summaryrefslogtreecommitdiff
path: root/ui/gfx/geometry/matrix3_f.h
blob: 7fab2e3e7c7270379297fa5e79e4a6c154709c2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef UI_GFX_GEOMETRY_MATRIX3_F_H_
#define UI_GFX_GEOMETRY_MATRIX3_F_H_

#include "base/logging.h"
#include "ui/gfx/geometry/vector3d_f.h"

namespace gfx {

class GFX_EXPORT Matrix3F {
 public:
  ~Matrix3F();

  static Matrix3F Zeros();
  static Matrix3F Ones();
  static Matrix3F Identity();
  static Matrix3F FromOuterProduct(const Vector3dF& a, const Vector3dF& bt);

  bool IsEqual(const Matrix3F& rhs) const;

  // Element-wise comparison with given precision.
  bool IsNear(const Matrix3F& rhs, float precision) const;

  float get(int i, int j) const {
    return data_[MatrixToArrayCoords(i, j)];
  }

  void set(int i, int j, float v) {
    data_[MatrixToArrayCoords(i, j)] = v;
  }

  void set(float m00, float m01, float m02,
           float m10, float m11, float m12,
           float m20, float m21, float m22) {
    data_[0] = m00;
    data_[1] = m01;
    data_[2] = m02;
    data_[3] = m10;
    data_[4] = m11;
    data_[5] = m12;
    data_[6] = m20;
    data_[7] = m21;
    data_[8] = m22;
  }

  Vector3dF get_row(int i) const {
    return Vector3dF(data_[MatrixToArrayCoords(i, 0)],
                     data_[MatrixToArrayCoords(i, 1)],
                     data_[MatrixToArrayCoords(i, 2)]);
  }

  Vector3dF get_column(int i) const {
    return Vector3dF(
      data_[MatrixToArrayCoords(0, i)],
      data_[MatrixToArrayCoords(1, i)],
      data_[MatrixToArrayCoords(2, i)]);
  }

  void set_column(int i, const Vector3dF& c) {
    data_[MatrixToArrayCoords(0, i)] = c.x();
    data_[MatrixToArrayCoords(1, i)] = c.y();
    data_[MatrixToArrayCoords(2, i)] = c.z();
  }

  // Produces a new matrix by adding the elements of |rhs| to this matrix
  Matrix3F Add(const Matrix3F& rhs) const;
  // Produces a new matrix by subtracting elements of |rhs| from this matrix.
  Matrix3F Subtract(const Matrix3F& rhs) const;

  // Returns an inverse of this if the matrix is non-singular, zero (== Zero())
  // otherwise.
  Matrix3F Inverse() const;

  // Returns a transpose of this matrix.
  Matrix3F Transpose() const;

  // Value of the determinant of the matrix.
  float Determinant() const;

  // Trace (sum of diagonal elements) of the matrix.
  float Trace() const {
    return data_[MatrixToArrayCoords(0, 0)] +
        data_[MatrixToArrayCoords(1, 1)] +
        data_[MatrixToArrayCoords(2, 2)];
  }

  // Compute eigenvalues and (optionally) normalized eigenvectors of
  // a positive defnite matrix *this. Eigenvectors are computed only if
  // non-null |eigenvectors| matrix is passed. If it is NULL, the routine
  // will not attempt to compute eigenvectors but will still return eigenvalues
  // if they can be computed.
  // If eigenvalues cannot be computed (the matrix does not meet constraints)
  // the 0-vector is returned. Note that to retrieve eigenvalues, the matrix
  // only needs to be symmetric while eigenvectors require it to be
  // positive-definite. Passing a non-positive definite matrix will result in
  // NaNs in vectors which cannot be computed.
  // Eigenvectors are placed as column in |eigenvectors| in order corresponding
  // to eigenvalues.
  Vector3dF SolveEigenproblem(Matrix3F* eigenvectors) const;

  std::string ToString() const;

 private:
  Matrix3F();  // Uninitialized default.

  static int MatrixToArrayCoords(int i, int j) {
    DCHECK(i >= 0 && i < 3);
    DCHECK(j >= 0 && j < 3);
    return i * 3 + j;
  }

  float data_[9];
};

inline bool operator==(const Matrix3F& lhs, const Matrix3F& rhs) {
  return lhs.IsEqual(rhs);
}

// Matrix addition. Produces a new matrix by adding the corresponding elements
// together.
inline Matrix3F operator+(const Matrix3F& lhs, const Matrix3F& rhs) {
  return lhs.Add(rhs);
}

// Matrix subtraction. Produces a new matrix by subtracting elements of rhs
// from corresponding elements of lhs.
inline Matrix3F operator-(const Matrix3F& lhs, const Matrix3F& rhs) {
  return lhs.Subtract(rhs);
}

GFX_EXPORT Matrix3F MatrixProduct(const Matrix3F& lhs, const Matrix3F& rhs);
GFX_EXPORT Vector3dF MatrixProduct(const Matrix3F& lhs, const Vector3dF& rhs);

}  // namespace gfx

#endif  // UI_GFX_GEOMETRY_MATRIX3_F_H_