summaryrefslogtreecommitdiff
path: root/ipc/ipc_channel_reader.cc
blob: e4331afaee9405259a09c75f440ee920762e56c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ipc/ipc_channel_reader.h"

#include <stddef.h>

#include <algorithm>

#include "base/logging.h"
#include "base/threading/thread_task_runner_handle.h"
#include "ipc/ipc_listener.h"
#include "ipc/ipc_logging.h"
#include "ipc/ipc_message.h"
#include "ipc/ipc_message_attachment_set.h"
#include "ipc/ipc_message_macros.h"

namespace IPC {
namespace internal {

#if BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)

namespace {
std::string GetMessageText(const Message& message) {
  std::string name;
  Logging::GetInstance()->GetMessageText(
      message.type(), &name, &message, nullptr);
  return name;
}
}  // namespace

#define EMIT_TRACE_EVENT(message)                                       \
  TRACE_EVENT_WITH_FLOW1(                                               \
      "ipc,toplevel", "ChannelReader::DispatchInputData",               \
      (message).flags(), TRACE_EVENT_FLAG_FLOW_IN, "name",              \
      GetMessageText(message));
#else
#define EMIT_TRACE_EVENT(message)                                              \
  TRACE_EVENT_WITH_FLOW2("ipc,toplevel", "ChannelReader::DispatchInputData",   \
                         (message).flags(), TRACE_EVENT_FLAG_FLOW_IN, "class", \
                         IPC_MESSAGE_ID_CLASS((message).type()), "line",       \
                         IPC_MESSAGE_ID_LINE((message).type()));
#endif  // BUILDFLAG(IPC_MESSAGE_LOG_ENABLED)

ChannelReader::ChannelReader(Listener* listener)
  : listener_(listener),
    max_input_buffer_size_(Channel::kMaximumReadBufferSize) {
  memset(input_buf_, 0, sizeof(input_buf_));
}

ChannelReader::~ChannelReader() = default;

ChannelReader::DispatchState ChannelReader::ProcessIncomingMessages() {
  while (true) {
    int bytes_read = 0;
    ReadState read_state = ReadData(input_buf_, Channel::kReadBufferSize,
                                    &bytes_read);
    if (read_state == READ_FAILED)
      return DISPATCH_ERROR;
    if (read_state == READ_PENDING)
      return DISPATCH_FINISHED;

    DCHECK(bytes_read > 0);
    if (!TranslateInputData(input_buf_, bytes_read))
      return DISPATCH_ERROR;
  }
}

ChannelReader::DispatchState ChannelReader::AsyncReadComplete(int bytes_read) {
  if (!TranslateInputData(input_buf_, bytes_read))
    return DISPATCH_ERROR;

  return DISPATCH_FINISHED;
}

bool ChannelReader::IsInternalMessage(const Message& m) {
  return m.routing_id() == MSG_ROUTING_NONE &&
      m.type() >= Channel::CLOSE_FD_MESSAGE_TYPE &&
      m.type() <= Channel::HELLO_MESSAGE_TYPE;
}

bool ChannelReader::IsHelloMessage(const Message& m) {
  return m.routing_id() == MSG_ROUTING_NONE &&
      m.type() == Channel::HELLO_MESSAGE_TYPE;
}

void ChannelReader::CleanUp() {
}

void ChannelReader::DispatchMessage(Message* m) {
  EMIT_TRACE_EVENT(*m);
  listener_->OnMessageReceived(*m);
  HandleDispatchError(*m);
}

bool ChannelReader::TranslateInputData(const char* input_data,
                                       int input_data_len) {
  const char* p;
  const char* end;

  // Possibly combine with the overflow buffer to make a larger buffer.
  if (input_overflow_buf_.empty()) {
    p = input_data;
    end = input_data + input_data_len;
  } else {
    if (!CheckMessageSize(input_overflow_buf_.size() + input_data_len))
      return false;
    input_overflow_buf_.append(input_data, input_data_len);
    p = input_overflow_buf_.data();
    end = p + input_overflow_buf_.size();
  }

  size_t next_message_size = 0;

  // Dispatch all complete messages in the data buffer.
  while (p < end) {
    Message::NextMessageInfo info;
    Message::FindNext(p, end, &info);
    if (info.message_found) {
      int pickle_len = static_cast<int>(info.pickle_end - p);
      Message translated_message(p, pickle_len);

      if (!HandleTranslatedMessage(&translated_message))
        return false;

      p = info.message_end;
    } else {
      // Last message is partial.
      next_message_size = info.message_size;
      if (!CheckMessageSize(next_message_size))
        return false;
      break;
    }
  }

  // Account for the case where last message's byte is in the next data chunk.
  size_t next_message_buffer_size = next_message_size ?
      next_message_size + Channel::kReadBufferSize - 1:
      0;

  // Save any partial data in the overflow buffer.
  if (p != input_overflow_buf_.data())
    input_overflow_buf_.assign(p, end - p);

  if (!input_overflow_buf_.empty()) {
    // We have something in the overflow buffer, which means that we will
    // append the next data chunk (instead of parsing it directly). So we
    // resize the buffer to fit the next message, to avoid repeatedly
    // growing the buffer as we receive all message' data chunks.
    if (next_message_buffer_size > input_overflow_buf_.capacity()) {
      input_overflow_buf_.reserve(next_message_buffer_size);
    }
  }

  // Trim the buffer if we can
  if (next_message_buffer_size < max_input_buffer_size_ &&
      input_overflow_buf_.size() < max_input_buffer_size_ &&
      input_overflow_buf_.capacity() > max_input_buffer_size_) {
    // std::string doesn't really have a method to shrink capacity to
    // a specific value, so we have to swap with another string.
    std::string trimmed_buf;
    trimmed_buf.reserve(max_input_buffer_size_);
    if (trimmed_buf.capacity() > max_input_buffer_size_) {
      // Since we don't control how much space reserve() actually reserves,
      // we have to go other way around and change the max size to avoid
      // getting into the outer if() again.
      max_input_buffer_size_ = trimmed_buf.capacity();
    }
    trimmed_buf.assign(input_overflow_buf_.data(),
                       input_overflow_buf_.size());
    input_overflow_buf_.swap(trimmed_buf);
  }

  if (input_overflow_buf_.empty() && !DidEmptyInputBuffers())
    return false;
  return true;
}

bool ChannelReader::HandleTranslatedMessage(Message* translated_message) {
  // Immediately handle internal messages.
  if (IsInternalMessage(*translated_message)) {
    EMIT_TRACE_EVENT(*translated_message);
    HandleInternalMessage(*translated_message);
    HandleDispatchError(*translated_message);
    return true;
  }

  return HandleExternalMessage(translated_message);
}

bool ChannelReader::HandleExternalMessage(Message* external_message) {
  if (!GetAttachments(external_message))
    return false;

  DispatchMessage(external_message);
  return true;
}

void ChannelReader::HandleDispatchError(const Message& message) {
  if (message.dispatch_error())
    listener_->OnBadMessageReceived(message);
}

bool ChannelReader::CheckMessageSize(size_t size) {
  if (size <= Channel::kMaximumMessageSize) {
    return true;
  }
  input_overflow_buf_.clear();
  LOG(ERROR) << "IPC message is too big: " << size;
  return false;
}

}  // namespace internal
}  // namespace IPC