summaryrefslogtreecommitdiff
path: root/base/message_loop/message_loop.cc
blob: 3d55920afdb7c0e6952e9a2395ee8cce275148ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/message_loop/message_loop.h"

#include <algorithm>
#include <utility>

#include "base/bind.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_pump_default.h"
#include "base/run_loop.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/threading/thread_id_name_manager.h"
#include "base/threading/thread_local.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/trace_event.h"

#if defined(OS_MACOSX)
#include "base/message_loop/message_pump_mac.h"
#endif
#if defined(OS_POSIX) && !defined(OS_IOS)
#include "base/message_loop/message_pump_libevent.h"
#endif
#if defined(OS_ANDROID)
#include "base/message_loop/message_pump_android.h"
#endif
#if defined(USE_GLIB)
#include "base/message_loop/message_pump_glib.h"
#endif

namespace base {

namespace {

// A lazily created thread local storage for quick access to a thread's message
// loop, if one exists.
base::ThreadLocalPointer<MessageLoop>* GetTLSMessageLoop() {
  static auto* lazy_tls_ptr = new base::ThreadLocalPointer<MessageLoop>();
  return lazy_tls_ptr;
}
MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL;

#if defined(OS_IOS)
typedef MessagePumpIOSForIO MessagePumpForIO;
#elif defined(OS_NACL_SFI)
typedef MessagePumpDefault MessagePumpForIO;
#elif defined(OS_POSIX)
typedef MessagePumpLibevent MessagePumpForIO;
#endif

#if !defined(OS_NACL_SFI)
MessagePumpForIO* ToPumpIO(MessagePump* pump) {
  return static_cast<MessagePumpForIO*>(pump);
}
#endif  // !defined(OS_NACL_SFI)

std::unique_ptr<MessagePump> ReturnPump(std::unique_ptr<MessagePump> pump) {
  return pump;
}

}  // namespace

//------------------------------------------------------------------------------

MessageLoop::TaskObserver::TaskObserver() {
}

MessageLoop::TaskObserver::~TaskObserver() {
}

MessageLoop::DestructionObserver::~DestructionObserver() {
}

MessageLoop::NestingObserver::~NestingObserver() {}

//------------------------------------------------------------------------------

MessageLoop::MessageLoop(Type type)
    : MessageLoop(type, MessagePumpFactoryCallback()) {
  BindToCurrentThread();
}

MessageLoop::MessageLoop(std::unique_ptr<MessagePump> pump)
    : MessageLoop(TYPE_CUSTOM, Bind(&ReturnPump, Passed(&pump))) {
  BindToCurrentThread();
}

MessageLoop::~MessageLoop() {
  // If |pump_| is non-null, this message loop has been bound and should be the
  // current one on this thread. Otherwise, this loop is being destructed before
  // it was bound to a thread, so a different message loop (or no loop at all)
  // may be current.
  DCHECK((pump_ && current() == this) || (!pump_ && current() != this));

  // iOS just attaches to the loop, it doesn't Run it.
  // TODO(stuartmorgan): Consider wiring up a Detach().
#if !defined(OS_IOS)
  DCHECK(!run_loop_);
#endif

#if defined(OS_WIN)
  if (in_high_res_mode_)
    Time::ActivateHighResolutionTimer(false);
#endif
  // Clean up any unprocessed tasks, but take care: deleting a task could
  // result in the addition of more tasks (e.g., via DeleteSoon).  We set a
  // limit on the number of times we will allow a deleted task to generate more
  // tasks.  Normally, we should only pass through this loop once or twice.  If
  // we end up hitting the loop limit, then it is probably due to one task that
  // is being stubborn.  Inspect the queues to see who is left.
  bool did_work;
  for (int i = 0; i < 100; ++i) {
    DeletePendingTasks();
    ReloadWorkQueue();
    // If we end up with empty queues, then break out of the loop.
    did_work = DeletePendingTasks();
    if (!did_work)
      break;
  }
  DCHECK(!did_work);

  // Let interested parties have one last shot at accessing this.
  for (auto& observer : destruction_observers_)
    observer.WillDestroyCurrentMessageLoop();

  thread_task_runner_handle_.reset();

  // Tell the incoming queue that we are dying.
  incoming_task_queue_->WillDestroyCurrentMessageLoop();
  incoming_task_queue_ = NULL;
  unbound_task_runner_ = NULL;
  task_runner_ = NULL;

  // OK, now make it so that no one can find us.
  if (current() == this)
    GetTLSMessageLoop()->Set(nullptr);
}

// static
MessageLoop* MessageLoop::current() {
  // TODO(darin): sadly, we cannot enable this yet since people call us even
  // when they have no intention of using us.
  // DCHECK(loop) << "Ouch, did you forget to initialize me?";
  return GetTLSMessageLoop()->Get();
}

// static
bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) {
  if (message_pump_for_ui_factory_)
    return false;

  message_pump_for_ui_factory_ = factory;
  return true;
}

// static
std::unique_ptr<MessagePump> MessageLoop::CreateMessagePumpForType(Type type) {
// TODO(rvargas): Get rid of the OS guards.
#if defined(USE_GLIB) && !defined(OS_NACL)
  typedef MessagePumpGlib MessagePumpForUI;
#elif (defined(OS_LINUX) && !defined(OS_NACL)) || defined(OS_BSD)
  typedef MessagePumpLibevent MessagePumpForUI;
#endif

#if defined(OS_IOS) || defined(OS_MACOSX)
#define MESSAGE_PUMP_UI std::unique_ptr<MessagePump>(MessagePumpMac::Create())
#elif defined(OS_NACL)
// Currently NaCl doesn't have a UI MessageLoop.
// TODO(abarth): Figure out if we need this.
#define MESSAGE_PUMP_UI std::unique_ptr<MessagePump>()
#else
#define MESSAGE_PUMP_UI std::unique_ptr<MessagePump>(new MessagePumpForUI())
#endif

#if defined(OS_MACOSX)
  // Use an OS native runloop on Mac to support timer coalescing.
#define MESSAGE_PUMP_DEFAULT \
  std::unique_ptr<MessagePump>(new MessagePumpCFRunLoop())
#else
#define MESSAGE_PUMP_DEFAULT \
  std::unique_ptr<MessagePump>(new MessagePumpDefault())
#endif

  if (type == MessageLoop::TYPE_UI) {
    if (message_pump_for_ui_factory_)
      return message_pump_for_ui_factory_();
    return MESSAGE_PUMP_UI;
  }
  if (type == MessageLoop::TYPE_IO)
    return std::unique_ptr<MessagePump>(new MessagePumpForIO());

#if defined(OS_ANDROID)
  if (type == MessageLoop::TYPE_JAVA)
    return std::unique_ptr<MessagePump>(new MessagePumpForUI());
#endif

  DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type);
  return MESSAGE_PUMP_DEFAULT;
}

void MessageLoop::AddDestructionObserver(
    DestructionObserver* destruction_observer) {
  DCHECK_EQ(this, current());
  destruction_observers_.AddObserver(destruction_observer);
}

void MessageLoop::RemoveDestructionObserver(
    DestructionObserver* destruction_observer) {
  DCHECK_EQ(this, current());
  destruction_observers_.RemoveObserver(destruction_observer);
}

void MessageLoop::AddNestingObserver(NestingObserver* observer) {
  DCHECK_EQ(this, current());
  CHECK(allow_nesting_);
  nesting_observers_.AddObserver(observer);
}

void MessageLoop::RemoveNestingObserver(NestingObserver* observer) {
  DCHECK_EQ(this, current());
  CHECK(allow_nesting_);
  nesting_observers_.RemoveObserver(observer);
}

void MessageLoop::QuitWhenIdle() {
  DCHECK_EQ(this, current());
  if (run_loop_) {
    run_loop_->QuitWhenIdle();
  } else {
    NOTREACHED() << "Must be inside Run to call QuitWhenIdle";
  }
}

void MessageLoop::QuitNow() {
  DCHECK_EQ(this, current());
  if (run_loop_) {
    pump_->Quit();
  } else {
    NOTREACHED() << "Must be inside Run to call Quit";
  }
}

bool MessageLoop::IsType(Type type) const {
  return type_ == type;
}

static void QuitCurrentWhenIdle() {
  MessageLoop::current()->QuitWhenIdle();
}

// static
Closure MessageLoop::QuitWhenIdleClosure() {
  return Bind(&QuitCurrentWhenIdle);
}

void MessageLoop::SetNestableTasksAllowed(bool allowed) {
  if (allowed) {
    CHECK(allow_nesting_);

    // Kick the native pump just in case we enter a OS-driven nested message
    // loop.
    pump_->ScheduleWork();
  }
  nestable_tasks_allowed_ = allowed;
}

bool MessageLoop::NestableTasksAllowed() const {
  return nestable_tasks_allowed_;
}

bool MessageLoop::IsNested() {
  return run_loop_->run_depth_ > 1;
}

void MessageLoop::AddTaskObserver(TaskObserver* task_observer) {
  DCHECK_EQ(this, current());
  CHECK(allow_task_observers_);
  task_observers_.AddObserver(task_observer);
}

void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) {
  DCHECK_EQ(this, current());
  CHECK(allow_task_observers_);
  task_observers_.RemoveObserver(task_observer);
}

bool MessageLoop::is_running() const {
  DCHECK_EQ(this, current());
  return run_loop_ != NULL;
}

bool MessageLoop::HasHighResolutionTasks() {
  return incoming_task_queue_->HasHighResolutionTasks();
}

bool MessageLoop::IsIdleForTesting() {
  // We only check the incoming queue, since we don't want to lock the work
  // queue.
  return incoming_task_queue_->IsIdleForTesting();
}

//------------------------------------------------------------------------------

// static
std::unique_ptr<MessageLoop> MessageLoop::CreateUnbound(
    Type type,
    MessagePumpFactoryCallback pump_factory) {
  return WrapUnique(new MessageLoop(type, pump_factory));
}

MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory)
    : type_(type),
#if defined(OS_WIN)
      pending_high_res_tasks_(0),
      in_high_res_mode_(false),
#endif
      nestable_tasks_allowed_(true),
      pump_factory_(pump_factory),
      run_loop_(nullptr),
      current_pending_task_(nullptr),
      incoming_task_queue_(new internal::IncomingTaskQueue(this)),
      unbound_task_runner_(
          new internal::MessageLoopTaskRunner(incoming_task_queue_)),
      task_runner_(unbound_task_runner_),
      thread_id_(kInvalidThreadId) {
  // If type is TYPE_CUSTOM non-null pump_factory must be given.
  DCHECK(type_ != TYPE_CUSTOM || !pump_factory_.is_null());
}

void MessageLoop::BindToCurrentThread() {
  DCHECK(!pump_);
  if (!pump_factory_.is_null())
    pump_ = pump_factory_.Run();
  else
    pump_ = CreateMessagePumpForType(type_);

  DCHECK(!current()) << "should only have one message loop per thread";
  GetTLSMessageLoop()->Set(this);

  incoming_task_queue_->StartScheduling();
  unbound_task_runner_->BindToCurrentThread();
  unbound_task_runner_ = nullptr;
  SetThreadTaskRunnerHandle();
  thread_id_ = PlatformThread::CurrentId();
}

std::string MessageLoop::GetThreadName() const {
  DCHECK_NE(kInvalidThreadId, thread_id_)
      << "GetThreadName() must only be called after BindToCurrentThread()'s "
      << "side-effects have been synchronized with this thread.";
  return ThreadIdNameManager::GetInstance()->GetName(thread_id_);
}

void MessageLoop::SetTaskRunner(
    scoped_refptr<SingleThreadTaskRunner> task_runner) {
  DCHECK_EQ(this, current());
  DCHECK(task_runner);
  DCHECK(task_runner->BelongsToCurrentThread());
  DCHECK(!unbound_task_runner_);
  task_runner_ = std::move(task_runner);
  SetThreadTaskRunnerHandle();
}

void MessageLoop::ClearTaskRunnerForTesting() {
  DCHECK_EQ(this, current());
  DCHECK(!unbound_task_runner_);
  task_runner_ = nullptr;
  thread_task_runner_handle_.reset();
}

void MessageLoop::SetThreadTaskRunnerHandle() {
  DCHECK_EQ(this, current());
  // Clear the previous thread task runner first, because only one can exist at
  // a time.
  thread_task_runner_handle_.reset();
  thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_));
}

void MessageLoop::RunHandler() {
  DCHECK_EQ(this, current());
  DCHECK(run_loop_);
  CHECK(allow_nesting_ || run_loop_->run_depth_ == 1);
  pump_->Run(this);
}

bool MessageLoop::ProcessNextDelayedNonNestableTask() {
  if (run_loop_->run_depth_ != 1)
    return false;

  if (deferred_non_nestable_work_queue_.empty())
    return false;

  PendingTask pending_task =
      std::move(deferred_non_nestable_work_queue_.front());
  deferred_non_nestable_work_queue_.pop();

  RunTask(&pending_task);
  return true;
}

void MessageLoop::RunTask(PendingTask* pending_task) {
  DCHECK(nestable_tasks_allowed_);
  current_pending_task_ = pending_task;

#if defined(OS_WIN)
  if (pending_task->is_high_res) {
    pending_high_res_tasks_--;
    CHECK_GE(pending_high_res_tasks_, 0);
  }
#endif

  // Execute the task and assume the worst: It is probably not reentrant.
  nestable_tasks_allowed_ = false;

  TRACE_TASK_EXECUTION("MessageLoop::RunTask", *pending_task);

  for (auto& observer : task_observers_)
    observer.WillProcessTask(*pending_task);
  task_annotator_.RunTask("MessageLoop::PostTask", pending_task);
  for (auto& observer : task_observers_)
    observer.DidProcessTask(*pending_task);

  nestable_tasks_allowed_ = true;

  current_pending_task_ = nullptr;
}

bool MessageLoop::DeferOrRunPendingTask(PendingTask pending_task) {
  if (pending_task.nestable || run_loop_->run_depth_ == 1) {
    RunTask(&pending_task);
    // Show that we ran a task (Note: a new one might arrive as a
    // consequence!).
    return true;
  }

  // We couldn't run the task now because we're in a nested message loop
  // and the task isn't nestable.
  deferred_non_nestable_work_queue_.push(std::move(pending_task));
  return false;
}

void MessageLoop::AddToDelayedWorkQueue(PendingTask pending_task) {
  // Move to the delayed work queue.
  delayed_work_queue_.push(std::move(pending_task));
}

bool MessageLoop::DeletePendingTasks() {
  bool did_work = !work_queue_.empty();
  while (!work_queue_.empty()) {
    PendingTask pending_task = std::move(work_queue_.front());
    work_queue_.pop();
    if (!pending_task.delayed_run_time.is_null()) {
      // We want to delete delayed tasks in the same order in which they would
      // normally be deleted in case of any funny dependencies between delayed
      // tasks.
      AddToDelayedWorkQueue(std::move(pending_task));
    }
  }
  did_work |= !deferred_non_nestable_work_queue_.empty();
  while (!deferred_non_nestable_work_queue_.empty()) {
    deferred_non_nestable_work_queue_.pop();
  }
  did_work |= !delayed_work_queue_.empty();

  // Historically, we always delete the task regardless of valgrind status. It's
  // not completely clear why we want to leak them in the loops above.  This
  // code is replicating legacy behavior, and should not be considered
  // absolutely "correct" behavior.  See TODO above about deleting all tasks
  // when it's safe.
  while (!delayed_work_queue_.empty()) {
    delayed_work_queue_.pop();
  }
  return did_work;
}

void MessageLoop::ReloadWorkQueue() {
  // We can improve performance of our loading tasks from the incoming queue to
  // |*work_queue| by waiting until the last minute (|*work_queue| is empty) to
  // load. That reduces the number of locks-per-task significantly when our
  // queues get large.
  if (work_queue_.empty()) {
#if defined(OS_WIN)
    pending_high_res_tasks_ +=
        incoming_task_queue_->ReloadWorkQueue(&work_queue_);
#else
    incoming_task_queue_->ReloadWorkQueue(&work_queue_);
#endif
  }
}

void MessageLoop::ScheduleWork() {
  pump_->ScheduleWork();
}

void MessageLoop::NotifyBeginNestedLoop() {
  for (auto& observer : nesting_observers_)
    observer.OnBeginNestedMessageLoop();
}

bool MessageLoop::DoWork() {
  if (!nestable_tasks_allowed_) {
    // Task can't be executed right now.
    return false;
  }

  for (;;) {
    ReloadWorkQueue();
    if (work_queue_.empty())
      break;

    // Execute oldest task.
    do {
      PendingTask pending_task = std::move(work_queue_.front());
      work_queue_.pop();
      if (!pending_task.delayed_run_time.is_null()) {
        int sequence_num = pending_task.sequence_num;
        TimeTicks delayed_run_time = pending_task.delayed_run_time;
        AddToDelayedWorkQueue(std::move(pending_task));
        // If we changed the topmost task, then it is time to reschedule.
        if (delayed_work_queue_.top().sequence_num == sequence_num)
          pump_->ScheduleDelayedWork(delayed_run_time);
      } else {
        if (DeferOrRunPendingTask(std::move(pending_task)))
          return true;
      }
    } while (!work_queue_.empty());
  }

  // Nothing happened.
  return false;
}

bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
  if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
    recent_time_ = *next_delayed_work_time = TimeTicks();
    return false;
  }

  // When we "fall behind", there will be a lot of tasks in the delayed work
  // queue that are ready to run.  To increase efficiency when we fall behind,
  // we will only call Time::Now() intermittently, and then process all tasks
  // that are ready to run before calling it again.  As a result, the more we
  // fall behind (and have a lot of ready-to-run delayed tasks), the more
  // efficient we'll be at handling the tasks.

  TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time;
  if (next_run_time > recent_time_) {
    recent_time_ = TimeTicks::Now();  // Get a better view of Now();
    if (next_run_time > recent_time_) {
      *next_delayed_work_time = next_run_time;
      return false;
    }
  }

  PendingTask pending_task =
      std::move(const_cast<PendingTask&>(delayed_work_queue_.top()));
  delayed_work_queue_.pop();

  if (!delayed_work_queue_.empty())
    *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;

  return DeferOrRunPendingTask(std::move(pending_task));
}

bool MessageLoop::DoIdleWork() {
  if (ProcessNextDelayedNonNestableTask())
    return true;

  if (run_loop_->quit_when_idle_received_)
    pump_->Quit();

  // When we return we will do a kernel wait for more tasks.
#if defined(OS_WIN)
  // On Windows we activate the high resolution timer so that the wait
  // _if_ triggered by the timer happens with good resolution. If we don't
  // do this the default resolution is 15ms which might not be acceptable
  // for some tasks.
  bool high_res = pending_high_res_tasks_ > 0;
  if (high_res != in_high_res_mode_) {
    in_high_res_mode_ = high_res;
    Time::ActivateHighResolutionTimer(in_high_res_mode_);
  }
#endif
  return false;
}

#if !defined(OS_NACL)
//------------------------------------------------------------------------------
// MessageLoopForUI

MessageLoopForUI::MessageLoopForUI(std::unique_ptr<MessagePump> pump)
    : MessageLoop(TYPE_UI, Bind(&ReturnPump, Passed(&pump))) {}

#if defined(OS_ANDROID)
void MessageLoopForUI::Start() {
  // No Histogram support for UI message loop as it is managed by Java side
  static_cast<MessagePumpForUI*>(pump_.get())->Start(this);
}

void MessageLoopForUI::StartForTesting(
    base::android::JavaMessageHandlerFactory* factory,
    WaitableEvent* test_done_event) {
  // No Histogram support for UI message loop as it is managed by Java side
  static_cast<MessagePumpForUI*>(pump_.get())
      ->StartForUnitTest(this, factory, test_done_event);
}

void MessageLoopForUI::Abort() {
  static_cast<MessagePumpForUI*>(pump_.get())->Abort();
}
#endif

#if defined(OS_IOS)
void MessageLoopForUI::Attach() {
  static_cast<MessagePumpUIApplication*>(pump_.get())->Attach(this);
}
#endif

#if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
bool MessageLoopForUI::WatchFileDescriptor(
    int fd,
    bool persistent,
    MessagePumpLibevent::Mode mode,
    MessagePumpLibevent::FileDescriptorWatcher *controller,
    MessagePumpLibevent::Watcher *delegate) {
  return static_cast<MessagePumpLibevent*>(pump_.get())->WatchFileDescriptor(
      fd,
      persistent,
      mode,
      controller,
      delegate);
}
#endif

#endif  // !defined(OS_NACL)

//------------------------------------------------------------------------------
// MessageLoopForIO

#if !defined(OS_NACL_SFI)

#if defined(OS_WIN)
void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
  ToPumpIO(pump_.get())->RegisterIOHandler(file, handler);
}

bool MessageLoopForIO::RegisterJobObject(HANDLE job, IOHandler* handler) {
  return ToPumpIO(pump_.get())->RegisterJobObject(job, handler);
}

bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
  return ToPumpIO(pump_.get())->WaitForIOCompletion(timeout, filter);
}
#elif defined(OS_POSIX)
bool MessageLoopForIO::WatchFileDescriptor(int fd,
                                           bool persistent,
                                           Mode mode,
                                           FileDescriptorWatcher* controller,
                                           Watcher* delegate) {
  return ToPumpIO(pump_.get())->WatchFileDescriptor(
      fd,
      persistent,
      mode,
      controller,
      delegate);
}
#endif

#endif  // !defined(OS_NACL_SFI)

}  // namespace base