summaryrefslogtreecommitdiff
path: root/ui/gfx/geometry/rect.h
blob: 1858d44d2c765537100072f4f0d845c91d2d2c9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Defines a simple integer rectangle class.  The containment semantics
// are array-like; that is, the coordinate (x, y) is considered to be
// contained by the rectangle, but the coordinate (x + width, y) is not.
// The class will happily let you create malformed rectangles (that is,
// rectangles with negative width and/or height), but there will be assertions
// in the operations (such as Contains()) to complain in this case.

#ifndef UI_GFX_GEOMETRY_RECT_H_
#define UI_GFX_GEOMETRY_RECT_H_

#include <cmath>
#include <iosfwd>
#include <string>

#include "base/logging.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/safe_integer_conversions.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d.h"

#if defined(OS_WIN)
typedef struct tagRECT RECT;
#elif defined(OS_MACOSX)
typedef struct CGRect CGRect;
#endif

namespace gfx {

class Insets;

class GFX_EXPORT Rect {
 public:
  constexpr Rect() = default;
  constexpr Rect(int width, int height) : size_(width, height) {}
  constexpr Rect(int x, int y, int width, int height)
      : origin_(x, y),
        size_(GetClampedValue(x, width), GetClampedValue(y, height)) {}
  constexpr explicit Rect(const Size& size) : size_(size) {}
  constexpr Rect(const Point& origin, const Size& size)
      : origin_(origin),
        size_(GetClampedValue(origin.x(), size.width()),
              GetClampedValue(origin.y(), size.height())) {}

#if defined(OS_WIN)
  explicit Rect(const RECT& r);
#elif defined(OS_MACOSX)
  explicit Rect(const CGRect& r);
#endif

#if defined(OS_WIN)
  // Construct an equivalent Win32 RECT object.
  RECT ToRECT() const;
#elif defined(OS_MACOSX)
  // Construct an equivalent CoreGraphics object.
  CGRect ToCGRect() const;
#endif

  constexpr int x() const { return origin_.x(); }
  void set_x(int x) {
    origin_.set_x(x);
    size_.set_width(GetClampedValue(x, width()));
  }

  constexpr int y() const { return origin_.y(); }
  void set_y(int y) {
    origin_.set_y(y);
    size_.set_height(GetClampedValue(y, height()));
  }

  constexpr int width() const { return size_.width(); }
  void set_width(int width) { size_.set_width(GetClampedValue(x(), width)); }

  constexpr int height() const { return size_.height(); }
  void set_height(int height) {
    size_.set_height(GetClampedValue(y(), height));
  }

  constexpr const Point& origin() const { return origin_; }
  void set_origin(const Point& origin) {
    origin_ = origin;
    // Ensure that width and height remain valid.
    set_width(width());
    set_height(height());
  }

  constexpr const Size& size() const { return size_; }
  void set_size(const Size& size) {
    set_width(size.width());
    set_height(size.height());
  }

  constexpr int right() const { return x() + width(); }
  constexpr int bottom() const { return y() + height(); }

  constexpr Point top_right() const { return Point(right(), y()); }
  constexpr Point bottom_left() const { return Point(x(), bottom()); }
  constexpr Point bottom_right() const { return Point(right(), bottom()); }

  Vector2d OffsetFromOrigin() const { return Vector2d(x(), y()); }

  void SetRect(int x, int y, int width, int height) {
    origin_.SetPoint(x, y);
    // Ensure that width and height remain valid.
    set_width(width);
    set_height(height);
  }

  // Use in place of SetRect() when you know the edges of the rectangle instead
  // of the dimensions, rather than trying to determine the width/height
  // yourself. This safely handles cases where the width/height would overflow.
  void SetByBounds(int left, int top, int right, int bottom);

  // Shrink the rectangle by a horizontal and vertical distance on all sides.
  void Inset(int horizontal, int vertical) {
    Inset(horizontal, vertical, horizontal, vertical);
  }

  // Shrink the rectangle by the given insets.
  void Inset(const Insets& insets);

  // Shrink the rectangle by the specified amount on each side.
  void Inset(int left, int top, int right, int bottom);

  // Move the rectangle by a horizontal and vertical distance.
  void Offset(int horizontal, int vertical);
  void Offset(const Vector2d& distance) { Offset(distance.x(), distance.y()); }
  void operator+=(const Vector2d& offset);
  void operator-=(const Vector2d& offset);

  Insets InsetsFrom(const Rect& inner) const;

  // Returns true if the area of the rectangle is zero.
  bool IsEmpty() const { return size_.IsEmpty(); }

  // A rect is less than another rect if its origin is less than
  // the other rect's origin. If the origins are equal, then the
  // shortest rect is less than the other. If the origin and the
  // height are equal, then the narrowest rect is less than.
  // This comparison is required to use Rects in sets, or sorted
  // vectors.
  bool operator<(const Rect& other) const;

  // Returns true if the point identified by point_x and point_y falls inside
  // this rectangle.  The point (x, y) is inside the rectangle, but the
  // point (x + width, y + height) is not.
  bool Contains(int point_x, int point_y) const;

  // Returns true if the specified point is contained by this rectangle.
  bool Contains(const Point& point) const {
    return Contains(point.x(), point.y());
  }

  // Returns true if this rectangle contains the specified rectangle.
  bool Contains(const Rect& rect) const;

  // Returns true if this rectangle intersects the specified rectangle.
  // An empty rectangle doesn't intersect any rectangle.
  bool Intersects(const Rect& rect) const;

  // Computes the intersection of this rectangle with the given rectangle.
  void Intersect(const Rect& rect);

  // Computes the union of this rectangle with the given rectangle.  The union
  // is the smallest rectangle containing both rectangles.
  void Union(const Rect& rect);

  // Computes the rectangle resulting from subtracting |rect| from |*this|,
  // i.e. the bounding rect of |Region(*this) - Region(rect)|.
  void Subtract(const Rect& rect);

  // Fits as much of the receiving rectangle into the supplied rectangle as
  // possible, becoming the result. For example, if the receiver had
  // a x-location of 2 and a width of 4, and the supplied rectangle had
  // an x-location of 0 with a width of 5, the returned rectangle would have
  // an x-location of 1 with a width of 4.
  void AdjustToFit(const Rect& rect);

  // Returns the center of this rectangle.
  Point CenterPoint() const;

  // Becomes a rectangle that has the same center point but with a size capped
  // at given |size|.
  void ClampToCenteredSize(const Size& size);

  // Splits |this| in two halves, |left_half| and |right_half|.
  void SplitVertically(Rect* left_half, Rect* right_half) const;

  // Returns true if this rectangle shares an entire edge (i.e., same width or
  // same height) with the given rectangle, and the rectangles do not overlap.
  bool SharesEdgeWith(const Rect& rect) const;

  // Returns the manhattan distance from the rect to the point. If the point is
  // inside the rect, returns 0.
  int ManhattanDistanceToPoint(const Point& point) const;

  // Returns the manhattan distance between the contents of this rect and the
  // contents of the given rect. That is, if the intersection of the two rects
  // is non-empty then the function returns 0. If the rects share a side, it
  // returns the smallest non-zero value appropriate for int.
  int ManhattanInternalDistance(const Rect& rect) const;

  std::string ToString() const;

  bool ApproximatelyEqual(const Rect& rect, int tolerance) const;

 private:
  gfx::Point origin_;
  gfx::Size size_;

  // Returns true iff a+b would overflow max int.
  static constexpr bool AddWouldOverflow(int a, int b) {
    // In this function, GCC tries to make optimizations that would only work if
    // max - a wouldn't overflow but it isn't smart enough to notice that a > 0.
    // So cast everything to unsigned to avoid this.  As it is guaranteed that
    // max - a and b are both already positive, the cast is a noop.
    //
    // This is intended to be: a > 0 && max - a < b
    return a > 0 && b > 0 &&
           static_cast<unsigned>(std::numeric_limits<int>::max() - a) <
               static_cast<unsigned>(b);
  }

  // Clamp the size to avoid integer overflow in bottom() and right().
  // This returns the width given an origin and a width.
  // TODO(enne): this should probably use base::SaturatedAddition, but that
  // function is not a constexpr.
  static constexpr int GetClampedValue(int origin, int size) {
    return AddWouldOverflow(origin, size)
               ? std::numeric_limits<int>::max() - origin
               : size;
  }
};

inline bool operator==(const Rect& lhs, const Rect& rhs) {
  return lhs.origin() == rhs.origin() && lhs.size() == rhs.size();
}

inline bool operator!=(const Rect& lhs, const Rect& rhs) {
  return !(lhs == rhs);
}

GFX_EXPORT Rect operator+(const Rect& lhs, const Vector2d& rhs);
GFX_EXPORT Rect operator-(const Rect& lhs, const Vector2d& rhs);

inline Rect operator+(const Vector2d& lhs, const Rect& rhs) {
  return rhs + lhs;
}

GFX_EXPORT Rect IntersectRects(const Rect& a, const Rect& b);
GFX_EXPORT Rect UnionRects(const Rect& a, const Rect& b);
GFX_EXPORT Rect SubtractRects(const Rect& a, const Rect& b);

// Constructs a rectangle with |p1| and |p2| as opposite corners.
//
// This could also be thought of as "the smallest rect that contains both
// points", except that we consider points on the right/bottom edges of the
// rect to be outside the rect.  So technically one or both points will not be
// contained within the rect, because they will appear on one of these edges.
GFX_EXPORT Rect BoundingRect(const Point& p1, const Point& p2);

// Scales the rect and returns the enclosing rect.  Use this only the inputs are
// known to not overflow.  Use ScaleToEnclosingRectSafe if the inputs are
// unknown and need to use saturated math.
inline Rect ScaleToEnclosingRect(const Rect& rect,
                                 float x_scale,
                                 float y_scale) {
  if (x_scale == 1.f && y_scale == 1.f)
    return rect;
  // These next functions cast instead of using e.g. ToFlooredInt() because we
  // haven't checked to ensure that the clamping behavior of the helper
  // functions doesn't degrade performance, and callers shouldn't be passing
  // values that cause overflow anyway.
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::floor(rect.x() * x_scale)));
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::floor(rect.y() * y_scale)));
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::ceil(rect.right() * x_scale)));
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::ceil(rect.bottom() * y_scale)));
  int x = static_cast<int>(std::floor(rect.x() * x_scale));
  int y = static_cast<int>(std::floor(rect.y() * y_scale));
  int r = rect.width() == 0 ?
      x : static_cast<int>(std::ceil(rect.right() * x_scale));
  int b = rect.height() == 0 ?
      y : static_cast<int>(std::ceil(rect.bottom() * y_scale));
  return Rect(x, y, r - x, b - y);
}

inline Rect ScaleToEnclosingRect(const Rect& rect, float scale) {
  return ScaleToEnclosingRect(rect, scale, scale);
}

// ScaleToEnclosingRect but clamping instead of asserting if the resulting rect
// would overflow.
inline Rect ScaleToEnclosingRectSafe(const Rect& rect,
                                     float x_scale,
                                     float y_scale) {
  if (x_scale == 1.f && y_scale == 1.f)
    return rect;
  int x = base::saturated_cast<int>(std::floor(rect.x() * x_scale));
  int y = base::saturated_cast<int>(std::floor(rect.y() * y_scale));
  int w = base::saturated_cast<int>(std::ceil(rect.width() * x_scale));
  int h = base::saturated_cast<int>(std::ceil(rect.height() * y_scale));
  return Rect(x, y, w, h);
}

inline Rect ScaleToEnclosingRectSafe(const Rect& rect, float scale) {
  return ScaleToEnclosingRectSafe(rect, scale, scale);
}

inline Rect ScaleToEnclosedRect(const Rect& rect,
                                float x_scale,
                                float y_scale) {
  if (x_scale == 1.f && y_scale == 1.f)
    return rect;
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::ceil(rect.x() * x_scale)));
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::ceil(rect.y() * y_scale)));
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::floor(rect.right() * x_scale)));
  DCHECK(base::IsValueInRangeForNumericType<int>(
      std::floor(rect.bottom() * y_scale)));
  int x = static_cast<int>(std::ceil(rect.x() * x_scale));
  int y = static_cast<int>(std::ceil(rect.y() * y_scale));
  int r = rect.width() == 0 ?
      x : static_cast<int>(std::floor(rect.right() * x_scale));
  int b = rect.height() == 0 ?
      y : static_cast<int>(std::floor(rect.bottom() * y_scale));
  return Rect(x, y, r - x, b - y);
}

inline Rect ScaleToEnclosedRect(const Rect& rect, float scale) {
  return ScaleToEnclosedRect(rect, scale, scale);
}

// This is declared here for use in gtest-based unit tests but is defined in
// the //ui/gfx:test_support target. Depend on that to use this in your unit
// test. This should not be used in production code - call ToString() instead.
void PrintTo(const Rect& rect, ::std::ostream* os);

}  // namespace gfx

#endif  // UI_GFX_GEOMETRY_RECT_H_