summaryrefslogtreecommitdiff
path: root/base/metrics/sparse_histogram_unittest.cc
blob: f4a7c9495ed89a496ea9edafa657c00063035247 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/metrics/sparse_histogram.h"

#include <memory>
#include <string>

#include "base/metrics/histogram_base.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/histogram_samples.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/metrics/sample_map.h"
#include "base/metrics/statistics_recorder.h"
#include "base/pickle.h"
#include "base/strings/stringprintf.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {

// Test parameter indicates if a persistent memory allocator should be used
// for histogram allocation. False will allocate histograms from the process
// heap.
class SparseHistogramTest : public testing::TestWithParam<bool> {
 protected:
  const int32_t kAllocatorMemorySize = 8 << 20;  // 8 MiB

  SparseHistogramTest() : use_persistent_histogram_allocator_(GetParam()) {}

  void SetUp() override {
    if (use_persistent_histogram_allocator_)
      CreatePersistentMemoryAllocator();

    // Each test will have a clean state (no Histogram / BucketRanges
    // registered).
    InitializeStatisticsRecorder();
  }

  void TearDown() override {
    if (allocator_) {
      ASSERT_FALSE(allocator_->IsFull());
      ASSERT_FALSE(allocator_->IsCorrupt());
    }
    UninitializeStatisticsRecorder();
    DestroyPersistentMemoryAllocator();
  }

  void InitializeStatisticsRecorder() {
    DCHECK(!statistics_recorder_);
    statistics_recorder_ = StatisticsRecorder::CreateTemporaryForTesting();
  }

  void UninitializeStatisticsRecorder() {
    statistics_recorder_.reset();
  }

  void CreatePersistentMemoryAllocator() {
    // By getting the results-histogram before any persistent allocator
    // is attached, that histogram is guaranteed not to be stored in
    // any persistent memory segment (which simplifies some tests).
    GlobalHistogramAllocator::GetCreateHistogramResultHistogram();

    GlobalHistogramAllocator::CreateWithLocalMemory(
        kAllocatorMemorySize, 0, "SparseHistogramAllocatorTest");
    allocator_ = GlobalHistogramAllocator::Get()->memory_allocator();
  }

  void DestroyPersistentMemoryAllocator() {
    allocator_ = nullptr;
    GlobalHistogramAllocator::ReleaseForTesting();
  }

  std::unique_ptr<SparseHistogram> NewSparseHistogram(const std::string& name) {
    return std::unique_ptr<SparseHistogram>(new SparseHistogram(name));
  }

  const bool use_persistent_histogram_allocator_;

  std::unique_ptr<StatisticsRecorder> statistics_recorder_;
  PersistentMemoryAllocator* allocator_ = nullptr;

 private:
  DISALLOW_COPY_AND_ASSIGN(SparseHistogramTest);
};

// Run all HistogramTest cases with both heap and persistent memory.
INSTANTIATE_TEST_CASE_P(HeapAndPersistent,
                        SparseHistogramTest,
                        testing::Bool());


TEST_P(SparseHistogramTest, BasicTest) {
  std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
  std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
  EXPECT_EQ(0, snapshot->TotalCount());
  EXPECT_EQ(0, snapshot->sum());

  histogram->Add(100);
  std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
  EXPECT_EQ(1, snapshot1->TotalCount());
  EXPECT_EQ(1, snapshot1->GetCount(100));

  histogram->Add(100);
  histogram->Add(101);
  std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
  EXPECT_EQ(3, snapshot2->TotalCount());
  EXPECT_EQ(2, snapshot2->GetCount(100));
  EXPECT_EQ(1, snapshot2->GetCount(101));
}

TEST_P(SparseHistogramTest, BasicTestAddCount) {
  std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
  std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
  EXPECT_EQ(0, snapshot->TotalCount());
  EXPECT_EQ(0, snapshot->sum());

  histogram->AddCount(100, 15);
  std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
  EXPECT_EQ(15, snapshot1->TotalCount());
  EXPECT_EQ(15, snapshot1->GetCount(100));

  histogram->AddCount(100, 15);
  histogram->AddCount(101, 25);
  std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
  EXPECT_EQ(55, snapshot2->TotalCount());
  EXPECT_EQ(30, snapshot2->GetCount(100));
  EXPECT_EQ(25, snapshot2->GetCount(101));
}

TEST_P(SparseHistogramTest, AddCount_LargeValuesDontOverflow) {
  std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
  std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
  EXPECT_EQ(0, snapshot->TotalCount());
  EXPECT_EQ(0, snapshot->sum());

  histogram->AddCount(1000000000, 15);
  std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
  EXPECT_EQ(15, snapshot1->TotalCount());
  EXPECT_EQ(15, snapshot1->GetCount(1000000000));

  histogram->AddCount(1000000000, 15);
  histogram->AddCount(1010000000, 25);
  std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
  EXPECT_EQ(55, snapshot2->TotalCount());
  EXPECT_EQ(30, snapshot2->GetCount(1000000000));
  EXPECT_EQ(25, snapshot2->GetCount(1010000000));
  EXPECT_EQ(55250000000LL, snapshot2->sum());
}

TEST_P(SparseHistogramTest, MacroBasicTest) {
  UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 100);
  UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 200);
  UMA_HISTOGRAM_SPARSE_SLOWLY("Sparse", 100);

  StatisticsRecorder::Histograms histograms;
  StatisticsRecorder::GetHistograms(&histograms);

  ASSERT_EQ(1U, histograms.size());
  HistogramBase* sparse_histogram = histograms[0];

  EXPECT_EQ(SPARSE_HISTOGRAM, sparse_histogram->GetHistogramType());
  EXPECT_EQ("Sparse", sparse_histogram->histogram_name());
  EXPECT_EQ(
      HistogramBase::kUmaTargetedHistogramFlag |
          (use_persistent_histogram_allocator_ ? HistogramBase::kIsPersistent
                                               : 0),
      sparse_histogram->flags());

  std::unique_ptr<HistogramSamples> samples =
      sparse_histogram->SnapshotSamples();
  EXPECT_EQ(3, samples->TotalCount());
  EXPECT_EQ(2, samples->GetCount(100));
  EXPECT_EQ(1, samples->GetCount(200));
}

TEST_P(SparseHistogramTest, MacroInLoopTest) {
  // Unlike the macros in histogram.h, SparseHistogram macros can have a
  // variable as histogram name.
  for (int i = 0; i < 2; i++) {
    std::string name = StringPrintf("Sparse%d", i + 1);
    UMA_HISTOGRAM_SPARSE_SLOWLY(name, 100);
  }

  StatisticsRecorder::Histograms histograms;
  StatisticsRecorder::GetHistograms(&histograms);
  ASSERT_EQ(2U, histograms.size());

  std::string name1 = histograms[0]->histogram_name();
  std::string name2 = histograms[1]->histogram_name();
  EXPECT_TRUE(("Sparse1" == name1 && "Sparse2" == name2) ||
              ("Sparse2" == name1 && "Sparse1" == name2));
}

TEST_P(SparseHistogramTest, Serialize) {
  std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
  histogram->SetFlags(HistogramBase::kIPCSerializationSourceFlag);

  Pickle pickle;
  histogram->SerializeInfo(&pickle);

  PickleIterator iter(pickle);

  int type;
  EXPECT_TRUE(iter.ReadInt(&type));
  EXPECT_EQ(SPARSE_HISTOGRAM, type);

  std::string name;
  EXPECT_TRUE(iter.ReadString(&name));
  EXPECT_EQ("Sparse", name);

  int flag;
  EXPECT_TRUE(iter.ReadInt(&flag));
  EXPECT_EQ(HistogramBase::kIPCSerializationSourceFlag, flag);

  // No more data in the pickle.
  EXPECT_FALSE(iter.SkipBytes(1));
}

// Ensure that race conditions that cause multiple, identical sparse histograms
// to be created will safely resolve to a single one.
TEST_P(SparseHistogramTest, DuplicationSafety) {
  const char histogram_name[] = "Duplicated";
  size_t histogram_count = StatisticsRecorder::GetHistogramCount();

  // Create a histogram that we will later duplicate.
  HistogramBase* original =
      SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
  ++histogram_count;
  DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
  original->Add(1);

  // Create a duplicate. This has to happen differently depending on where the
  // memory is taken from.
  if (use_persistent_histogram_allocator_) {
    // To allocate from persistent memory, clear the last_created reference in
    // the GlobalHistogramAllocator. This will cause an Import to recreate
    // the just-created histogram which will then be released as a duplicate.
    GlobalHistogramAllocator::Get()->ClearLastCreatedReferenceForTesting();
    // Creating a different histogram will first do an Import to ensure it
    // hasn't been created elsewhere, triggering the duplication and release.
    SparseHistogram::FactoryGet("something.new", HistogramBase::kNoFlags);
    ++histogram_count;
  } else {
    // To allocate from the heap, just call the (private) constructor directly.
    // Delete it immediately like would have happened within FactoryGet();
    std::unique_ptr<SparseHistogram> something =
        NewSparseHistogram(histogram_name);
    DCHECK_NE(original, something.get());
  }
  DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());

  // Re-creating the histogram via FactoryGet() will return the same one.
  HistogramBase* duplicate =
      SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
  DCHECK_EQ(original, duplicate);
  DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
  duplicate->Add(2);

  // Ensure that original histograms are still cross-functional.
  original->Add(2);
  duplicate->Add(1);
  std::unique_ptr<HistogramSamples> snapshot_orig = original->SnapshotSamples();
  std::unique_ptr<HistogramSamples> snapshot_dup = duplicate->SnapshotSamples();
  DCHECK_EQ(2, snapshot_orig->GetCount(2));
  DCHECK_EQ(2, snapshot_dup->GetCount(1));
}

TEST_P(SparseHistogramTest, FactoryTime) {
  const int kTestCreateCount = 1 << 10;  // Must be power-of-2.
  const int kTestLookupCount = 100000;
  const int kTestAddCount = 100000;

  // Create all histogram names in advance for accurate timing below.
  std::vector<std::string> histogram_names;
  for (int i = 0; i < kTestCreateCount; ++i) {
    histogram_names.push_back(
        StringPrintf("TestHistogram.%d", i % kTestCreateCount));
  }

  // Calculate cost of creating histograms.
  TimeTicks create_start = TimeTicks::Now();
  for (int i = 0; i < kTestCreateCount; ++i)
    SparseHistogram::FactoryGet(histogram_names[i], HistogramBase::kNoFlags);
  TimeDelta create_ticks = TimeTicks::Now() - create_start;
  int64_t create_ms = create_ticks.InMilliseconds();

  VLOG(1) << kTestCreateCount << " histogram creations took " << create_ms
          << "ms or about "
          << (create_ms * 1000000) / kTestCreateCount
          << "ns each.";

  // Calculate cost of looking up existing histograms.
  TimeTicks lookup_start = TimeTicks::Now();
  for (int i = 0; i < kTestLookupCount; ++i) {
    // 6007 is co-prime with kTestCreateCount and so will do lookups in an
    // order less likely to be cacheable (but still hit them all) should the
    // underlying storage use the exact histogram name as the key.
    const int i_mult = 6007;
    static_assert(i_mult < INT_MAX / kTestCreateCount, "Multiplier too big");
    int index = (i * i_mult) & (kTestCreateCount - 1);
    SparseHistogram::FactoryGet(histogram_names[index],
                                HistogramBase::kNoFlags);
  }
  TimeDelta lookup_ticks = TimeTicks::Now() - lookup_start;
  int64_t lookup_ms = lookup_ticks.InMilliseconds();

  VLOG(1) << kTestLookupCount << " histogram lookups took " << lookup_ms
          << "ms or about "
          << (lookup_ms * 1000000) / kTestLookupCount
          << "ns each.";

  // Calculate cost of accessing histograms.
  HistogramBase* histogram =
      SparseHistogram::FactoryGet(histogram_names[0], HistogramBase::kNoFlags);
  ASSERT_TRUE(histogram);
  TimeTicks add_start = TimeTicks::Now();
  for (int i = 0; i < kTestAddCount; ++i)
    histogram->Add(i & 127);
  TimeDelta add_ticks = TimeTicks::Now() - add_start;
  int64_t add_ms = add_ticks.InMilliseconds();

  VLOG(1) << kTestAddCount << " histogram adds took " << add_ms
          << "ms or about "
          << (add_ms * 1000000) / kTestAddCount
          << "ns each.";
}

}  // namespace base