summaryrefslogtreecommitdiff
path: root/sandbox/linux/bpf_dsl/codegen_unittest.cc
blob: 56a0dd27e18edaacf221ea0041886924a39c12e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "sandbox/linux/bpf_dsl/codegen.h"

#include <stddef.h>
#include <stdint.h>

#include <map>
#include <utility>
#include <vector>

#include "base/macros.h"
#include "base/md5.h"
#include "base/strings/string_piece.h"
#include "sandbox/linux/system_headers/linux_filter.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace sandbox {
namespace {

// Hash provides an abstraction for building "hash trees" from BPF
// control flow graphs, and efficiently identifying equivalent graphs.
//
// For simplicity, we use MD5, because base happens to provide a
// convenient API for its use. However, any collision-resistant hash
// should suffice.
class Hash {
 public:
  static const Hash kZero;

  Hash() : digest_() {}

  Hash(uint16_t code,
       uint32_t k,
       const Hash& jt = kZero,
       const Hash& jf = kZero)
      : digest_() {
    base::MD5Context ctx;
    base::MD5Init(&ctx);
    HashValue(&ctx, code);
    HashValue(&ctx, k);
    HashValue(&ctx, jt);
    HashValue(&ctx, jf);
    base::MD5Final(&digest_, &ctx);
  }

  Hash(const Hash& hash) = default;
  Hash& operator=(const Hash& rhs) = default;

  friend bool operator==(const Hash& lhs, const Hash& rhs) {
    return lhs.Base16() == rhs.Base16();
  }
  friend bool operator!=(const Hash& lhs, const Hash& rhs) {
    return !(lhs == rhs);
  }

 private:
  template <typename T>
  void HashValue(base::MD5Context* ctx, const T& value) {
    base::MD5Update(ctx,
                    base::StringPiece(reinterpret_cast<const char*>(&value),
                                      sizeof(value)));
  }

  std::string Base16() const {
    return base::MD5DigestToBase16(digest_);
  }

  base::MD5Digest digest_;
};

const Hash Hash::kZero;

// Sanity check that equality and inequality work on Hash as required.
TEST(CodeGen, HashSanity) {
  std::vector<Hash> hashes;

  // Push a bunch of logically distinct hashes.
  hashes.push_back(Hash::kZero);
  for (int i = 0; i < 4; ++i) {
    hashes.push_back(Hash(i & 1, i & 2));
  }
  for (int i = 0; i < 16; ++i) {
    hashes.push_back(Hash(i & 1, i & 2, Hash(i & 4, i & 8)));
  }
  for (int i = 0; i < 64; ++i) {
    hashes.push_back(
        Hash(i & 1, i & 2, Hash(i & 4, i & 8), Hash(i & 16, i & 32)));
  }

  for (const Hash& a : hashes) {
    for (const Hash& b : hashes) {
      // Hashes should equal themselves, but not equal all others.
      if (&a == &b) {
        EXPECT_EQ(a, b);
      } else {
        EXPECT_NE(a, b);
      }
    }
  }
}

// ProgramTest provides a fixture for writing compiling sample
// programs with CodeGen and verifying the linearized output matches
// the input DAG.
class ProgramTest : public ::testing::Test {
 protected:
  ProgramTest() : gen_(), node_hashes_() {}

  // MakeInstruction calls CodeGen::MakeInstruction() and associated
  // the returned address with a hash of the instruction.
  CodeGen::Node MakeInstruction(uint16_t code,
                                uint32_t k,
                                CodeGen::Node jt = CodeGen::kNullNode,
                                CodeGen::Node jf = CodeGen::kNullNode) {
    CodeGen::Node res = gen_.MakeInstruction(code, k, jt, jf);
    EXPECT_NE(CodeGen::kNullNode, res);

    Hash digest(code, k, Lookup(jt), Lookup(jf));
    auto it = node_hashes_.insert(std::make_pair(res, digest));
    EXPECT_EQ(digest, it.first->second);

    return res;
  }

  // RunTest compiles the program and verifies that the output matches
  // what is expected.  It should be called at the end of each program
  // test case.
  void RunTest(CodeGen::Node head) {
    // Compile the program
    CodeGen::Program program = gen_.Compile(head);

    // Walk the program backwards, and compute the hash for each instruction.
    std::vector<Hash> prog_hashes(program.size());
    for (size_t i = program.size(); i > 0; --i) {
      const sock_filter& insn = program.at(i - 1);
      Hash& hash = prog_hashes.at(i - 1);

      if (BPF_CLASS(insn.code) == BPF_JMP) {
        if (BPF_OP(insn.code) == BPF_JA) {
          // The compiler adds JA instructions as needed, so skip them.
          hash = prog_hashes.at(i + insn.k);
        } else {
          hash = Hash(insn.code, insn.k, prog_hashes.at(i + insn.jt),
                      prog_hashes.at(i + insn.jf));
        }
      } else if (BPF_CLASS(insn.code) == BPF_RET) {
        hash = Hash(insn.code, insn.k);
      } else {
        hash = Hash(insn.code, insn.k, prog_hashes.at(i));
      }
    }

    EXPECT_EQ(Lookup(head), prog_hashes.at(0));
  }

 private:
  const Hash& Lookup(CodeGen::Node next) const {
    if (next == CodeGen::kNullNode) {
      return Hash::kZero;
    }
    auto it = node_hashes_.find(next);
    if (it == node_hashes_.end()) {
      ADD_FAILURE() << "No hash found for node " << next;
      return Hash::kZero;
    }
    return it->second;
  }

  CodeGen gen_;
  std::map<CodeGen::Node, Hash> node_hashes_;

  DISALLOW_COPY_AND_ASSIGN(ProgramTest);
};

TEST_F(ProgramTest, OneInstruction) {
  // Create the most basic valid BPF program:
  //    RET 0
  CodeGen::Node head = MakeInstruction(BPF_RET + BPF_K, 0);
  RunTest(head);
}

TEST_F(ProgramTest, SimpleBranch) {
  // Create a program with a single branch:
  //    JUMP if eq 42 then $0 else $1
  // 0: RET 1
  // 1: RET 0
  CodeGen::Node head = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42,
                                       MakeInstruction(BPF_RET + BPF_K, 1),
                                       MakeInstruction(BPF_RET + BPF_K, 0));
  RunTest(head);
}

TEST_F(ProgramTest, AtypicalBranch) {
  // Create a program with a single branch:
  //    JUMP if eq 42 then $0 else $0
  // 0: RET 0

  CodeGen::Node ret = MakeInstruction(BPF_RET + BPF_K, 0);
  CodeGen::Node head = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42, ret, ret);

  // N.B.: As the instructions in both sides of the branch are already
  //       the same object, we do not actually have any "mergeable" branches.
  //       This needs to be reflected in our choice of "flags".
  RunTest(head);
}

TEST_F(ProgramTest, Complex) {
  // Creates a basic BPF program that we'll use to test some of the code:
  //    JUMP if eq 42 the $0 else $1     (insn6)
  // 0: LD 23                            (insn5)
  // 1: JUMP if eq 42 then $2 else $4    (insn4)
  // 2: JUMP to $3                       (insn2)
  // 3: LD 42                            (insn1)
  //    RET 42                           (insn0)
  // 4: LD 42                            (insn3)
  //    RET 42                           (insn3+)
  CodeGen::Node insn0 = MakeInstruction(BPF_RET + BPF_K, 42);
  CodeGen::Node insn1 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 42, insn0);
  CodeGen::Node insn2 = insn1;  // Implicit JUMP

  // We explicitly duplicate instructions to test that they're merged.
  CodeGen::Node insn3 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 42,
                                        MakeInstruction(BPF_RET + BPF_K, 42));
  EXPECT_EQ(insn2, insn3);

  CodeGen::Node insn4 =
      MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42, insn2, insn3);
  CodeGen::Node insn5 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 23, insn4);

  // Force a basic block that ends in neither a jump instruction nor a return
  // instruction. It only contains "insn5". This exercises one of the less
  // common code paths in the topo-sort algorithm.
  // This also gives us a diamond-shaped pattern in our graph, which stresses
  // another aspect of the topo-sort algorithm (namely, the ability to
  // correctly count the incoming branches for subtrees that are not disjunct).
  CodeGen::Node insn6 =
      MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 42, insn5, insn4);

  RunTest(insn6);
}

TEST_F(ProgramTest, ConfusingTails) {
  // This simple program demonstrates https://crbug.com/351103/
  // The two "LOAD 0" instructions are blocks of their own. MergeTails() could
  // be tempted to merge them since they are the same. However, they are
  // not mergeable because they fall-through to non semantically equivalent
  // blocks.
  // Without the fix for this bug, this program should trigger the check in
  // CompileAndCompare: the serialized graphs from the program and its compiled
  // version will differ.
  //
  //  0) LOAD 1  // ???
  //  1) if A == 0x1; then JMP 2 else JMP 3
  //  2) LOAD 0  // System call number
  //  3) if A == 0x2; then JMP 4 else JMP 5
  //  4) LOAD 0  // System call number
  //  5) if A == 0x1; then JMP 6 else JMP 7
  //  6) RET 0
  //  7) RET 1

  CodeGen::Node i7 = MakeInstruction(BPF_RET + BPF_K, 1);
  CodeGen::Node i6 = MakeInstruction(BPF_RET + BPF_K, 0);
  CodeGen::Node i5 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i6, i7);
  CodeGen::Node i4 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i5);
  CodeGen::Node i3 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 2, i4, i5);
  CodeGen::Node i2 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i3);
  CodeGen::Node i1 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i2, i3);
  CodeGen::Node i0 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 1, i1);

  RunTest(i0);
}

TEST_F(ProgramTest, ConfusingTailsBasic) {
  // Without the fix for https://crbug.com/351103/, (see
  // SampleProgramConfusingTails()), this would generate a cyclic graph and
  // crash as the two "LOAD 0" instructions would get merged.
  //
  // 0) LOAD 1  // ???
  // 1) if A == 0x1; then JMP 2 else JMP 3
  // 2) LOAD 0  // System call number
  // 3) if A == 0x2; then JMP 4 else JMP 5
  // 4) LOAD 0  // System call number
  // 5) RET 1

  CodeGen::Node i5 = MakeInstruction(BPF_RET + BPF_K, 1);
  CodeGen::Node i4 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i5);
  CodeGen::Node i3 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 2, i4, i5);
  CodeGen::Node i2 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0, i3);
  CodeGen::Node i1 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i2, i3);
  CodeGen::Node i0 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 1, i1);

  RunTest(i0);
}

TEST_F(ProgramTest, ConfusingTailsMergeable) {
  // This is similar to SampleProgramConfusingTails(), except that
  // instructions 2 and 4 are now RET instructions.
  // In PointerCompare(), this exercises the path where two blocks are of the
  // same length and identical and the last instruction is a JMP or RET, so the
  // following blocks don't need to be looked at and the blocks are mergeable.
  //
  // 0) LOAD 1  // ???
  // 1) if A == 0x1; then JMP 2 else JMP 3
  // 2) RET 42
  // 3) if A == 0x2; then JMP 4 else JMP 5
  // 4) RET 42
  // 5) if A == 0x1; then JMP 6 else JMP 7
  // 6) RET 0
  // 7) RET 1

  CodeGen::Node i7 = MakeInstruction(BPF_RET + BPF_K, 1);
  CodeGen::Node i6 = MakeInstruction(BPF_RET + BPF_K, 0);
  CodeGen::Node i5 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i6, i7);
  CodeGen::Node i4 = MakeInstruction(BPF_RET + BPF_K, 42);
  CodeGen::Node i3 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 2, i4, i5);
  CodeGen::Node i2 = MakeInstruction(BPF_RET + BPF_K, 42);
  CodeGen::Node i1 = MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, i2, i3);
  CodeGen::Node i0 = MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 1, i1);

  RunTest(i0);
}

TEST_F(ProgramTest, InstructionFolding) {
  // Check that simple instructions are folded as expected.
  CodeGen::Node a = MakeInstruction(BPF_RET + BPF_K, 0);
  EXPECT_EQ(a, MakeInstruction(BPF_RET + BPF_K, 0));
  CodeGen::Node b = MakeInstruction(BPF_RET + BPF_K, 1);
  EXPECT_EQ(a, MakeInstruction(BPF_RET + BPF_K, 0));
  EXPECT_EQ(b, MakeInstruction(BPF_RET + BPF_K, 1));
  EXPECT_EQ(b, MakeInstruction(BPF_RET + BPF_K, 1));

  // Check that complex sequences are folded too.
  CodeGen::Node c =
      MakeInstruction(BPF_LD + BPF_W + BPF_ABS, 0,
                      MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, 0x100, a, b));
  EXPECT_EQ(c, MakeInstruction(
                   BPF_LD + BPF_W + BPF_ABS, 0,
                   MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, 0x100, a, b)));

  RunTest(c);
}

TEST_F(ProgramTest, FarBranches) {
  // BPF instructions use 8-bit fields for branch offsets, which means
  // branch targets must be within 255 instructions of the branch
  // instruction. CodeGen abstracts away this detail by inserting jump
  // instructions as needed, which we test here by generating programs
  // that should trigger any interesting boundary conditions.

  // Populate with 260 initial instruction nodes.
  std::vector<CodeGen::Node> nodes;
  nodes.push_back(MakeInstruction(BPF_RET + BPF_K, 0));
  for (size_t i = 1; i < 260; ++i) {
    nodes.push_back(
        MakeInstruction(BPF_ALU + BPF_ADD + BPF_K, i, nodes.back()));
  }

  // Exhaustively test branch offsets near BPF's limits.
  for (size_t jt = 250; jt < 260; ++jt) {
    for (size_t jf = 250; jf < 260; ++jf) {
      nodes.push_back(MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 0,
                                      nodes.rbegin()[jt], nodes.rbegin()[jf]));
      RunTest(nodes.back());
    }
  }
}

TEST_F(ProgramTest, JumpReuse) {
  // As a code size optimization, we try to reuse jumps when possible
  // instead of emitting new ones. Here we make sure that optimization
  // is working as intended.
  //
  // NOTE: To simplify testing, we rely on implementation details
  // about what CodeGen::Node values indicate (i.e., vector indices),
  // but CodeGen users should treat them as opaque values.

  // Populate with 260 initial instruction nodes.
  std::vector<CodeGen::Node> nodes;
  nodes.push_back(MakeInstruction(BPF_RET + BPF_K, 0));
  for (size_t i = 1; i < 260; ++i) {
    nodes.push_back(
        MakeInstruction(BPF_ALU + BPF_ADD + BPF_K, i, nodes.back()));
  }

  // Branching to nodes[0] and nodes[1] should require 3 new
  // instructions: two far jumps plus the branch itself.
  CodeGen::Node one =
      MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 0, nodes[0], nodes[1]);
  EXPECT_EQ(nodes.back() + 3, one);  // XXX: Implementation detail!
  RunTest(one);

  // Branching again to the same target nodes should require only one
  // new instruction, as we can reuse the previous branch's jumps.
  CodeGen::Node two =
      MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, 1, nodes[0], nodes[1]);
  EXPECT_EQ(one + 1, two);  // XXX: Implementation detail!
  RunTest(two);
}

}  // namespace
}  // namespace sandbox