summaryrefslogtreecommitdiff
path: root/base/trace_event/trace_event_synthetic_delay_unittest.cc
blob: 97a4580b3bbad69810a38c2ca33d291b6e8060fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/trace_event/trace_event_synthetic_delay.h"

#include <stdint.h>

#include "base/macros.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace base {
namespace trace_event {
namespace {

const int kTargetDurationMs = 100;
// Allow some leeway in timings to make it possible to run these tests with a
// wall clock time source too.
const int kShortDurationMs = 10;

}  // namespace

class TraceEventSyntheticDelayTest : public testing::Test,
                                     public TraceEventSyntheticDelayClock {
 public:
  TraceEventSyntheticDelayTest() {}
  ~TraceEventSyntheticDelayTest() override { ResetTraceEventSyntheticDelays(); }

  // TraceEventSyntheticDelayClock implementation.
  base::TimeTicks Now() override {
    AdvanceTime(base::TimeDelta::FromMilliseconds(kShortDurationMs / 10));
    return now_;
  }

  TraceEventSyntheticDelay* ConfigureDelay(const char* name) {
    TraceEventSyntheticDelay* delay = TraceEventSyntheticDelay::Lookup(name);
    delay->SetClock(this);
    delay->SetTargetDuration(
        base::TimeDelta::FromMilliseconds(kTargetDurationMs));
    return delay;
  }

  void AdvanceTime(base::TimeDelta delta) { now_ += delta; }

  int64_t TestFunction() {
    base::TimeTicks start = Now();
    { TRACE_EVENT_SYNTHETIC_DELAY("test.Delay"); }
    return (Now() - start).InMilliseconds();
  }

  int64_t AsyncTestFunctionBegin() {
    base::TimeTicks start = Now();
    { TRACE_EVENT_SYNTHETIC_DELAY_BEGIN("test.AsyncDelay"); }
    return (Now() - start).InMilliseconds();
  }

  int64_t AsyncTestFunctionEnd() {
    base::TimeTicks start = Now();
    { TRACE_EVENT_SYNTHETIC_DELAY_END("test.AsyncDelay"); }
    return (Now() - start).InMilliseconds();
  }

 private:
  base::TimeTicks now_;

  DISALLOW_COPY_AND_ASSIGN(TraceEventSyntheticDelayTest);
};

TEST_F(TraceEventSyntheticDelayTest, StaticDelay) {
  TraceEventSyntheticDelay* delay = ConfigureDelay("test.Delay");
  delay->SetMode(TraceEventSyntheticDelay::STATIC);
  EXPECT_GE(TestFunction(), kTargetDurationMs);
}

TEST_F(TraceEventSyntheticDelayTest, OneShotDelay) {
  TraceEventSyntheticDelay* delay = ConfigureDelay("test.Delay");
  delay->SetMode(TraceEventSyntheticDelay::ONE_SHOT);
  EXPECT_GE(TestFunction(), kTargetDurationMs);
  EXPECT_LT(TestFunction(), kShortDurationMs);

  delay->SetTargetDuration(
      base::TimeDelta::FromMilliseconds(kTargetDurationMs));
  EXPECT_GE(TestFunction(), kTargetDurationMs);
}

TEST_F(TraceEventSyntheticDelayTest, AlternatingDelay) {
  TraceEventSyntheticDelay* delay = ConfigureDelay("test.Delay");
  delay->SetMode(TraceEventSyntheticDelay::ALTERNATING);
  EXPECT_GE(TestFunction(), kTargetDurationMs);
  EXPECT_LT(TestFunction(), kShortDurationMs);
  EXPECT_GE(TestFunction(), kTargetDurationMs);
  EXPECT_LT(TestFunction(), kShortDurationMs);
}

TEST_F(TraceEventSyntheticDelayTest, AsyncDelay) {
  ConfigureDelay("test.AsyncDelay");
  EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
  EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
}

TEST_F(TraceEventSyntheticDelayTest, AsyncDelayExceeded) {
  ConfigureDelay("test.AsyncDelay");
  EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
  AdvanceTime(base::TimeDelta::FromMilliseconds(kTargetDurationMs));
  EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
}

TEST_F(TraceEventSyntheticDelayTest, AsyncDelayNoActivation) {
  ConfigureDelay("test.AsyncDelay");
  EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
}

TEST_F(TraceEventSyntheticDelayTest, AsyncDelayNested) {
  ConfigureDelay("test.AsyncDelay");
  EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
  EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
  EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);
  EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
}

TEST_F(TraceEventSyntheticDelayTest, AsyncDelayUnbalanced) {
  ConfigureDelay("test.AsyncDelay");
  EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
  EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
  EXPECT_LT(AsyncTestFunctionEnd(), kShortDurationMs);

  EXPECT_LT(AsyncTestFunctionBegin(), kShortDurationMs);
  EXPECT_GE(AsyncTestFunctionEnd(), kTargetDurationMs / 2);
}

TEST_F(TraceEventSyntheticDelayTest, ResetDelays) {
  ConfigureDelay("test.Delay");
  ResetTraceEventSyntheticDelays();
  EXPECT_LT(TestFunction(), kShortDurationMs);
}

TEST_F(TraceEventSyntheticDelayTest, BeginParallel) {
  TraceEventSyntheticDelay* delay = ConfigureDelay("test.AsyncDelay");
  base::TimeTicks end_times[2];
  base::TimeTicks start_time = Now();

  delay->BeginParallel(&end_times[0]);
  EXPECT_FALSE(end_times[0].is_null());

  delay->BeginParallel(&end_times[1]);
  EXPECT_FALSE(end_times[1].is_null());

  delay->EndParallel(end_times[0]);
  EXPECT_GE((Now() - start_time).InMilliseconds(), kTargetDurationMs);

  start_time = Now();
  delay->EndParallel(end_times[1]);
  EXPECT_LT((Now() - start_time).InMilliseconds(), kShortDurationMs);
}

}  // namespace trace_event
}  // namespace base