// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process/process_metrics.h" #include #include #include #include #include #include #include #include #include #include "base/files/dir_reader_posix.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/process/internal_linux.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/string_tokenizer.h" #include "base/strings/string_util.h" #include "base/sys_info.h" #include "base/threading/thread_restrictions.h" #include "build/build_config.h" namespace base { namespace { void TrimKeyValuePairs(StringPairs* pairs) { DCHECK(pairs); StringPairs& p_ref = *pairs; for (size_t i = 0; i < p_ref.size(); ++i) { TrimWhitespaceASCII(p_ref[i].first, TRIM_ALL, &p_ref[i].first); TrimWhitespaceASCII(p_ref[i].second, TRIM_ALL, &p_ref[i].second); } } #if defined(OS_CHROMEOS) // Read a file with a single number string and return the number as a uint64_t. static uint64_t ReadFileToUint64(const FilePath file) { std::string file_as_string; if (!ReadFileToString(file, &file_as_string)) return 0; TrimWhitespaceASCII(file_as_string, TRIM_ALL, &file_as_string); uint64_t file_as_uint64 = 0; if (!StringToUint64(file_as_string, &file_as_uint64)) return 0; return file_as_uint64; } #endif // Read /proc//status and return the value for |field|, or 0 on failure. // Only works for fields in the form of "Field: value kB". size_t ReadProcStatusAndGetFieldAsSizeT(pid_t pid, const std::string& field) { std::string status; { // Synchronously reading files in /proc does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; FilePath stat_file = internal::GetProcPidDir(pid).Append("status"); if (!ReadFileToString(stat_file, &status)) return 0; } StringPairs pairs; SplitStringIntoKeyValuePairs(status, ':', '\n', &pairs); TrimKeyValuePairs(&pairs); for (size_t i = 0; i < pairs.size(); ++i) { const std::string& key = pairs[i].first; const std::string& value_str = pairs[i].second; if (key == field) { std::vector split_value_str = SplitStringPiece(value_str, " ", TRIM_WHITESPACE, SPLIT_WANT_ALL); if (split_value_str.size() != 2 || split_value_str[1] != "kB") { NOTREACHED(); return 0; } size_t value; if (!StringToSizeT(split_value_str[0], &value)) { NOTREACHED(); return 0; } return value; } } // This can be reached if the process dies when proc is read -- in that case, // the kernel can return missing fields. return 0; } #if defined(OS_LINUX) // Read /proc//sched and look for |field|. On succes, return true and // write the value for |field| into |result|. // Only works for fields in the form of "field : uint_value" bool ReadProcSchedAndGetFieldAsUint64(pid_t pid, const std::string& field, uint64_t* result) { std::string sched_data; { // Synchronously reading files in /proc does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; FilePath sched_file = internal::GetProcPidDir(pid).Append("sched"); if (!ReadFileToString(sched_file, &sched_data)) return false; } StringPairs pairs; SplitStringIntoKeyValuePairs(sched_data, ':', '\n', &pairs); TrimKeyValuePairs(&pairs); for (size_t i = 0; i < pairs.size(); ++i) { const std::string& key = pairs[i].first; const std::string& value_str = pairs[i].second; if (key == field) { uint64_t value; if (!StringToUint64(value_str, &value)) return false; *result = value; return true; } } return false; } #endif // defined(OS_LINUX) // Get the total CPU of a single process. Return value is number of jiffies // on success or -1 on error. int GetProcessCPU(pid_t pid) { // Use /proc//task to find all threads and parse their /stat file. FilePath task_path = internal::GetProcPidDir(pid).Append("task"); DIR* dir = opendir(task_path.value().c_str()); if (!dir) { DPLOG(ERROR) << "opendir(" << task_path.value() << ")"; return -1; } int total_cpu = 0; while (struct dirent* ent = readdir(dir)) { pid_t tid = internal::ProcDirSlotToPid(ent->d_name); if (!tid) continue; // Synchronously reading files in /proc does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; std::string stat; FilePath stat_path = task_path.Append(ent->d_name).Append(internal::kStatFile); if (ReadFileToString(stat_path, &stat)) { int cpu = ParseProcStatCPU(stat); if (cpu > 0) total_cpu += cpu; } } closedir(dir); return total_cpu; } } // namespace // static std::unique_ptr ProcessMetrics::CreateProcessMetrics( ProcessHandle process) { return WrapUnique(new ProcessMetrics(process)); } // On linux, we return vsize. size_t ProcessMetrics::GetPagefileUsage() const { return internal::ReadProcStatsAndGetFieldAsSizeT(process_, internal::VM_VSIZE); } // On linux, we return the high water mark of vsize. size_t ProcessMetrics::GetPeakPagefileUsage() const { return ReadProcStatusAndGetFieldAsSizeT(process_, "VmPeak") * 1024; } // On linux, we return RSS. size_t ProcessMetrics::GetWorkingSetSize() const { return internal::ReadProcStatsAndGetFieldAsSizeT(process_, internal::VM_RSS) * getpagesize(); } // On linux, we return the high water mark of RSS. size_t ProcessMetrics::GetPeakWorkingSetSize() const { return ReadProcStatusAndGetFieldAsSizeT(process_, "VmHWM") * 1024; } bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes, size_t* shared_bytes) const { WorkingSetKBytes ws_usage; if (!GetWorkingSetKBytes(&ws_usage)) return false; if (private_bytes) *private_bytes = ws_usage.priv * 1024; if (shared_bytes) *shared_bytes = ws_usage.shared * 1024; return true; } bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const { #if defined(OS_CHROMEOS) if (GetWorkingSetKBytesTotmaps(ws_usage)) return true; #endif return GetWorkingSetKBytesStatm(ws_usage); } double ProcessMetrics::GetCPUUsage() { TimeTicks time = TimeTicks::Now(); if (last_cpu_ == 0) { // First call, just set the last values. last_cpu_time_ = time; last_cpu_ = GetProcessCPU(process_); return 0.0; } TimeDelta time_delta = time - last_cpu_time_; if (time_delta.is_zero()) { NOTREACHED(); return 0.0; } int cpu = GetProcessCPU(process_); // We have the number of jiffies in the time period. Convert to percentage. // Note this means we will go *over* 100 in the case where multiple threads // are together adding to more than one CPU's worth. TimeDelta cpu_time = internal::ClockTicksToTimeDelta(cpu); TimeDelta last_cpu_time = internal::ClockTicksToTimeDelta(last_cpu_); // If the number of threads running in the process has decreased since the // last time this function was called, |last_cpu_time| will be greater than // |cpu_time| which will result in a negative value in the below percentage // calculation. We prevent this by clamping to 0. crbug.com/546565. // This computation is known to be shaky when threads are destroyed between // "last" and "now", but for our current purposes, it's all right. double percentage = 0.0; if (last_cpu_time < cpu_time) { percentage = 100.0 * (cpu_time - last_cpu_time).InSecondsF() / time_delta.InSecondsF(); } last_cpu_time_ = time; last_cpu_ = cpu; return percentage; } // To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING // in your kernel configuration. bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const { // Synchronously reading files in /proc does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; std::string proc_io_contents; FilePath io_file = internal::GetProcPidDir(process_).Append("io"); if (!ReadFileToString(io_file, &proc_io_contents)) return false; io_counters->OtherOperationCount = 0; io_counters->OtherTransferCount = 0; StringPairs pairs; SplitStringIntoKeyValuePairs(proc_io_contents, ':', '\n', &pairs); TrimKeyValuePairs(&pairs); for (size_t i = 0; i < pairs.size(); ++i) { const std::string& key = pairs[i].first; const std::string& value_str = pairs[i].second; uint64_t* target_counter = NULL; if (key == "syscr") target_counter = &io_counters->ReadOperationCount; else if (key == "syscw") target_counter = &io_counters->WriteOperationCount; else if (key == "rchar") target_counter = &io_counters->ReadTransferCount; else if (key == "wchar") target_counter = &io_counters->WriteTransferCount; if (!target_counter) continue; bool converted = StringToUint64(value_str, target_counter); DCHECK(converted); } return true; } #if defined(OS_LINUX) int ProcessMetrics::GetOpenFdCount() const { // Use /proc//fd to count the number of entries there. FilePath fd_path = internal::GetProcPidDir(process_).Append("fd"); DirReaderPosix dir_reader(fd_path.value().c_str()); if (!dir_reader.IsValid()) return -1; int total_count = 0; for (; dir_reader.Next(); ) { const char* name = dir_reader.name(); if (strcmp(name, ".") != 0 && strcmp(name, "..") != 0) ++total_count; } return total_count; } int ProcessMetrics::GetOpenFdSoftLimit() const { // Use /proc//limits to read the open fd limit. FilePath fd_path = internal::GetProcPidDir(process_).Append("limits"); std::string limits_contents; if (!ReadFileToString(fd_path, &limits_contents)) return -1; for (const auto& line : base::SplitStringPiece(limits_contents, "\n", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY)) { if (line.starts_with("Max open files")) { auto tokens = base::SplitStringPiece(line, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_NONEMPTY); if (tokens.size() > 3) { int limit = -1; if (StringToInt(tokens[3], &limit)) return limit; return -1; } } } return -1; } #endif // defined(OS_LINUX) ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process), last_system_time_(0), #if defined(OS_LINUX) last_absolute_idle_wakeups_(0), #endif last_cpu_(0) { processor_count_ = SysInfo::NumberOfProcessors(); } #if defined(OS_CHROMEOS) // Private, Shared and Proportional working set sizes are obtained from // /proc//totmaps bool ProcessMetrics::GetWorkingSetKBytesTotmaps(WorkingSetKBytes *ws_usage) const { // The format of /proc//totmaps is: // // Rss: 6120 kB // Pss: 3335 kB // Shared_Clean: 1008 kB // Shared_Dirty: 4012 kB // Private_Clean: 4 kB // Private_Dirty: 1096 kB // Referenced: XXX kB // Anonymous: XXX kB // AnonHugePages: XXX kB // Swap: XXX kB // Locked: XXX kB const size_t kPssIndex = (1 * 3) + 1; const size_t kPrivate_CleanIndex = (4 * 3) + 1; const size_t kPrivate_DirtyIndex = (5 * 3) + 1; const size_t kSwapIndex = (9 * 3) + 1; std::string totmaps_data; { FilePath totmaps_file = internal::GetProcPidDir(process_).Append("totmaps"); ThreadRestrictions::ScopedAllowIO allow_io; bool ret = ReadFileToString(totmaps_file, &totmaps_data); if (!ret || totmaps_data.length() == 0) return false; } std::vector totmaps_fields = SplitString( totmaps_data, kWhitespaceASCII, KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY); DCHECK_EQ("Pss:", totmaps_fields[kPssIndex-1]); DCHECK_EQ("Private_Clean:", totmaps_fields[kPrivate_CleanIndex - 1]); DCHECK_EQ("Private_Dirty:", totmaps_fields[kPrivate_DirtyIndex - 1]); DCHECK_EQ("Swap:", totmaps_fields[kSwapIndex-1]); int pss = 0; int private_clean = 0; int private_dirty = 0; int swap = 0; bool ret = true; ret &= StringToInt(totmaps_fields[kPssIndex], &pss); ret &= StringToInt(totmaps_fields[kPrivate_CleanIndex], &private_clean); ret &= StringToInt(totmaps_fields[kPrivate_DirtyIndex], &private_dirty); ret &= StringToInt(totmaps_fields[kSwapIndex], &swap); // On ChromeOS swap is to zram. We count this as private / shared, as // increased swap decreases available RAM to user processes, which would // otherwise create surprising results. ws_usage->priv = private_clean + private_dirty + swap; ws_usage->shared = pss + swap; ws_usage->shareable = 0; ws_usage->swapped = swap; return ret; } #endif // Private and Shared working set sizes are obtained from /proc//statm. bool ProcessMetrics::GetWorkingSetKBytesStatm(WorkingSetKBytes* ws_usage) const { // Use statm instead of smaps because smaps is: // a) Large and slow to parse. // b) Unavailable in the SUID sandbox. // First we need to get the page size, since everything is measured in pages. // For details, see: man 5 proc. const int page_size_kb = getpagesize() / 1024; if (page_size_kb <= 0) return false; std::string statm; { FilePath statm_file = internal::GetProcPidDir(process_).Append("statm"); // Synchronously reading files in /proc does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; bool ret = ReadFileToString(statm_file, &statm); if (!ret || statm.length() == 0) return false; } std::vector statm_vec = SplitStringPiece(statm, " ", TRIM_WHITESPACE, SPLIT_WANT_ALL); if (statm_vec.size() != 7) return false; // Not the format we expect. int statm_rss, statm_shared; bool ret = true; ret &= StringToInt(statm_vec[1], &statm_rss); ret &= StringToInt(statm_vec[2], &statm_shared); ws_usage->priv = (statm_rss - statm_shared) * page_size_kb; ws_usage->shared = statm_shared * page_size_kb; // Sharable is not calculated, as it does not provide interesting data. ws_usage->shareable = 0; #if defined(OS_CHROMEOS) // Can't get swapped memory from statm. ws_usage->swapped = 0; #endif return ret; } size_t GetSystemCommitCharge() { SystemMemoryInfoKB meminfo; if (!GetSystemMemoryInfo(&meminfo)) return 0; return meminfo.total - meminfo.free - meminfo.buffers - meminfo.cached; } int ParseProcStatCPU(const std::string& input) { // |input| may be empty if the process disappeared somehow. // e.g. http://crbug.com/145811. if (input.empty()) return -1; size_t start = input.find_last_of(')'); if (start == input.npos) return -1; // Number of spaces remaining until reaching utime's index starting after the // last ')'. int num_spaces_remaining = internal::VM_UTIME - 1; size_t i = start; while ((i = input.find(' ', i + 1)) != input.npos) { // Validate the assumption that there aren't any contiguous spaces // in |input| before utime. DCHECK_NE(input[i - 1], ' '); if (--num_spaces_remaining == 0) { int utime = 0; int stime = 0; if (sscanf(&input.data()[i], "%d %d", &utime, &stime) != 2) return -1; return utime + stime; } } return -1; } const char kProcSelfExe[] = "/proc/self/exe"; int GetNumberOfThreads(ProcessHandle process) { return internal::ReadProcStatsAndGetFieldAsInt64(process, internal::VM_NUMTHREADS); } namespace { // The format of /proc/diskstats is: // Device major number // Device minor number // Device name // Field 1 -- # of reads completed // This is the total number of reads completed successfully. // Field 2 -- # of reads merged, field 6 -- # of writes merged // Reads and writes which are adjacent to each other may be merged for // efficiency. Thus two 4K reads may become one 8K read before it is // ultimately handed to the disk, and so it will be counted (and queued) // as only one I/O. This field lets you know how often this was done. // Field 3 -- # of sectors read // This is the total number of sectors read successfully. // Field 4 -- # of milliseconds spent reading // This is the total number of milliseconds spent by all reads (as // measured from __make_request() to end_that_request_last()). // Field 5 -- # of writes completed // This is the total number of writes completed successfully. // Field 6 -- # of writes merged // See the description of field 2. // Field 7 -- # of sectors written // This is the total number of sectors written successfully. // Field 8 -- # of milliseconds spent writing // This is the total number of milliseconds spent by all writes (as // measured from __make_request() to end_that_request_last()). // Field 9 -- # of I/Os currently in progress // The only field that should go to zero. Incremented as requests are // given to appropriate struct request_queue and decremented as they // finish. // Field 10 -- # of milliseconds spent doing I/Os // This field increases so long as field 9 is nonzero. // Field 11 -- weighted # of milliseconds spent doing I/Os // This field is incremented at each I/O start, I/O completion, I/O // merge, or read of these stats by the number of I/Os in progress // (field 9) times the number of milliseconds spent doing I/O since the // last update of this field. This can provide an easy measure of both // I/O completion time and the backlog that may be accumulating. const size_t kDiskDriveName = 2; const size_t kDiskReads = 3; const size_t kDiskReadsMerged = 4; const size_t kDiskSectorsRead = 5; const size_t kDiskReadTime = 6; const size_t kDiskWrites = 7; const size_t kDiskWritesMerged = 8; const size_t kDiskSectorsWritten = 9; const size_t kDiskWriteTime = 10; const size_t kDiskIO = 11; const size_t kDiskIOTime = 12; const size_t kDiskWeightedIOTime = 13; } // namespace std::unique_ptr SystemMemoryInfoKB::ToValue() const { std::unique_ptr res(new DictionaryValue()); res->SetInteger("total", total); res->SetInteger("free", free); res->SetInteger("available", available); res->SetInteger("buffers", buffers); res->SetInteger("cached", cached); res->SetInteger("active_anon", active_anon); res->SetInteger("inactive_anon", inactive_anon); res->SetInteger("active_file", active_file); res->SetInteger("inactive_file", inactive_file); res->SetInteger("swap_total", swap_total); res->SetInteger("swap_free", swap_free); res->SetInteger("swap_used", swap_total - swap_free); res->SetInteger("dirty", dirty); res->SetInteger("reclaimable", reclaimable); res->SetInteger("pswpin", pswpin); res->SetInteger("pswpout", pswpout); res->SetInteger("pgmajfault", pgmajfault); #ifdef OS_CHROMEOS res->SetInteger("shmem", shmem); res->SetInteger("slab", slab); res->SetInteger("gem_objects", gem_objects); res->SetInteger("gem_size", gem_size); #endif return std::move(res); } // exposed for testing bool ParseProcMeminfo(const std::string& meminfo_data, SystemMemoryInfoKB* meminfo) { // The format of /proc/meminfo is: // // MemTotal: 8235324 kB // MemFree: 1628304 kB // Buffers: 429596 kB // Cached: 4728232 kB // ... // There is no guarantee on the ordering or position // though it doesn't appear to change very often // As a basic sanity check, let's make sure we at least get non-zero // MemTotal value meminfo->total = 0; for (const StringPiece& line : SplitStringPiece( meminfo_data, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY)) { std::vector tokens = SplitStringPiece( line, kWhitespaceASCII, TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); // HugePages_* only has a number and no suffix so we can't rely on // there being exactly 3 tokens. if (tokens.size() <= 1) { DLOG(WARNING) << "meminfo: tokens: " << tokens.size() << " malformed line: " << line.as_string(); continue; } int* target = NULL; if (tokens[0] == "MemTotal:") target = &meminfo->total; else if (tokens[0] == "MemFree:") target = &meminfo->free; else if (tokens[0] == "MemAvailable:") target = &meminfo->available; else if (tokens[0] == "Buffers:") target = &meminfo->buffers; else if (tokens[0] == "Cached:") target = &meminfo->cached; else if (tokens[0] == "Active(anon):") target = &meminfo->active_anon; else if (tokens[0] == "Inactive(anon):") target = &meminfo->inactive_anon; else if (tokens[0] == "Active(file):") target = &meminfo->active_file; else if (tokens[0] == "Inactive(file):") target = &meminfo->inactive_file; else if (tokens[0] == "SwapTotal:") target = &meminfo->swap_total; else if (tokens[0] == "SwapFree:") target = &meminfo->swap_free; else if (tokens[0] == "Dirty:") target = &meminfo->dirty; else if (tokens[0] == "SReclaimable:") target = &meminfo->reclaimable; #if defined(OS_CHROMEOS) // Chrome OS has a tweaked kernel that allows us to query Shmem, which is // usually video memory otherwise invisible to the OS. else if (tokens[0] == "Shmem:") target = &meminfo->shmem; else if (tokens[0] == "Slab:") target = &meminfo->slab; #endif if (target) StringToInt(tokens[1], target); } // Make sure we got a valid MemTotal. return meminfo->total > 0; } // exposed for testing bool ParseProcVmstat(const std::string& vmstat_data, SystemMemoryInfoKB* meminfo) { // The format of /proc/vmstat is: // // nr_free_pages 299878 // nr_inactive_anon 239863 // nr_active_anon 1318966 // nr_inactive_file 2015629 // ... // // We iterate through the whole file because the position of the // fields are dependent on the kernel version and configuration. for (const StringPiece& line : SplitStringPiece( vmstat_data, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY)) { std::vector tokens = SplitStringPiece( line, " ", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY); if (tokens.size() != 2) continue; uint64_t val; if (!StringToUint64(tokens[1], &val)) continue; if (tokens[0] == "pswpin") { meminfo->pswpin = val; } else if (tokens[0] == "pswpout") { meminfo->pswpout = val; } else if (tokens[0] == "pgmajfault") { meminfo->pgmajfault = val; } } return true; } bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) { // Synchronously reading files in /proc and /sys are safe. ThreadRestrictions::ScopedAllowIO allow_io; // Used memory is: total - free - buffers - caches FilePath meminfo_file("/proc/meminfo"); std::string meminfo_data; if (!ReadFileToString(meminfo_file, &meminfo_data)) { DLOG(WARNING) << "Failed to open " << meminfo_file.value(); return false; } if (!ParseProcMeminfo(meminfo_data, meminfo)) { DLOG(WARNING) << "Failed to parse " << meminfo_file.value(); return false; } #if defined(OS_CHROMEOS) // Report on Chrome OS GEM object graphics memory. /run/debugfs_gpu is a // bind mount into /sys/kernel/debug and synchronously reading the in-memory // files in /sys is fast. #if defined(ARCH_CPU_ARM_FAMILY) FilePath geminfo_file("/run/debugfs_gpu/exynos_gem_objects"); #else FilePath geminfo_file("/run/debugfs_gpu/i915_gem_objects"); #endif std::string geminfo_data; meminfo->gem_objects = -1; meminfo->gem_size = -1; if (ReadFileToString(geminfo_file, &geminfo_data)) { int gem_objects = -1; long long gem_size = -1; int num_res = sscanf(geminfo_data.c_str(), "%d objects, %lld bytes", &gem_objects, &gem_size); if (num_res == 2) { meminfo->gem_objects = gem_objects; meminfo->gem_size = gem_size; } } #if defined(ARCH_CPU_ARM_FAMILY) // Incorporate Mali graphics memory if present. FilePath mali_memory_file("/sys/class/misc/mali0/device/memory"); std::string mali_memory_data; if (ReadFileToString(mali_memory_file, &mali_memory_data)) { long long mali_size = -1; int num_res = sscanf(mali_memory_data.c_str(), "%lld bytes", &mali_size); if (num_res == 1) meminfo->gem_size += mali_size; } #endif // defined(ARCH_CPU_ARM_FAMILY) #endif // defined(OS_CHROMEOS) FilePath vmstat_file("/proc/vmstat"); std::string vmstat_data; if (!ReadFileToString(vmstat_file, &vmstat_data)) { DLOG(WARNING) << "Failed to open " << vmstat_file.value(); return false; } if (!ParseProcVmstat(vmstat_data, meminfo)) { DLOG(WARNING) << "Failed to parse " << vmstat_file.value(); return false; } return true; } SystemDiskInfo::SystemDiskInfo() { reads = 0; reads_merged = 0; sectors_read = 0; read_time = 0; writes = 0; writes_merged = 0; sectors_written = 0; write_time = 0; io = 0; io_time = 0; weighted_io_time = 0; } SystemDiskInfo::SystemDiskInfo(const SystemDiskInfo& other) = default; std::unique_ptr SystemDiskInfo::ToValue() const { std::unique_ptr res(new DictionaryValue()); // Write out uint64_t variables as doubles. // Note: this may discard some precision, but for JS there's no other option. res->SetDouble("reads", static_cast(reads)); res->SetDouble("reads_merged", static_cast(reads_merged)); res->SetDouble("sectors_read", static_cast(sectors_read)); res->SetDouble("read_time", static_cast(read_time)); res->SetDouble("writes", static_cast(writes)); res->SetDouble("writes_merged", static_cast(writes_merged)); res->SetDouble("sectors_written", static_cast(sectors_written)); res->SetDouble("write_time", static_cast(write_time)); res->SetDouble("io", static_cast(io)); res->SetDouble("io_time", static_cast(io_time)); res->SetDouble("weighted_io_time", static_cast(weighted_io_time)); return std::move(res); } bool IsValidDiskName(const std::string& candidate) { if (candidate.length() < 3) return false; if (candidate[1] == 'd' && (candidate[0] == 'h' || candidate[0] == 's' || candidate[0] == 'v')) { // [hsv]d[a-z]+ case for (size_t i = 2; i < candidate.length(); ++i) { if (!islower(candidate[i])) return false; } return true; } const char kMMCName[] = "mmcblk"; const size_t kMMCNameLen = strlen(kMMCName); if (candidate.length() < kMMCNameLen + 1) return false; if (candidate.compare(0, kMMCNameLen, kMMCName) != 0) return false; // mmcblk[0-9]+ case for (size_t i = kMMCNameLen; i < candidate.length(); ++i) { if (!isdigit(candidate[i])) return false; } return true; } bool GetSystemDiskInfo(SystemDiskInfo* diskinfo) { // Synchronously reading files in /proc does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; FilePath diskinfo_file("/proc/diskstats"); std::string diskinfo_data; if (!ReadFileToString(diskinfo_file, &diskinfo_data)) { DLOG(WARNING) << "Failed to open " << diskinfo_file.value(); return false; } std::vector diskinfo_lines = SplitStringPiece( diskinfo_data, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY); if (diskinfo_lines.size() == 0) { DLOG(WARNING) << "No lines found"; return false; } diskinfo->reads = 0; diskinfo->reads_merged = 0; diskinfo->sectors_read = 0; diskinfo->read_time = 0; diskinfo->writes = 0; diskinfo->writes_merged = 0; diskinfo->sectors_written = 0; diskinfo->write_time = 0; diskinfo->io = 0; diskinfo->io_time = 0; diskinfo->weighted_io_time = 0; uint64_t reads = 0; uint64_t reads_merged = 0; uint64_t sectors_read = 0; uint64_t read_time = 0; uint64_t writes = 0; uint64_t writes_merged = 0; uint64_t sectors_written = 0; uint64_t write_time = 0; uint64_t io = 0; uint64_t io_time = 0; uint64_t weighted_io_time = 0; for (const StringPiece& line : diskinfo_lines) { std::vector disk_fields = SplitStringPiece( line, kWhitespaceASCII, TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); // Fields may have overflowed and reset to zero. if (IsValidDiskName(disk_fields[kDiskDriveName].as_string())) { StringToUint64(disk_fields[kDiskReads], &reads); StringToUint64(disk_fields[kDiskReadsMerged], &reads_merged); StringToUint64(disk_fields[kDiskSectorsRead], §ors_read); StringToUint64(disk_fields[kDiskReadTime], &read_time); StringToUint64(disk_fields[kDiskWrites], &writes); StringToUint64(disk_fields[kDiskWritesMerged], &writes_merged); StringToUint64(disk_fields[kDiskSectorsWritten], §ors_written); StringToUint64(disk_fields[kDiskWriteTime], &write_time); StringToUint64(disk_fields[kDiskIO], &io); StringToUint64(disk_fields[kDiskIOTime], &io_time); StringToUint64(disk_fields[kDiskWeightedIOTime], &weighted_io_time); diskinfo->reads += reads; diskinfo->reads_merged += reads_merged; diskinfo->sectors_read += sectors_read; diskinfo->read_time += read_time; diskinfo->writes += writes; diskinfo->writes_merged += writes_merged; diskinfo->sectors_written += sectors_written; diskinfo->write_time += write_time; diskinfo->io += io; diskinfo->io_time += io_time; diskinfo->weighted_io_time += weighted_io_time; } } return true; } TimeDelta GetUserCpuTimeSinceBoot() { return internal::GetUserCpuTimeSinceBoot(); } #if defined(OS_CHROMEOS) std::unique_ptr SwapInfo::ToValue() const { std::unique_ptr res(new DictionaryValue()); // Write out uint64_t variables as doubles. // Note: this may discard some precision, but for JS there's no other option. res->SetDouble("num_reads", static_cast(num_reads)); res->SetDouble("num_writes", static_cast(num_writes)); res->SetDouble("orig_data_size", static_cast(orig_data_size)); res->SetDouble("compr_data_size", static_cast(compr_data_size)); res->SetDouble("mem_used_total", static_cast(mem_used_total)); if (compr_data_size > 0) res->SetDouble("compression_ratio", static_cast(orig_data_size) / static_cast(compr_data_size)); else res->SetDouble("compression_ratio", 0); return std::move(res); } void GetSwapInfo(SwapInfo* swap_info) { // Synchronously reading files in /sys/block/zram0 does not hit the disk. ThreadRestrictions::ScopedAllowIO allow_io; FilePath zram_path("/sys/block/zram0"); uint64_t orig_data_size = ReadFileToUint64(zram_path.Append("orig_data_size")); if (orig_data_size <= 4096) { // A single page is compressed at startup, and has a high compression // ratio. We ignore this as it doesn't indicate any real swapping. swap_info->orig_data_size = 0; swap_info->num_reads = 0; swap_info->num_writes = 0; swap_info->compr_data_size = 0; swap_info->mem_used_total = 0; return; } swap_info->orig_data_size = orig_data_size; swap_info->num_reads = ReadFileToUint64(zram_path.Append("num_reads")); swap_info->num_writes = ReadFileToUint64(zram_path.Append("num_writes")); swap_info->compr_data_size = ReadFileToUint64(zram_path.Append("compr_data_size")); swap_info->mem_used_total = ReadFileToUint64(zram_path.Append("mem_used_total")); } #endif // defined(OS_CHROMEOS) #if defined(OS_LINUX) int ProcessMetrics::GetIdleWakeupsPerSecond() { uint64_t wake_ups; const char kWakeupStat[] = "se.statistics.nr_wakeups"; return ReadProcSchedAndGetFieldAsUint64(process_, kWakeupStat, &wake_ups) ? CalculateIdleWakeupsPerSecond(wake_ups) : 0; } #endif // defined(OS_LINUX) } // namespace base