaction act = {}; act.sa_sigaction = CheckCrashTestSighandler; act.sa_flags = SA_SIGINFO; ASSERT_EQ(0, sigaction(SIGTRAP, &act, NULL)); ASSERT_EQ(0, sigaction(SIGBUS, &act, NULL)); ASSERT_EQ(0, sigaction(SIGILL, &act, NULL)); DO_CHECK(death_location != 1); DO_CHECK(death_location != 2); printf("\n"); DO_CHECK(death_location != 3); // Should never reach this point. const uintptr_t failed = 0; HANDLE_EINTR(write(g_child_crash_pipe, &failed, sizeof(uintptr_t))); }; void SpawnChildAndCrash(int death_location, uintptr_t* child_crash_addr) { int pipefd[2]; ASSERT_EQ(0, pipe(pipefd)); int pid = fork(); ASSERT_GE(pid, 0); if (pid == 0) { // child process. close(pipefd[0]); // Close reader (parent) end. g_child_crash_pipe = pipefd[1]; CrashChildMain(death_location); FAIL() << "The child process was supposed to crash. It didn't."; } close(pipefd[1]); // Close writer (child) end. DCHECK(child_crash_addr); int res = HANDLE_EINTR(read(pipefd[0], child_crash_addr, sizeof(uintptr_t))); ASSERT_EQ(static_cast(sizeof(uintptr_t)), res); } TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) { uintptr_t child_crash_addr_1 = 0; uintptr_t child_crash_addr_2 = 0; uintptr_t child_crash_addr_3 = 0; SpawnChildAndCrash(1, &child_crash_addr_1); SpawnChildAndCrash(2, &child_crash_addr_2); SpawnChildAndCrash(3, &child_crash_addr_3); ASSERT_NE(0u, child_crash_addr_1); ASSERT_NE(0u, child_crash_addr_2); ASSERT_NE(0u, child_crash_addr_3); ASSERT_NE(child_crash_addr_1, child_crash_addr_2); ASSERT_NE(child_crash_addr_1, child_crash_addr_3); ASSERT_NE(child_crash_addr_2, child_crash_addr_3); } #endif // OS_POSIX TEST_F(LoggingTest, DebugLoggingReleaseBehavior) { #if !defined(NDEBUG) || defined(DCHECK_ALWAYS_ON) int debug_only_variable = 1; #endif // These should avoid emitting references to |debug_only_variable| // in release mode. DLOG_IF(INFO, debug_only_variable) << "test"; DLOG_ASSERT(debug_only_variable) << "test"; DPLOG_IF(INFO, debug_only_variable) << "test"; DVLOG_IF(1, debug_only_variable) << "test"; } TEST_F(LoggingTest, DcheckStreamsAreLazy) { MockLogSource mock_log_source; EXPECT_CALL(mock_log_source, Log()).Times(0); #if DCHECK_IS_ON() DCHECK(true) << mock_log_source.Log(); DCHECK_EQ(0, 0) << mock_log_source.Log(); #else DCHECK(mock_log_source.Log()) << mock_log_source.Log(); DPCHECK(mock_log_source.Log()) << mock_log_source.Log(); DCHECK_EQ(0, 0) << mock_log_source.Log(); DCHECK_EQ(mock_log_source.Log(), static_cast(NULL)) << mock_log_source.Log(); #endif } void DcheckEmptyFunction1() { // Provide a body so that Release builds do not cause the compiler to // optimize DcheckEmptyFunction1 and DcheckEmptyFunction2 as a single // function, which breaks the Dcheck tests below. LOG(INFO) << "DcheckEmptyFunction1"; } void DcheckEmptyFunction2() {} TEST_F(LoggingTest, Dcheck) { #if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON) // Release build. EXPECT_FALSE(DCHECK_IS_ON()); EXPECT_FALSE(DLOG_IS_ON(DCHECK)); #elif defined(NDEBUG) && defined(DCHECK_ALWAYS_ON) // Release build with real DCHECKS. SetLogAssertHandler(&LogSink); EXPECT_TRUE(DCHECK_IS_ON()); EXPECT_TRUE(DLOG_IS_ON(DCHECK)); #else // Debug build. SetLogAssertHandler(&LogSink); EXPECT_TRUE(DCHECK_IS_ON()); EXPECT_TRUE(DLOG_IS_ON(DCHECK)); #endif EXPECT_EQ(0, log_sink_call_count); DCHECK(false); EXPECT_EQ(DCHECK_IS_ON() ? 1 : 0, log_sink_call_count); DPCHECK(false); EXPECT_EQ(DCHECK_IS_ON() ? 2 : 0, log_sink_call_count); DCHECK_EQ(0, 1); EXPECT_EQ(DCHECK_IS_ON() ? 3 : 0, log_sink_call_count); // Test DCHECK on std::nullptr_t log_sink_call_count = 0; const void* p_null = nullptr; const void* p_not_null = &p_null; DCHECK_EQ(p_null, nullptr); DCHECK_EQ(nullptr, p_null); DCHECK_NE(p_not_null, nullptr); DCHECK_NE(nullptr, p_not_null); EXPECT_EQ(0, log_sink_call_count); // Test DCHECK on a scoped enum. enum class Animal { DOG, CAT }; DCHECK_EQ(Animal::DOG, Animal::DOG); EXPECT_EQ(0, log_sink_call_count); DCHECK_EQ(Animal::DOG, Animal::CAT); EXPECT_EQ(DCHECK_IS_ON() ? 1 : 0, log_sink_call_count); // Test DCHECK on functions and function pointers. log_sink_call_count = 0; struct MemberFunctions { void MemberFunction1() { // See the comment in DcheckEmptyFunction1(). LOG(INFO) << "Do not merge with MemberFunction2."; } void MemberFunction2() {} }; void (MemberFunctions::*mp1)() = &MemberFunctions::MemberFunction1; void (MemberFunctions::*mp2)() = &MemberFunctions::MemberFunction2; void (*fp1)() = DcheckEmptyFunction1; void (*fp2)() = DcheckEmptyFunction2; void (*fp3)() = DcheckEmptyFunction1; DCHECK_EQ(fp1, fp3); EXPECT_EQ(0, log_sink_call_count); DCHECK_EQ(mp1, &MemberFunctions::MemberFunction1); EXPECT_EQ(0, log_sink_call_count); DCHECK_EQ(mp2, &MemberFunctions::MemberFunction2); EXPECT_EQ(0, log_sink_call_count); DCHECK_EQ(fp1, fp2); EXPECT_EQ(DCHECK_IS_ON() ? 1 : 0, log_sink_call_count); DCHECK_EQ(mp2, &MemberFunctions::MemberFunction1); EXPECT_EQ(DCHECK_IS_ON() ? 2 : 0, log_sink_call_count); } TEST_F(LoggingTest, DcheckReleaseBehavior) { int some_variable = 1; // These should still reference |some_variable| so we don't get // unused variable warnings. DCHECK(some_variable) << "test"; DPCHECK(some_variable) << "test"; DCHECK_EQ(some_variable, 1) << "test"; } TEST_F(LoggingTest, DCheckEqStatements) { bool reached = false; if (false) DCHECK_EQ(false, true); // Unreached. else DCHECK_EQ(true, reached = true); // Reached, passed. ASSERT_EQ(DCHECK_IS_ON() ? true : false, reached); if (false) DCHECK_EQ(false, true); // Unreached. } TEST_F(LoggingTest, CheckEqStatements) { bool reached = false; if (false) CHECK_EQ(false, true); // Unreached. else CHECK_EQ(true, reached = true); // Reached, passed. ASSERT_TRUE(reached); if (false) CHECK_EQ(false, true); // Unreached. } // Test that defining an operator<< for a type in a namespace doesn't prevent // other code in that namespace from calling the operator<<(ostream, wstring) // defined by logging.h. This can fail if operator<<(ostream, wstring) can't be // found by ADL, since defining another operator<< prevents name lookup from // looking in the global namespace. namespace nested_test { class Streamable {}; ALLOW_UNUSED_TYPE std::ostream& operator<<(std::ostream& out, const Streamable&) { return out << "Streamable"; } TEST_F(LoggingTest, StreamingWstringFindsCorrectOperator) { std::wstring wstr = L"Hello World"; std::ostringstream ostr; ostr << wstr; EXPECT_EQ("Hello World", ostr.str()); } } // namespace nested_test } // namespace } // namespace logging