summaryrefslogtreecommitdiff
path: root/base/stl_util.h
blob: b0670b295eb87d9a28d5621f3f86883fa038a39f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Derived from google3/util/gtl/stl_util.h

#ifndef BASE_STL_UTIL_H_
#define BASE_STL_UTIL_H_

#include <algorithm>
#include <deque>
#include <forward_list>
#include <functional>
#include <iterator>
#include <list>
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "base/logging.h"

namespace base {

namespace internal {

// Calls erase on iterators of matching elements.
template <typename Container, typename Predicate>
void IterateAndEraseIf(Container& container, Predicate pred) {
  for (auto it = container.begin(); it != container.end();) {
    if (pred(*it))
      it = container.erase(it);
    else
      ++it;
  }
}

}  // namespace internal

// Clears internal memory of an STL object.
// STL clear()/reserve(0) does not always free internal memory allocated
// This function uses swap/destructor to ensure the internal memory is freed.
template<class T>
void STLClearObject(T* obj) {
  T tmp;
  tmp.swap(*obj);
  // Sometimes "T tmp" allocates objects with memory (arena implementation?).
  // Hence using additional reserve(0) even if it doesn't always work.
  obj->reserve(0);
}

// Counts the number of instances of val in a container.
template <typename Container, typename T>
typename std::iterator_traits<
    typename Container::const_iterator>::difference_type
STLCount(const Container& container, const T& val) {
  return std::count(container.begin(), container.end(), val);
}

// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
// proposes this as the method. According to Matt Austern, this should
// already work on all current implementations.
inline char* string_as_array(std::string* str) {
  // DO NOT USE const_cast<char*>(str->data())
  return str->empty() ? NULL : &*str->begin();
}

// Test to see if a set, map, hash_set or hash_map contains a particular key.
// Returns true if the key is in the collection.
template <typename Collection, typename Key>
bool ContainsKey(const Collection& collection, const Key& key) {
  return collection.find(key) != collection.end();
}

// Test to see if a collection like a vector contains a particular value.
// Returns true if the value is in the collection.
template <typename Collection, typename Value>
bool ContainsValue(const Collection& collection, const Value& value) {
  return std::find(collection.begin(), collection.end(), value) !=
      collection.end();
}

// Returns true if the container is sorted.
template <typename Container>
bool STLIsSorted(const Container& cont) {
  // Note: Use reverse iterator on container to ensure we only require
  // value_type to implement operator<.
  return std::adjacent_find(cont.rbegin(), cont.rend(),
                            std::less<typename Container::value_type>())
      == cont.rend();
}

// Returns a new ResultType containing the difference of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetDifference(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  ResultType difference;
  std::set_difference(a1.begin(), a1.end(),
                      a2.begin(), a2.end(),
                      std::inserter(difference, difference.end()));
  return difference;
}

// Returns a new ResultType containing the union of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetUnion(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  ResultType result;
  std::set_union(a1.begin(), a1.end(),
                 a2.begin(), a2.end(),
                 std::inserter(result, result.end()));
  return result;
}

// Returns a new ResultType containing the intersection of two sorted
// containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetIntersection(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  ResultType result;
  std::set_intersection(a1.begin(), a1.end(),
                        a2.begin(), a2.end(),
                        std::inserter(result, result.end()));
  return result;
}

// Returns true if the sorted container |a1| contains all elements of the sorted
// container |a2|.
template <typename Arg1, typename Arg2>
bool STLIncludes(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  return std::includes(a1.begin(), a1.end(),
                       a2.begin(), a2.end());
}

// Erase/EraseIf are based on library fundamentals ts v2 erase/erase_if
// http://en.cppreference.com/w/cpp/experimental/lib_extensions_2
// They provide a generic way to erase elements from a container.
// The functions here implement these for the standard containers until those
// functions are available in the C++ standard.
// For Chromium containers overloads should be defined in their own headers
// (like standard containers).
// Note: there is no std::erase for standard associative containers so we don't
// have it either.

template <typename CharT, typename Traits, typename Allocator, typename Value>
void Erase(std::basic_string<CharT, Traits, Allocator>& container,
           const Value& value) {
  container.erase(std::remove(container.begin(), container.end(), value),
                  container.end());
}

template <typename CharT, typename Traits, typename Allocator, class Predicate>
void EraseIf(std::basic_string<CharT, Traits, Allocator>& container,
             Predicate pred) {
  container.erase(std::remove_if(container.begin(), container.end(), pred),
                  container.end());
}

template <class T, class Allocator, class Value>
void Erase(std::deque<T, Allocator>& container, const Value& value) {
  container.erase(std::remove(container.begin(), container.end(), value),
                  container.end());
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::deque<T, Allocator>& container, Predicate pred) {
  container.erase(std::remove_if(container.begin(), container.end(), pred),
                  container.end());
}

template <class T, class Allocator, class Value>
void Erase(std::vector<T, Allocator>& container, const Value& value) {
  container.erase(std::remove(container.begin(), container.end(), value),
                  container.end());
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::vector<T, Allocator>& container, Predicate pred) {
  container.erase(std::remove_if(container.begin(), container.end(), pred),
                  container.end());
}

template <class T, class Allocator, class Value>
void Erase(std::forward_list<T, Allocator>& container, const Value& value) {
  // Unlike std::forward_list::remove, this function template accepts
  // heterogeneous types and does not force a conversion to the container's
  // value type before invoking the == operator.
  container.remove_if([&](const T& cur) { return cur == value; });
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::forward_list<T, Allocator>& container, Predicate pred) {
  container.remove_if(pred);
}

template <class T, class Allocator, class Value>
void Erase(std::list<T, Allocator>& container, const Value& value) {
  // Unlike std::list::remove, this function template accepts heterogeneous
  // types and does not force a conversion to the container's value type before
  // invoking the == operator.
  container.remove_if([&](const T& cur) { return cur == value; });
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::list<T, Allocator>& container, Predicate pred) {
  container.remove_if(pred);
}

template <class Key, class T, class Compare, class Allocator, class Predicate>
void EraseIf(std::map<Key, T, Compare, Allocator>& container, Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key, class T, class Compare, class Allocator, class Predicate>
void EraseIf(std::multimap<Key, T, Compare, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key, class Compare, class Allocator, class Predicate>
void EraseIf(std::set<Key, Compare, Allocator>& container, Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key, class Compare, class Allocator, class Predicate>
void EraseIf(std::multiset<Key, Compare, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class T,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(std::unordered_map<Key, T, Hash, KeyEqual, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class T,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(
    std::unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& container,
    Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(std::unordered_set<Key, Hash, KeyEqual, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(std::unordered_multiset<Key, Hash, KeyEqual, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

}  // namespace base

#endif  // BASE_STL_UTIL_H_