aboutsummaryrefslogtreecommitdiff
path: root/src/sync/mu.rs
blob: 26735d1be4af2c3b5f2af4bb69214f9b025bc74b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
// Copyright 2020 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use std::cell::UnsafeCell;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::sync::atomic::{spin_loop_hint, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread::yield_now;

use crate::sync::waiter::{Kind as WaiterKind, Waiter, WaiterAdapter, WaiterList, WaitingFor};

// Set when the mutex is exclusively locked.
const LOCKED: usize = 1 << 0;
// Set when there are one or more threads waiting to acquire the lock.
const HAS_WAITERS: usize = 1 << 1;
// Set when a thread has been woken up from the wait queue. Cleared when that thread either acquires
// the lock or adds itself back into the wait queue. Used to prevent unnecessary wake ups when a
// thread has been removed from the wait queue but has not gotten CPU time yet.
const DESIGNATED_WAKER: usize = 1 << 2;
// Used to provide exclusive access to the `waiters` field in `Mutex`. Should only be held while
// modifying the waiter list.
const SPINLOCK: usize = 1 << 3;
// Set when a thread that wants an exclusive lock adds itself to the wait queue. New threads
// attempting to acquire a shared lock will be preventing from getting it when this bit is set.
// However, this bit is ignored once a thread has gone through the wait queue at least once.
const WRITER_WAITING: usize = 1 << 4;
// Set when a thread has gone through the wait queue many times but has failed to acquire the lock
// every time it is woken up. When this bit is set, all other threads are prevented from acquiring
// the lock until the thread that set the `LONG_WAIT` bit has acquired the lock.
const LONG_WAIT: usize = 1 << 5;
// The bit that is added to the mutex state in order to acquire a shared lock. Since more than one
// thread can acquire a shared lock, we cannot use a single bit. Instead we use all the remaining
// bits in the state to track the number of threads that have acquired a shared lock.
const READ_LOCK: usize = 1 << 8;
// Mask used for checking if any threads currently hold a shared lock.
const READ_MASK: usize = !0xff;
// Mask used to check if the lock is held in either shared or exclusive mode.
const ANY_LOCK: usize = LOCKED | READ_MASK;

// The number of times the thread should just spin and attempt to re-acquire the lock.
const SPIN_THRESHOLD: usize = 7;

// The number of times the thread needs to go through the wait queue before it sets the `LONG_WAIT`
// bit and forces all other threads to wait for it to acquire the lock. This value is set relatively
// high so that we don't lose the benefit of having running threads unless it is absolutely
// necessary.
const LONG_WAIT_THRESHOLD: usize = 19;

// Common methods between shared and exclusive locks.
trait Kind {
    // The bits that must be zero for the thread to acquire this kind of lock. If any of these bits
    // are not zero then the thread will first spin and retry a few times before adding itself to
    // the wait queue.
    fn zero_to_acquire() -> usize;

    // The bit that must be added in order to acquire this kind of lock. This should either be
    // `LOCKED` or `READ_LOCK`.
    fn add_to_acquire() -> usize;

    // The bits that should be set when a thread adds itself to the wait queue while waiting to
    // acquire this kind of lock.
    fn set_when_waiting() -> usize;

    // The bits that should be cleared when a thread acquires this kind of lock.
    fn clear_on_acquire() -> usize;

    // The waiter that a thread should use when waiting to acquire this kind of lock.
    fn new_waiter(raw: &RawMutex) -> Arc<Waiter>;
}

// A lock type for shared read-only access to the data. More than one thread may hold this kind of
// lock simultaneously.
struct Shared;

impl Kind for Shared {
    fn zero_to_acquire() -> usize {
        LOCKED | WRITER_WAITING | LONG_WAIT
    }

    fn add_to_acquire() -> usize {
        READ_LOCK
    }

    fn set_when_waiting() -> usize {
        0
    }

    fn clear_on_acquire() -> usize {
        0
    }

    fn new_waiter(raw: &RawMutex) -> Arc<Waiter> {
        Arc::new(Waiter::new(
            WaiterKind::Shared,
            cancel_waiter,
            raw as *const RawMutex as usize,
            WaitingFor::Mutex,
        ))
    }
}

// A lock type for mutually exclusive read-write access to the data. Only one thread can hold this
// kind of lock at a time.
struct Exclusive;

impl Kind for Exclusive {
    fn zero_to_acquire() -> usize {
        LOCKED | READ_MASK | LONG_WAIT
    }

    fn add_to_acquire() -> usize {
        LOCKED
    }

    fn set_when_waiting() -> usize {
        WRITER_WAITING
    }

    fn clear_on_acquire() -> usize {
        WRITER_WAITING
    }

    fn new_waiter(raw: &RawMutex) -> Arc<Waiter> {
        Arc::new(Waiter::new(
            WaiterKind::Exclusive,
            cancel_waiter,
            raw as *const RawMutex as usize,
            WaitingFor::Mutex,
        ))
    }
}

// Scan `waiters` and return the ones that should be woken up. Also returns any bits that should be
// set in the mutex state when the current thread releases the spin lock protecting the waiter list.
//
// If the first waiter is trying to acquire a shared lock, then all waiters in the list that are
// waiting for a shared lock are also woken up. If any waiters waiting for an exclusive lock are
// found when iterating through the list, then the returned `usize` contains the `WRITER_WAITING`
// bit, which should be set when the thread releases the spin lock.
//
// If the first waiter is trying to acquire an exclusive lock, then only that waiter is returned and
// no bits are set in the returned `usize`.
fn get_wake_list(waiters: &mut WaiterList) -> (WaiterList, usize) {
    let mut to_wake = WaiterList::new(WaiterAdapter::new());
    let mut set_on_release = 0;
    let mut cursor = waiters.front_mut();

    let mut waking_readers = false;
    while let Some(w) = cursor.get() {
        match w.kind() {
            WaiterKind::Exclusive if !waking_readers => {
                // This is the first waiter and it's a writer. No need to check the other waiters.
                let waiter = cursor.remove().unwrap();
                waiter.set_waiting_for(WaitingFor::None);
                to_wake.push_back(waiter);
                break;
            }

            WaiterKind::Shared => {
                // This is a reader and the first waiter in the list was not a writer so wake up all
                // the readers in the wait list.
                let waiter = cursor.remove().unwrap();
                waiter.set_waiting_for(WaitingFor::None);
                to_wake.push_back(waiter);
                waking_readers = true;
            }

            WaiterKind::Exclusive => {
                // We found a writer while looking for more readers to wake up. Set the
                // `WRITER_WAITING` bit to prevent any new readers from acquiring the lock. All
                // readers currently in the wait list will ignore this bit since they already waited
                // once.
                set_on_release |= WRITER_WAITING;
                cursor.move_next();
            }
        }
    }

    (to_wake, set_on_release)
}

#[inline]
fn cpu_relax(iterations: usize) {
    for _ in 0..iterations {
        spin_loop_hint();
    }
}

pub(crate) struct RawMutex {
    state: AtomicUsize,
    waiters: UnsafeCell<WaiterList>,
}

impl RawMutex {
    pub fn new() -> RawMutex {
        RawMutex {
            state: AtomicUsize::new(0),
            waiters: UnsafeCell::new(WaiterList::new(WaiterAdapter::new())),
        }
    }

    #[inline]
    pub async fn lock(&self) {
        match self
            .state
            .compare_exchange_weak(0, LOCKED, Ordering::Acquire, Ordering::Relaxed)
        {
            Ok(_) => {}
            Err(oldstate) => {
                // If any bits that should be zero are not zero or if we fail to acquire the lock
                // with a single compare_exchange then go through the slow path.
                if (oldstate & Exclusive::zero_to_acquire()) != 0
                    || self
                        .state
                        .compare_exchange_weak(
                            oldstate,
                            (oldstate + Exclusive::add_to_acquire())
                                & !Exclusive::clear_on_acquire(),
                            Ordering::Acquire,
                            Ordering::Relaxed,
                        )
                        .is_err()
                {
                    self.lock_slow::<Exclusive>(0, 0).await;
                }
            }
        }
    }

    #[inline]
    pub async fn read_lock(&self) {
        match self
            .state
            .compare_exchange_weak(0, READ_LOCK, Ordering::Acquire, Ordering::Relaxed)
        {
            Ok(_) => {}
            Err(oldstate) => {
                if (oldstate & Shared::zero_to_acquire()) != 0
                    || self
                        .state
                        .compare_exchange_weak(
                            oldstate,
                            (oldstate + Shared::add_to_acquire()) & !Shared::clear_on_acquire(),
                            Ordering::Acquire,
                            Ordering::Relaxed,
                        )
                        .is_err()
                {
                    self.lock_slow::<Shared>(0, 0).await;
                }
            }
        }
    }

    // Slow path for acquiring the lock. `clear` should contain any bits that need to be cleared
    // when the lock is acquired. Any bits set in `zero_mask` are cleared from the bits returned by
    // `K::zero_to_acquire()`.
    #[cold]
    async fn lock_slow<K: Kind>(&self, mut clear: usize, zero_mask: usize) {
        let mut zero_to_acquire = K::zero_to_acquire() & !zero_mask;

        let mut spin_count = 0;
        let mut wait_count = 0;
        let mut waiter = None;
        loop {
            let oldstate = self.state.load(Ordering::Relaxed);
            //  If all the bits in `zero_to_acquire` are actually zero then try to acquire the lock
            //  directly.
            if (oldstate & zero_to_acquire) == 0 {
                if self
                    .state
                    .compare_exchange_weak(
                        oldstate,
                        (oldstate + K::add_to_acquire()) & !(clear | K::clear_on_acquire()),
                        Ordering::Acquire,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    return;
                }
            } else if (oldstate & SPINLOCK) == 0 {
                // The mutex is locked and the spin lock is available.  Try to add this thread
                // to the waiter queue.
                let w = waiter.get_or_insert_with(|| K::new_waiter(self));
                w.reset(WaitingFor::Mutex);

                if self
                    .state
                    .compare_exchange_weak(
                        oldstate,
                        (oldstate | SPINLOCK | HAS_WAITERS | K::set_when_waiting()) & !clear,
                        Ordering::Acquire,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    let mut set_on_release = 0;

                    // Safe because we have acquired the spin lock and it provides exclusive
                    // access to the waiter queue.
                    if wait_count < LONG_WAIT_THRESHOLD {
                        // Add the waiter to the back of the queue.
                        unsafe { (*self.waiters.get()).push_back(w.clone()) };
                    } else {
                        // This waiter has gone through the queue too many times. Put it in the
                        // front of the queue and block all other threads from acquiring the lock
                        // until this one has acquired it at least once.
                        unsafe { (*self.waiters.get()).push_front(w.clone()) };

                        // Set the LONG_WAIT bit to prevent all other threads from acquiring the
                        // lock.
                        set_on_release |= LONG_WAIT;

                        // Make sure we clear the LONG_WAIT bit when we do finally get the lock.
                        clear |= LONG_WAIT;

                        // Since we set the LONG_WAIT bit we shouldn't allow that bit to prevent us
                        // from acquiring the lock.
                        zero_to_acquire &= !LONG_WAIT;
                    }

                    // Release the spin lock.
                    let mut state = oldstate;
                    loop {
                        match self.state.compare_exchange_weak(
                            state,
                            (state | set_on_release) & !SPINLOCK,
                            Ordering::Release,
                            Ordering::Relaxed,
                        ) {
                            Ok(_) => break,
                            Err(w) => state = w,
                        }
                    }

                    // Now wait until we are woken.
                    w.wait().await;

                    // The `DESIGNATED_WAKER` bit gets set when this thread is woken up by the
                    // thread that originally held the lock. While this bit is set, no other waiters
                    // will be woken up so it's important to clear it the next time we try to
                    // acquire the main lock or the spin lock.
                    clear |= DESIGNATED_WAKER;

                    // Now that the thread has waited once, we no longer care if there is a writer
                    // waiting. Only the limits of mutual exclusion can prevent us from acquiring
                    // the lock.
                    zero_to_acquire &= !WRITER_WAITING;

                    // Reset the spin count since we just went through the wait queue.
                    spin_count = 0;

                    // Increment the wait count since we went through the wait queue.
                    wait_count += 1;

                    // Skip the `cpu_relax` below.
                    continue;
                }
            }

            // Both the lock and the spin lock are held by one or more other threads. First, we'll
            // spin a few times in case we can acquire the lock or the spin lock. If that fails then
            // we yield because we might be preventing the threads that do hold the 2 locks from
            // getting cpu time.
            if spin_count < SPIN_THRESHOLD {
                cpu_relax(1 << spin_count);
                spin_count += 1;
            } else {
                yield_now();
            }
        }
    }

    #[inline]
    pub fn unlock(&self) {
        // Fast path, if possible. We can directly clear the locked bit since we have exclusive
        // access to the mutex.
        let oldstate = self.state.fetch_sub(LOCKED, Ordering::Release);

        // Panic if we just tried to unlock a mutex that wasn't held by this thread. This shouldn't
        // really be possible since `unlock` is not a public method.
        debug_assert_eq!(
            oldstate & READ_MASK,
            0,
            "`unlock` called on mutex held in read-mode"
        );
        debug_assert_ne!(
            oldstate & LOCKED,
            0,
            "`unlock` called on mutex not held in write-mode"
        );

        if (oldstate & HAS_WAITERS) != 0 && (oldstate & DESIGNATED_WAKER) == 0 {
            // The oldstate has waiters but no designated waker has been chosen yet.
            self.unlock_slow();
        }
    }

    #[inline]
    pub fn read_unlock(&self) {
        // Fast path, if possible. We can directly subtract the READ_LOCK bit since we had
        // previously added it.
        let oldstate = self.state.fetch_sub(READ_LOCK, Ordering::Release);

        debug_assert_eq!(
            oldstate & LOCKED,
            0,
            "`read_unlock` called on mutex held in write-mode"
        );
        debug_assert_ne!(
            oldstate & READ_MASK,
            0,
            "`read_unlock` called on mutex not held in read-mode"
        );

        if (oldstate & HAS_WAITERS) != 0
            && (oldstate & DESIGNATED_WAKER) == 0
            && (oldstate & READ_MASK) == READ_LOCK
        {
            // There are waiters, no designated waker has been chosen yet, and the last reader is
            // unlocking so we have to take the slow path.
            self.unlock_slow();
        }
    }

    #[cold]
    fn unlock_slow(&self) {
        let mut spin_count = 0;

        loop {
            let oldstate = self.state.load(Ordering::Relaxed);
            if (oldstate & HAS_WAITERS) == 0 || (oldstate & DESIGNATED_WAKER) != 0 {
                // No more waiters or a designated waker has been chosen. Nothing left for us to do.
                return;
            } else if (oldstate & SPINLOCK) == 0 {
                // The spin lock is not held by another thread. Try to acquire it. Also set the
                // `DESIGNATED_WAKER` bit since we are likely going to wake up one or more threads.
                if self
                    .state
                    .compare_exchange_weak(
                        oldstate,
                        oldstate | SPINLOCK | DESIGNATED_WAKER,
                        Ordering::Acquire,
                        Ordering::Relaxed,
                    )
                    .is_ok()
                {
                    // Acquired the spinlock. Try to wake a waiter. We may also end up wanting to
                    // clear the HAS_WAITER and DESIGNATED_WAKER bits so start collecting the bits
                    // to be cleared.
                    let mut clear = SPINLOCK;

                    // Safe because the spinlock guarantees exclusive access to the waiter list and
                    // the reference does not escape this function.
                    let waiters = unsafe { &mut *self.waiters.get() };
                    let (wake_list, set_on_release) = get_wake_list(waiters);

                    // If the waiter list is now empty, clear the HAS_WAITERS bit.
                    if waiters.is_empty() {
                        clear |= HAS_WAITERS;
                    }

                    if wake_list.is_empty() {
                        // Since we are not going to wake any waiters clear the DESIGNATED_WAKER bit
                        // that we set when we acquired the spin lock.
                        clear |= DESIGNATED_WAKER;
                    }

                    // Release the spin lock and clear any other bits as necessary. Also, set any
                    // bits returned by `get_wake_list`. For now, this is just the `WRITER_WAITING`
                    // bit, which needs to be set when we are waking up a bunch of readers and there
                    // are still writers in the wait queue. This will prevent any readers that
                    // aren't in `wake_list` from acquiring the read lock.
                    let mut state = oldstate;
                    loop {
                        match self.state.compare_exchange_weak(
                            state,
                            (state | set_on_release) & !clear,
                            Ordering::Release,
                            Ordering::Relaxed,
                        ) {
                            Ok(_) => break,
                            Err(w) => state = w,
                        }
                    }

                    // Now wake the waiters, if any.
                    for w in wake_list {
                        w.wake();
                    }

                    // We're done.
                    return;
                }
            }

            // Spin and try again.  It's ok to block here as we have already released the lock.
            if spin_count < SPIN_THRESHOLD {
                cpu_relax(1 << spin_count);
                spin_count += 1;
            } else {
                yield_now();
            }
        }
    }

    // Transfer waiters from the `Condvar` wait list to the `Mutex` wait list. `all_readers` may
    // be set to true if all waiters are waiting to acquire a shared lock but should not be true if
    // there is even one waiter waiting on an exclusive lock.
    //
    // This is similar to what the `FUTEX_CMP_REQUEUE` flag does on linux.
    pub fn transfer_waiters(&self, new_waiters: &mut WaiterList, all_readers: bool) {
        if new_waiters.is_empty() {
            return;
        }

        let mut oldstate = self.state.load(Ordering::Relaxed);
        let can_acquire_read_lock = (oldstate & Shared::zero_to_acquire()) == 0;

        // The lock needs to be held in some mode or else the waiters we transfer now may never get
        // woken up. Additionally, if all the new waiters are readers and can acquire the lock now
        // then we can just wake them up.
        if (oldstate & ANY_LOCK) == 0 || (all_readers && can_acquire_read_lock) {
            // Nothing to do here. The Condvar will wake up all the waiters left in `new_waiters`.
            return;
        }

        if (oldstate & SPINLOCK) == 0
            && self
                .state
                .compare_exchange_weak(
                    oldstate,
                    oldstate | SPINLOCK | HAS_WAITERS,
                    Ordering::Acquire,
                    Ordering::Relaxed,
                )
                .is_ok()
        {
            let mut transferred_writer = false;

            // Safe because the spin lock guarantees exclusive access and the reference does not
            // escape this function.
            let waiters = unsafe { &mut *self.waiters.get() };

            let mut current = new_waiters.front_mut();
            while let Some(w) = current.get() {
                match w.kind() {
                    WaiterKind::Shared => {
                        if can_acquire_read_lock {
                            current.move_next();
                        } else {
                            // We need to update the cancellation function since we're moving this
                            // waiter into our queue. Also update the waiting to indicate that it is
                            // now in the Mutex's waiter list.
                            let w = current.remove().unwrap();
                            w.set_cancel(cancel_waiter, self as *const RawMutex as usize);
                            w.set_waiting_for(WaitingFor::Mutex);
                            waiters.push_back(w);
                        }
                    }
                    WaiterKind::Exclusive => {
                        transferred_writer = true;
                        // We need to update the cancellation function since we're moving this
                        // waiter into our queue. Also update the waiting to indicate that it is
                        // now in the Mutex's waiter list.
                        let w = current.remove().unwrap();
                        w.set_cancel(cancel_waiter, self as *const RawMutex as usize);
                        w.set_waiting_for(WaitingFor::Mutex);
                        waiters.push_back(w);
                    }
                }
            }

            let set_on_release = if transferred_writer {
                WRITER_WAITING
            } else {
                0
            };

            // If we didn't actually transfer any waiters, clear the HAS_WAITERS bit that we set
            // earlier when we acquired the spin lock.
            let clear = if waiters.is_empty() {
                SPINLOCK | HAS_WAITERS
            } else {
                SPINLOCK
            };

            while self
                .state
                .compare_exchange_weak(
                    oldstate,
                    (oldstate | set_on_release) & !clear,
                    Ordering::Release,
                    Ordering::Relaxed,
                )
                .is_err()
            {
                spin_loop_hint();
                oldstate = self.state.load(Ordering::Relaxed);
            }
        }

        // The Condvar will wake up any waiters still left in the queue.
    }

    fn cancel_waiter(&self, waiter: &Waiter, wake_next: bool) -> bool {
        let mut oldstate = self.state.load(Ordering::Relaxed);
        while oldstate & SPINLOCK != 0
            || self
                .state
                .compare_exchange_weak(
                    oldstate,
                    oldstate | SPINLOCK,
                    Ordering::Acquire,
                    Ordering::Relaxed,
                )
                .is_err()
        {
            spin_loop_hint();
            oldstate = self.state.load(Ordering::Relaxed);
        }

        // Safe because the spin lock provides exclusive access and the reference does not escape
        // this function.
        let waiters = unsafe { &mut *self.waiters.get() };

        let mut clear = SPINLOCK;

        // If we are about to remove the first waiter in the wait list, then clear the LONG_WAIT
        // bit. Also clear the bit if we are going to be waking some other waiters. In this case the
        // waiter that set the bit may have already been removed from the waiter list (and could be
        // the one that is currently being dropped). If it is still in the waiter list then clearing
        // this bit may starve it for one more iteration through the lock_slow() loop, whereas not
        // clearing this bit could cause a deadlock if the waiter that set it is the one that is
        // being dropped.
        if wake_next
            || waiters
                .front()
                .get()
                .map(|front| front as *const Waiter == waiter as *const Waiter)
                .unwrap_or(false)
        {
            clear |= LONG_WAIT;
        }

        // Don't drop the old waiter while holding the spin lock.
        let old_waiter = if waiter.is_linked() && waiter.is_waiting_for() == WaitingFor::Mutex {
            // We know that the waitir is still linked and is waiting for the mutex, which
            // guarantees that it is still linked into `self.waiters`.
            let mut cursor = unsafe { waiters.cursor_mut_from_ptr(waiter as *const Waiter) };
            cursor.remove()
        } else {
            None
        };

        let (wake_list, set_on_release) =
            if wake_next || waiter.is_waiting_for() == WaitingFor::None {
                // Either the waiter was already woken or it's been removed from the mutex's waiter
                // list and is going to be woken. Either way, we need to wake up another thread.
                get_wake_list(waiters)
            } else {
                (WaiterList::new(WaiterAdapter::new()), 0)
            };

        if waiters.is_empty() {
            clear |= HAS_WAITERS;
        }

        if wake_list.is_empty() {
            // We're not waking any other threads so clear the DESIGNATED_WAKER bit. In the worst
            // case this leads to an additional thread being woken up but we risk a deadlock if we
            // don't clear it.
            clear |= DESIGNATED_WAKER;
        }

        if let WaiterKind::Exclusive = waiter.kind() {
            // The waiter being dropped is a writer so clear the writer waiting bit for now. If we
            // found more writers in the list while fetching waiters to wake up then this bit will
            // be set again via `set_on_release`.
            clear |= WRITER_WAITING;
        }

        while self
            .state
            .compare_exchange_weak(
                oldstate,
                (oldstate & !clear) | set_on_release,
                Ordering::Release,
                Ordering::Relaxed,
            )
            .is_err()
        {
            spin_loop_hint();
            oldstate = self.state.load(Ordering::Relaxed);
        }

        for w in wake_list {
            w.wake();
        }

        mem::drop(old_waiter);

        // Canceling a waker is always successful.
        true
    }
}

unsafe impl Send for RawMutex {}
unsafe impl Sync for RawMutex {}

fn cancel_waiter(raw: usize, waiter: &Waiter, wake_next: bool) -> bool {
    let raw_mutex = raw as *const RawMutex;

    // Safe because the thread that owns the waiter that is being canceled must
    // also own a reference to the mutex, which ensures that this pointer is
    // valid.
    unsafe { (*raw_mutex).cancel_waiter(waiter, wake_next) }
}

/// A high-level primitive that provides safe, mutable access to a shared resource.
///
/// Unlike more traditional mutexes, `Mutex` can safely provide both shared, immutable access (via
/// `read_lock()`) as well as exclusive, mutable access (via `lock()`) to an underlying resource
/// with no loss of performance.
///
/// # Poisoning
///
/// `Mutex` does not support lock poisoning so if a thread panics while holding the lock, the
/// poisoned data will be accessible by other threads in your program. If you need to guarantee that
/// other threads cannot access poisoned data then you may wish to wrap this `Mutex` inside another
/// type that provides the poisoning feature. See the implementation of `std::sync::Mutex` for an
/// example of this.
///
///
/// # Fairness
///
/// This `Mutex` implementation does not guarantee that threads will acquire the lock in the same
/// order that they call `lock()` or `read_lock()`. However it will attempt to prevent long-term
/// starvation: if a thread repeatedly fails to acquire the lock beyond a threshold then all other
/// threads will fail to acquire the lock until the starved thread has acquired it.
///
/// Similarly, this `Mutex` will attempt to balance reader and writer threads: once there is a
/// writer thread waiting to acquire the lock no new reader threads will be allowed to acquire it.
/// However, any reader threads that were already waiting will still be allowed to acquire it.
///
/// # Examples
///
/// ```edition2018
/// use std::sync::Arc;
/// use std::thread;
/// use std::sync::mpsc::channel;
///
/// use libchromeos::sync::{block_on, Mutex};
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..N {
///     let (data, tx) = (Arc::clone(&data), tx.clone());
///     thread::spawn(move || {
///         // The shared state can only be accessed once the lock is held.
///         // Our non-atomic increment is safe because we're the only thread
///         // which can access the shared state when the lock is held.
///         let mut data = block_on(data.lock());
///         *data += 1;
///         if *data == N {
///             tx.send(()).unwrap();
///         }
///         // the lock is unlocked here when `data` goes out of scope.
///     });
/// }
///
/// rx.recv().unwrap();
/// ```
pub struct Mutex<T: ?Sized> {
    raw: RawMutex,
    value: UnsafeCell<T>,
}

impl<T> Mutex<T> {
    /// Create a new, unlocked `Mutex` ready for use.
    pub fn new(v: T) -> Mutex<T> {
        Mutex {
            raw: RawMutex::new(),
            value: UnsafeCell::new(v),
        }
    }

    /// Consume the `Mutex` and return the contained value. This method does not perform any locking
    /// as the compiler will guarantee that there are no other references to `self` and the caller
    /// owns the `Mutex`.
    pub fn into_inner(self) -> T {
        // Don't need to acquire the lock because the compiler guarantees that there are
        // no references to `self`.
        self.value.into_inner()
    }
}

impl<T: ?Sized> Mutex<T> {
    /// Acquires exclusive, mutable access to the resource protected by the `Mutex`, blocking the
    /// current thread until it is able to do so. Upon returning, the current thread will be the
    /// only thread with access to the resource. The `Mutex` will be released when the returned
    /// `MutexGuard` is dropped.
    ///
    /// Calling `lock()` while holding a `MutexGuard` or a `MutexReadGuard` will cause a deadlock.
    ///
    /// Callers that are not in an async context may wish to use the `block_on` method to block the
    /// thread until the `Mutex` is acquired.
    #[inline]
    pub async fn lock(&self) -> MutexGuard<'_, T> {
        self.raw.lock().await;

        // Safe because we have exclusive access to `self.value`.
        MutexGuard {
            mu: self,
            value: unsafe { &mut *self.value.get() },
        }
    }

    /// Acquires shared, immutable access to the resource protected by the `Mutex`, blocking the
    /// current thread until it is able to do so. Upon returning there may be other threads that
    /// also have immutable access to the resource but there will not be any threads that have
    /// mutable access to the resource. When the returned `MutexReadGuard` is dropped the thread
    /// releases its access to the resource.
    ///
    /// Calling `read_lock()` while holding a `MutexReadGuard` may deadlock. Calling `read_lock()`
    /// while holding a `MutexGuard` will deadlock.
    ///
    /// Callers that are not in an async context may wish to use the `block_on` method to block the
    /// thread until the `Mutex` is acquired.
    #[inline]
    pub async fn read_lock(&self) -> MutexReadGuard<'_, T> {
        self.raw.read_lock().await;

        // Safe because we have shared read-only access to `self.value`.
        MutexReadGuard {
            mu: self,
            value: unsafe { &*self.value.get() },
        }
    }

    // Called from `Condvar::wait` when the thread wants to reacquire the lock. Since we may
    // directly transfer waiters from the `Condvar` wait list to the `Mutex` wait list (see
    // `transfer_all` below), we cannot call `Mutex::lock` as we also need to clear the
    // `DESIGNATED_WAKER` bit when acquiring the lock. Not doing so will prevent us from waking up
    // any other threads in the wait list.
    #[inline]
    pub(crate) async fn lock_from_cv(&self) -> MutexGuard<'_, T> {
        self.raw.lock_slow::<Exclusive>(DESIGNATED_WAKER, 0).await;

        // Safe because we have exclusive access to `self.value`.
        MutexGuard {
            mu: self,
            value: unsafe { &mut *self.value.get() },
        }
    }

    // Like `lock_from_cv` but for acquiring a shared lock.
    #[inline]
    pub(crate) async fn read_lock_from_cv(&self) -> MutexReadGuard<'_, T> {
        // Threads that have waited in the Condvar's waiter list don't have to care if there is a
        // writer waiting. This also prevents a deadlock in the following case:
        //
        //  * Thread A holds a write lock.
        //  * Thread B is in the mutex's waiter list, also waiting on a write lock.
        //  * Threads C, D, and E are in the condvar's waiter list. C and D want a read lock; E
        //    wants a write lock.
        //  * A calls `cv.notify_all()` while still holding the lock, which transfers C, D, and E
        //    onto the mutex's wait list.
        //  * A releases the lock, which wakes up B.
        //  * B acquires the lock, does some work, and releases the lock. This wakes up C and D.
        //    However, when iterating through the waiter list we find E, which is waiting for a
        //    write lock so we set the WRITER_WAITING bit.
        //  * C and D go through this function to acquire the lock. If we didn't clear the
        //    WRITER_WAITING bit from the zero_to_acquire set then it would prevent C and D from
        //    acquiring the lock and they would add themselves back into the waiter list.
        //  * Now C, D, and E will sit in the waiter list indefinitely unless some other thread
        //    comes along and acquires the lock. On release, it would wake up E and everything would
        //    go back to normal.
        self.raw
            .lock_slow::<Shared>(DESIGNATED_WAKER, WRITER_WAITING)
            .await;

        // Safe because we have exclusive access to `self.value`.
        MutexReadGuard {
            mu: self,
            value: unsafe { &*self.value.get() },
        }
    }

    #[inline]
    fn unlock(&self) {
        self.raw.unlock();
    }

    #[inline]
    fn read_unlock(&self) {
        self.raw.read_unlock();
    }

    pub fn get_mut(&mut self) -> &mut T {
        // Safe because the compiler statically guarantees that are no other references to `self`.
        // This is also why we don't need to acquire the lock first.
        unsafe { &mut *self.value.get() }
    }
}

unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

impl<T: ?Sized + Default> Default for Mutex<T> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(source: T) -> Self {
        Self::new(source)
    }
}

/// An RAII implementation of a "scoped exclusive lock" for a `Mutex`. When this structure is
/// dropped, the lock will be released. The resource protected by the `Mutex` can be accessed via
/// the `Deref` and `DerefMut` implementations of this structure.
pub struct MutexGuard<'a, T: ?Sized + 'a> {
    mu: &'a Mutex<T>,
    value: &'a mut T,
}

impl<'a, T: ?Sized> MutexGuard<'a, T> {
    pub(crate) fn into_inner(self) -> &'a Mutex<T> {
        self.mu
    }

    pub(crate) fn as_raw_mutex(&self) -> &RawMutex {
        &self.mu.raw
    }
}

impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.value
    }
}

impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.value
    }
}

impl<'a, T: ?Sized> Drop for MutexGuard<'a, T> {
    fn drop(&mut self) {
        self.mu.unlock()
    }
}

/// An RAII implementation of a "scoped shared lock" for a `Mutex`. When this structure is dropped,
/// the lock will be released. The resource protected by the `Mutex` can be accessed via the `Deref`
/// implementation of this structure.
pub struct MutexReadGuard<'a, T: ?Sized + 'a> {
    mu: &'a Mutex<T>,
    value: &'a T,
}

impl<'a, T: ?Sized> MutexReadGuard<'a, T> {
    pub(crate) fn into_inner(self) -> &'a Mutex<T> {
        self.mu
    }

    pub(crate) fn as_raw_mutex(&self) -> &RawMutex {
        &self.mu.raw
    }
}

impl<'a, T: ?Sized> Deref for MutexReadGuard<'a, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.value
    }
}

impl<'a, T: ?Sized> Drop for MutexReadGuard<'a, T> {
    fn drop(&mut self) {
        self.mu.read_unlock()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    use std::future::Future;
    use std::mem;
    use std::pin::Pin;
    use std::rc::Rc;
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::{channel, Sender};
    use std::sync::Arc;
    use std::task::{Context, Poll, Waker};
    use std::thread;
    use std::time::Duration;

    use futures::channel::oneshot;
    use futures::task::{waker_ref, ArcWake};
    use futures::{pending, select, FutureExt};
    use futures_executor::{LocalPool, ThreadPool};
    use futures_util::task::LocalSpawnExt;

    use crate::sync::{block_on, Condvar, SpinLock};

    #[derive(Debug, Eq, PartialEq)]
    struct NonCopy(u32);

    // Dummy waker used when we want to manually drive futures.
    struct TestWaker;
    impl ArcWake for TestWaker {
        fn wake_by_ref(_arc_self: &Arc<Self>) {}
    }

    #[test]
    fn it_works() {
        let mu = Mutex::new(NonCopy(13));

        assert_eq!(*block_on(mu.lock()), NonCopy(13));
    }

    #[test]
    fn smoke() {
        let mu = Mutex::new(NonCopy(7));

        mem::drop(block_on(mu.lock()));
        mem::drop(block_on(mu.lock()));
    }

    #[test]
    fn rw_smoke() {
        let mu = Mutex::new(NonCopy(7));

        mem::drop(block_on(mu.lock()));
        mem::drop(block_on(mu.read_lock()));
        mem::drop((block_on(mu.read_lock()), block_on(mu.read_lock())));
        mem::drop(block_on(mu.lock()));
    }

    #[test]
    fn async_smoke() {
        async fn lock(mu: Rc<Mutex<NonCopy>>) {
            mu.lock().await;
        }

        async fn read_lock(mu: Rc<Mutex<NonCopy>>) {
            mu.read_lock().await;
        }

        async fn double_read_lock(mu: Rc<Mutex<NonCopy>>) {
            let first = mu.read_lock().await;
            mu.read_lock().await;

            // Make sure first lives past the second read lock.
            first.as_raw_mutex();
        }

        let mu = Rc::new(Mutex::new(NonCopy(7)));

        let mut ex = LocalPool::new();
        let spawner = ex.spawner();

        spawner
            .spawn_local(lock(Rc::clone(&mu)))
            .expect("Failed to spawn future");
        spawner
            .spawn_local(read_lock(Rc::clone(&mu)))
            .expect("Failed to spawn future");
        spawner
            .spawn_local(double_read_lock(Rc::clone(&mu)))
            .expect("Failed to spawn future");
        spawner
            .spawn_local(lock(Rc::clone(&mu)))
            .expect("Failed to spawn future");

        ex.run();
    }

    #[test]
    fn send() {
        let mu = Mutex::new(NonCopy(19));

        thread::spawn(move || {
            let value = block_on(mu.lock());
            assert_eq!(*value, NonCopy(19));
        })
        .join()
        .unwrap();
    }

    #[test]
    fn arc_nested() {
        // Tests nested mutexes and access to underlying data.
        let mu = Mutex::new(1);
        let arc = Arc::new(Mutex::new(mu));
        thread::spawn(move || {
            let nested = block_on(arc.lock());
            let lock2 = block_on(nested.lock());
            assert_eq!(*lock2, 1);
        })
        .join()
        .unwrap();
    }

    #[test]
    fn arc_access_in_unwind() {
        let arc = Arc::new(Mutex::new(1));
        let arc2 = arc.clone();
        thread::spawn(move || {
            struct Unwinder {
                i: Arc<Mutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *block_on(self.i.lock()) += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join()
        .expect_err("thread did not panic");
        let lock = block_on(arc.lock());
        assert_eq!(*lock, 2);
    }

    #[test]
    fn unsized_value() {
        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
        {
            let b = &mut *block_on(mutex.lock());
            b[0] = 4;
            b[2] = 5;
        }
        let expected: &[i32] = &[4, 2, 5];
        assert_eq!(&*block_on(mutex.lock()), expected);
    }
    #[test]
    fn high_contention() {
        const THREADS: usize = 17;
        const ITERATIONS: usize = 103;

        let mut threads = Vec::with_capacity(THREADS);

        let mu = Arc::new(Mutex::new(0usize));
        for _ in 0..THREADS {
            let mu2 = mu.clone();
            threads.push(thread::spawn(move || {
                for _ in 0..ITERATIONS {
                    *block_on(mu2.lock()) += 1;
                }
            }));
        }

        for t in threads.into_iter() {
            t.join().unwrap();
        }

        assert_eq!(*block_on(mu.read_lock()), THREADS * ITERATIONS);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn high_contention_with_cancel() {
        const TASKS: usize = 17;
        const ITERATIONS: usize = 103;

        async fn increment(mu: Arc<Mutex<usize>>, alt_mu: Arc<Mutex<usize>>, tx: Sender<()>) {
            for _ in 0..ITERATIONS {
                select! {
                    mut count = mu.lock().fuse() => *count += 1,
                    mut count = alt_mu.lock().fuse() => *count += 1,
                }
            }
            tx.send(()).expect("Failed to send completion signal");
        }

        let ex = ThreadPool::new().expect("Failed to create ThreadPool");

        let mu = Arc::new(Mutex::new(0usize));
        let alt_mu = Arc::new(Mutex::new(0usize));

        let (tx, rx) = channel();
        for _ in 0..TASKS {
            ex.spawn_ok(increment(Arc::clone(&mu), Arc::clone(&alt_mu), tx.clone()));
        }

        for _ in 0..TASKS {
            if let Err(e) = rx.recv_timeout(Duration::from_secs(10)) {
                panic!("Error while waiting for threads to complete: {}", e);
            }
        }

        assert_eq!(
            *block_on(mu.read_lock()) + *block_on(alt_mu.read_lock()),
            TASKS * ITERATIONS
        );
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
        assert_eq!(alt_mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn single_thread_async() {
        const TASKS: usize = 17;
        const ITERATIONS: usize = 103;

        // Async closures are unstable.
        async fn increment(mu: Rc<Mutex<usize>>) {
            for _ in 0..ITERATIONS {
                *mu.lock().await += 1;
            }
        }

        let mut ex = LocalPool::new();
        let spawner = ex.spawner();

        let mu = Rc::new(Mutex::new(0usize));
        for _ in 0..TASKS {
            spawner
                .spawn_local(increment(Rc::clone(&mu)))
                .expect("Failed to spawn task");
        }

        ex.run();

        assert_eq!(*block_on(mu.read_lock()), TASKS * ITERATIONS);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn multi_thread_async() {
        const TASKS: usize = 17;
        const ITERATIONS: usize = 103;

        // Async closures are unstable.
        async fn increment(mu: Arc<Mutex<usize>>, tx: Sender<()>) {
            for _ in 0..ITERATIONS {
                *mu.lock().await += 1;
            }
            tx.send(()).expect("Failed to send completion signal");
        }

        let ex = ThreadPool::new().expect("Failed to create ThreadPool");

        let mu = Arc::new(Mutex::new(0usize));
        let (tx, rx) = channel();
        for _ in 0..TASKS {
            ex.spawn_ok(increment(Arc::clone(&mu), tx.clone()));
        }

        for _ in 0..TASKS {
            rx.recv_timeout(Duration::from_secs(5))
                .expect("Failed to receive completion signal");
        }
        assert_eq!(*block_on(mu.read_lock()), TASKS * ITERATIONS);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn get_mut() {
        let mut mu = Mutex::new(NonCopy(13));
        *mu.get_mut() = NonCopy(17);

        assert_eq!(mu.into_inner(), NonCopy(17));
    }

    #[test]
    fn into_inner() {
        let mu = Mutex::new(NonCopy(29));
        assert_eq!(mu.into_inner(), NonCopy(29));
    }

    #[test]
    fn into_inner_drop() {
        struct NeedsDrop(Arc<AtomicUsize>);
        impl Drop for NeedsDrop {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::AcqRel);
            }
        }

        let value = Arc::new(AtomicUsize::new(0));
        let needs_drop = Mutex::new(NeedsDrop(value.clone()));
        assert_eq!(value.load(Ordering::Acquire), 0);

        {
            let inner = needs_drop.into_inner();
            assert_eq!(inner.0.load(Ordering::Acquire), 0);
        }

        assert_eq!(value.load(Ordering::Acquire), 1);
    }

    #[test]
    fn rw_arc() {
        const THREADS: isize = 7;
        const ITERATIONS: isize = 13;

        let mu = Arc::new(Mutex::new(0isize));
        let mu2 = mu.clone();

        let (tx, rx) = channel();
        thread::spawn(move || {
            let mut guard = block_on(mu2.lock());
            for _ in 0..ITERATIONS {
                let tmp = *guard;
                *guard = -1;
                thread::yield_now();
                *guard = tmp + 1;
            }
            tx.send(()).unwrap();
        });

        let mut readers = Vec::with_capacity(10);
        for _ in 0..THREADS {
            let mu3 = mu.clone();
            let handle = thread::spawn(move || {
                let guard = block_on(mu3.read_lock());
                assert!(*guard >= 0);
            });

            readers.push(handle);
        }

        // Wait for the readers to finish their checks.
        for r in readers {
            r.join().expect("One or more readers saw a negative value");
        }

        // Wait for the writer to finish.
        rx.recv_timeout(Duration::from_secs(5)).unwrap();
        assert_eq!(*block_on(mu.read_lock()), ITERATIONS);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn rw_single_thread_async() {
        // A Future that returns `Poll::pending` the first time it is polled and `Poll::Ready` every
        // time after that.
        struct TestFuture {
            polled: bool,
            waker: Arc<SpinLock<Option<Waker>>>,
        }

        impl Future for TestFuture {
            type Output = ();

            fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
                if self.polled {
                    Poll::Ready(())
                } else {
                    self.polled = true;
                    *self.waker.lock() = Some(cx.waker().clone());
                    Poll::Pending
                }
            }
        }

        fn wake_future(waker: Arc<SpinLock<Option<Waker>>>) {
            loop {
                if let Some(waker) = waker.lock().take() {
                    waker.wake();
                    return;
                } else {
                    thread::sleep(Duration::from_millis(10));
                }
            }
        }

        async fn writer(mu: Rc<Mutex<isize>>) {
            let mut guard = mu.lock().await;
            for _ in 0..ITERATIONS {
                let tmp = *guard;
                *guard = -1;
                let waker = Arc::new(SpinLock::new(None));
                let waker2 = Arc::clone(&waker);
                thread::spawn(move || wake_future(waker2));
                let fut = TestFuture {
                    polled: false,
                    waker,
                };
                fut.await;
                *guard = tmp + 1;
            }
        }

        async fn reader(mu: Rc<Mutex<isize>>) {
            let guard = mu.read_lock().await;
            assert!(*guard >= 0);
        }

        const TASKS: isize = 7;
        const ITERATIONS: isize = 13;

        let mu = Rc::new(Mutex::new(0isize));
        let mut ex = LocalPool::new();
        let spawner = ex.spawner();

        spawner
            .spawn_local(writer(Rc::clone(&mu)))
            .expect("Failed to spawn writer");

        for _ in 0..TASKS {
            spawner
                .spawn_local(reader(Rc::clone(&mu)))
                .expect("Failed to spawn reader");
        }

        ex.run();

        assert_eq!(*block_on(mu.read_lock()), ITERATIONS);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn rw_multi_thread_async() {
        async fn writer(mu: Arc<Mutex<isize>>, tx: Sender<()>) {
            let mut guard = mu.lock().await;
            for _ in 0..ITERATIONS {
                let tmp = *guard;
                *guard = -1;
                thread::yield_now();
                *guard = tmp + 1;
            }

            mem::drop(guard);
            tx.send(()).unwrap();
        }

        async fn reader(mu: Arc<Mutex<isize>>, tx: Sender<()>) {
            let guard = mu.read_lock().await;
            assert!(*guard >= 0);

            mem::drop(guard);
            tx.send(()).expect("Failed to send completion message");
        }

        const TASKS: isize = 7;
        const ITERATIONS: isize = 13;

        let mu = Arc::new(Mutex::new(0isize));
        let ex = ThreadPool::new().expect("Failed to create ThreadPool");

        let (txw, rxw) = channel();
        ex.spawn_ok(writer(Arc::clone(&mu), txw));

        let (txr, rxr) = channel();
        for _ in 0..TASKS {
            ex.spawn_ok(reader(Arc::clone(&mu), txr.clone()));
        }

        // Wait for the readers to finish their checks.
        for _ in 0..TASKS {
            rxr.recv_timeout(Duration::from_secs(5))
                .expect("Failed to receive completion message from reader");
        }

        // Wait for the writer to finish.
        rxw.recv_timeout(Duration::from_secs(5))
            .expect("Failed to receive completion message from writer");

        assert_eq!(*block_on(mu.read_lock()), ITERATIONS);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn wake_all_readers() {
        async fn read(mu: Arc<Mutex<()>>) {
            let g = mu.read_lock().await;
            pending!();
            mem::drop(g);
        }

        async fn write(mu: Arc<Mutex<()>>) {
            mu.lock().await;
        }

        let mu = Arc::new(Mutex::new(()));
        let mut futures: [Pin<Box<dyn Future<Output = ()>>>; 5] = [
            Box::pin(read(mu.clone())),
            Box::pin(read(mu.clone())),
            Box::pin(read(mu.clone())),
            Box::pin(write(mu.clone())),
            Box::pin(read(mu.clone())),
        ];
        const NUM_READERS: usize = 4;

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        // Acquire the lock so that the futures cannot get it.
        let g = block_on(mu.lock());

        for r in &mut futures {
            if let Poll::Ready(()) = r.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS,
            HAS_WAITERS
        );

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING,
            WRITER_WAITING
        );

        // Drop the lock. This should allow all readers to make progress. Since they already waited
        // once they should ignore the WRITER_WAITING bit that is currently set.
        mem::drop(g);
        for r in &mut futures {
            if let Poll::Ready(()) = r.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }

        // Check that all readers were able to acquire the lock.
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & READ_MASK,
            READ_LOCK * NUM_READERS
        );
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING,
            WRITER_WAITING
        );

        let mut needs_poll = None;

        // All the readers can now finish but the writer needs to be polled again.
        for (i, r) in futures.iter_mut().enumerate() {
            match r.as_mut().poll(&mut cx) {
                Poll::Ready(()) => {}
                Poll::Pending => {
                    if needs_poll.is_some() {
                        panic!("More than one future unable to complete");
                    }
                    needs_poll = Some(i);
                }
            }
        }

        if let Poll::Pending = futures[needs_poll.expect("Writer unexpectedly able to complete")]
            .as_mut()
            .poll(&mut cx)
        {
            panic!("Writer unable to complete");
        }

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn long_wait() {
        async fn tight_loop(mu: Arc<Mutex<bool>>) {
            loop {
                let ready = mu.lock().await;
                if *ready {
                    break;
                }
                pending!();
            }
        }

        async fn mark_ready(mu: Arc<Mutex<bool>>) {
            *mu.lock().await = true;
        }

        let mu = Arc::new(Mutex::new(false));
        let mut tl = Box::pin(tight_loop(mu.clone()));
        let mut mark = Box::pin(mark_ready(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        for _ in 0..=LONG_WAIT_THRESHOLD {
            if let Poll::Ready(()) = tl.as_mut().poll(&mut cx) {
                panic!("tight_loop unexpectedly ready");
            }

            if let Poll::Ready(()) = mark.as_mut().poll(&mut cx) {
                panic!("mark_ready unexpectedly ready");
            }
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed),
            LOCKED | HAS_WAITERS | WRITER_WAITING | LONG_WAIT
        );

        // This time the tight loop will fail to acquire the lock.
        if let Poll::Ready(()) = tl.as_mut().poll(&mut cx) {
            panic!("tight_loop unexpectedly ready");
        }

        // Which will finally allow the mark_ready function to make progress.
        if let Poll::Pending = mark.as_mut().poll(&mut cx) {
            panic!("mark_ready not able to make progress");
        }

        // Now the tight loop will finish.
        if let Poll::Pending = tl.as_mut().poll(&mut cx) {
            panic!("tight_loop not able to finish");
        }

        assert!(*block_on(mu.lock()));
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn cancel_long_wait_before_wake() {
        async fn tight_loop(mu: Arc<Mutex<bool>>) {
            loop {
                let ready = mu.lock().await;
                if *ready {
                    break;
                }
                pending!();
            }
        }

        async fn mark_ready(mu: Arc<Mutex<bool>>) {
            *mu.lock().await = true;
        }

        let mu = Arc::new(Mutex::new(false));
        let mut tl = Box::pin(tight_loop(mu.clone()));
        let mut mark = Box::pin(mark_ready(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        for _ in 0..=LONG_WAIT_THRESHOLD {
            if let Poll::Ready(()) = tl.as_mut().poll(&mut cx) {
                panic!("tight_loop unexpectedly ready");
            }

            if let Poll::Ready(()) = mark.as_mut().poll(&mut cx) {
                panic!("mark_ready unexpectedly ready");
            }
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed),
            LOCKED | HAS_WAITERS | WRITER_WAITING | LONG_WAIT
        );

        // Now drop the mark_ready future, which should clear the LONG_WAIT bit.
        mem::drop(mark);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), LOCKED);

        mem::drop(tl);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn cancel_long_wait_after_wake() {
        async fn tight_loop(mu: Arc<Mutex<bool>>) {
            loop {
                let ready = mu.lock().await;
                if *ready {
                    break;
                }
                pending!();
            }
        }

        async fn mark_ready(mu: Arc<Mutex<bool>>) {
            *mu.lock().await = true;
        }

        let mu = Arc::new(Mutex::new(false));
        let mut tl = Box::pin(tight_loop(mu.clone()));
        let mut mark = Box::pin(mark_ready(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        for _ in 0..=LONG_WAIT_THRESHOLD {
            if let Poll::Ready(()) = tl.as_mut().poll(&mut cx) {
                panic!("tight_loop unexpectedly ready");
            }

            if let Poll::Ready(()) = mark.as_mut().poll(&mut cx) {
                panic!("mark_ready unexpectedly ready");
            }
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed),
            LOCKED | HAS_WAITERS | WRITER_WAITING | LONG_WAIT
        );

        // This time the tight loop will fail to acquire the lock.
        if let Poll::Ready(()) = tl.as_mut().poll(&mut cx) {
            panic!("tight_loop unexpectedly ready");
        }

        // Now drop the mark_ready future, which should clear the LONG_WAIT bit.
        mem::drop(mark);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & LONG_WAIT, 0);

        // Since the lock is not held, we should be able to spawn a future to set the ready flag.
        block_on(mark_ready(mu.clone()));

        // Now the tight loop will finish.
        if let Poll::Pending = tl.as_mut().poll(&mut cx) {
            panic!("tight_loop not able to finish");
        }

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn designated_waker() {
        async fn inc(mu: Arc<Mutex<usize>>) {
            *mu.lock().await += 1;
        }

        let mu = Arc::new(Mutex::new(0));

        let mut futures = [
            Box::pin(inc(mu.clone())),
            Box::pin(inc(mu.clone())),
            Box::pin(inc(mu.clone())),
        ];

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        let count = block_on(mu.lock());

        // Poll 2 futures. Since neither will be able to acquire the lock, they should get added to
        // the waiter list.
        if let Poll::Ready(()) = futures[0].as_mut().poll(&mut cx) {
            panic!("future unexpectedly ready");
        }
        if let Poll::Ready(()) = futures[1].as_mut().poll(&mut cx) {
            panic!("future unexpectedly ready");
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed),
            LOCKED | HAS_WAITERS | WRITER_WAITING,
        );

        // Now drop the lock. This should set the DESIGNATED_WAKER bit and wake up the first future
        // in the wait list.
        mem::drop(count);

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed),
            DESIGNATED_WAKER | HAS_WAITERS | WRITER_WAITING,
        );

        // Now poll the third future.  It should be able to acquire the lock immediately.
        if let Poll::Pending = futures[2].as_mut().poll(&mut cx) {
            panic!("future unable to complete");
        }
        assert_eq!(*block_on(mu.lock()), 1);

        // There should still be a waiter in the wait list and the DESIGNATED_WAKER bit should still
        // be set.
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & DESIGNATED_WAKER,
            DESIGNATED_WAKER
        );
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS,
            HAS_WAITERS
        );

        // Now let the future that was woken up run.
        if let Poll::Pending = futures[0].as_mut().poll(&mut cx) {
            panic!("future unable to complete");
        }
        assert_eq!(*block_on(mu.lock()), 2);

        if let Poll::Pending = futures[1].as_mut().poll(&mut cx) {
            panic!("future unable to complete");
        }
        assert_eq!(*block_on(mu.lock()), 3);

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn cancel_designated_waker() {
        async fn inc(mu: Arc<Mutex<usize>>) {
            *mu.lock().await += 1;
        }

        let mu = Arc::new(Mutex::new(0));

        let mut fut = Box::pin(inc(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        let count = block_on(mu.lock());

        if let Poll::Ready(()) = fut.as_mut().poll(&mut cx) {
            panic!("Future unexpectedly ready when lock is held");
        }

        // Drop the lock.  This will wake up the future.
        mem::drop(count);

        // Now drop the future without polling. This should clear all the state in the mutex.
        mem::drop(fut);

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn cancel_before_wake() {
        async fn inc(mu: Arc<Mutex<usize>>) {
            *mu.lock().await += 1;
        }

        let mu = Arc::new(Mutex::new(0));

        let mut fut1 = Box::pin(inc(mu.clone()));

        let mut fut2 = Box::pin(inc(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        // First acquire the lock.
        let count = block_on(mu.lock());

        // Now poll the futures. Since the lock is acquired they will both get queued in the waiter
        // list.
        match fut1.as_mut().poll(&mut cx) {
            Poll::Pending => {}
            Poll::Ready(()) => panic!("Future is unexpectedly ready"),
        }

        match fut2.as_mut().poll(&mut cx) {
            Poll::Pending => {}
            Poll::Ready(()) => panic!("Future is unexpectedly ready"),
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING,
            WRITER_WAITING
        );

        // Drop fut1.  This should remove it from the waiter list but shouldn't wake fut2.
        mem::drop(fut1);

        // There should be no designated waker.
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & DESIGNATED_WAKER, 0);

        // Since the waiter was a writer, we should clear the WRITER_WAITING bit.
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING, 0);

        match fut2.as_mut().poll(&mut cx) {
            Poll::Pending => {}
            Poll::Ready(()) => panic!("Future is unexpectedly ready"),
        }

        // Now drop the lock.  This should mark fut2 as ready to make progress.
        mem::drop(count);

        match fut2.as_mut().poll(&mut cx) {
            Poll::Pending => panic!("Future is not ready to make progress"),
            Poll::Ready(()) => {}
        }

        // Verify that we only incremented the count once.
        assert_eq!(*block_on(mu.lock()), 1);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn cancel_after_wake() {
        async fn inc(mu: Arc<Mutex<usize>>) {
            *mu.lock().await += 1;
        }

        let mu = Arc::new(Mutex::new(0));

        let mut fut1 = Box::pin(inc(mu.clone()));

        let mut fut2 = Box::pin(inc(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        // First acquire the lock.
        let count = block_on(mu.lock());

        // Now poll the futures. Since the lock is acquired they will both get queued in the waiter
        // list.
        match fut1.as_mut().poll(&mut cx) {
            Poll::Pending => {}
            Poll::Ready(()) => panic!("Future is unexpectedly ready"),
        }

        match fut2.as_mut().poll(&mut cx) {
            Poll::Pending => {}
            Poll::Ready(()) => panic!("Future is unexpectedly ready"),
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING,
            WRITER_WAITING
        );

        // Drop the lock.  This should mark fut1 as ready to make progress.
        mem::drop(count);

        // Now drop fut1.  This should make fut2 ready to make progress.
        mem::drop(fut1);

        // Since there was still another waiter in the list we shouldn't have cleared the
        // DESIGNATED_WAKER bit.
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & DESIGNATED_WAKER,
            DESIGNATED_WAKER
        );

        // Since the waiter was a writer, we should clear the WRITER_WAITING bit.
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING, 0);

        match fut2.as_mut().poll(&mut cx) {
            Poll::Pending => panic!("Future is not ready to make progress"),
            Poll::Ready(()) => {}
        }

        // Verify that we only incremented the count once.
        assert_eq!(*block_on(mu.lock()), 1);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn timeout() {
        async fn timed_lock(timer: oneshot::Receiver<()>, mu: Arc<Mutex<()>>) {
            select! {
                res = timer.fuse() => {
                    match res {
                        Ok(()) => {},
                        Err(e) => panic!("Timer unexpectedly canceled: {}", e),
                    }
                }
                _ = mu.lock().fuse() => panic!("Successfuly acquired lock"),
            }
        }

        let mu = Arc::new(Mutex::new(()));
        let (tx, rx) = oneshot::channel();

        let mut timeout = Box::pin(timed_lock(rx, mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        // Acquire the lock.
        let g = block_on(mu.lock());

        // Poll the future.
        if let Poll::Ready(()) = timeout.as_mut().poll(&mut cx) {
            panic!("timed_lock unexpectedly ready");
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS,
            HAS_WAITERS
        );

        // Signal the channel, which should cancel the lock.
        tx.send(()).expect("Failed to send wakeup");

        // Now the future should have completed without acquiring the lock.
        if let Poll::Pending = timeout.as_mut().poll(&mut cx) {
            panic!("timed_lock not ready after timeout");
        }

        // The mutex state should not show any waiters.
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS, 0);

        mem::drop(g);

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn writer_waiting() {
        async fn read_zero(mu: Arc<Mutex<usize>>) {
            let val = mu.read_lock().await;
            pending!();

            assert_eq!(*val, 0);
        }

        async fn inc(mu: Arc<Mutex<usize>>) {
            *mu.lock().await += 1;
        }

        async fn read_one(mu: Arc<Mutex<usize>>) {
            let val = mu.read_lock().await;

            assert_eq!(*val, 1);
        }

        let mu = Arc::new(Mutex::new(0));

        let mut r1 = Box::pin(read_zero(mu.clone()));
        let mut r2 = Box::pin(read_zero(mu.clone()));

        let mut w = Box::pin(inc(mu.clone()));
        let mut r3 = Box::pin(read_one(mu.clone()));

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        if let Poll::Ready(()) = r1.as_mut().poll(&mut cx) {
            panic!("read_zero unexpectedly ready");
        }
        if let Poll::Ready(()) = r2.as_mut().poll(&mut cx) {
            panic!("read_zero unexpectedly ready");
        }
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & READ_MASK,
            2 * READ_LOCK
        );

        if let Poll::Ready(()) = w.as_mut().poll(&mut cx) {
            panic!("inc unexpectedly ready");
        }
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING,
            WRITER_WAITING
        );

        // The WRITER_WAITING bit should prevent the next reader from acquiring the lock.
        if let Poll::Ready(()) = r3.as_mut().poll(&mut cx) {
            panic!("read_one unexpectedly ready");
        }
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & READ_MASK,
            2 * READ_LOCK
        );

        if let Poll::Pending = r1.as_mut().poll(&mut cx) {
            panic!("read_zero unable to complete");
        }
        if let Poll::Pending = r2.as_mut().poll(&mut cx) {
            panic!("read_zero unable to complete");
        }
        if let Poll::Pending = w.as_mut().poll(&mut cx) {
            panic!("inc unable to complete");
        }
        if let Poll::Pending = r3.as_mut().poll(&mut cx) {
            panic!("read_one unable to complete");
        }

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn transfer_notify_one() {
        async fn read(mu: Arc<Mutex<usize>>, cv: Arc<Condvar>) {
            let mut count = mu.read_lock().await;
            while *count == 0 {
                count = cv.wait_read(count).await;
            }
        }

        async fn write(mu: Arc<Mutex<usize>>, cv: Arc<Condvar>) {
            let mut count = mu.lock().await;
            while *count == 0 {
                count = cv.wait(count).await;
            }

            *count -= 1;
        }

        let mu = Arc::new(Mutex::new(0));
        let cv = Arc::new(Condvar::new());

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        let mut readers = [
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
        ];
        let mut writer = Box::pin(write(mu.clone(), cv.clone()));

        for r in &mut readers {
            if let Poll::Ready(()) = r.as_mut().poll(&mut cx) {
                panic!("reader unexpectedly ready");
            }
        }
        if let Poll::Ready(()) = writer.as_mut().poll(&mut cx) {
            panic!("writer unexpectedly ready");
        }

        let mut count = block_on(mu.lock());
        *count = 1;

        // This should transfer all readers + one writer to the waiter queue.
        cv.notify_one();

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS,
            HAS_WAITERS
        );
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & WRITER_WAITING,
            WRITER_WAITING
        );

        mem::drop(count);

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & (HAS_WAITERS | WRITER_WAITING),
            HAS_WAITERS | WRITER_WAITING
        );

        for r in &mut readers {
            if let Poll::Pending = r.as_mut().poll(&mut cx) {
                panic!("reader unable to complete");
            }
        }

        if let Poll::Pending = writer.as_mut().poll(&mut cx) {
            panic!("writer unable to complete");
        }

        assert_eq!(*block_on(mu.read_lock()), 0);
    }

    #[test]
    fn transfer_waiters_when_unlocked() {
        async fn dec(mu: Arc<Mutex<usize>>, cv: Arc<Condvar>) {
            let mut count = mu.lock().await;

            while *count == 0 {
                count = cv.wait(count).await;
            }

            *count -= 1;
        }

        let mu = Arc::new(Mutex::new(0));
        let cv = Arc::new(Condvar::new());

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        let mut futures = [
            Box::pin(dec(mu.clone(), cv.clone())),
            Box::pin(dec(mu.clone(), cv.clone())),
            Box::pin(dec(mu.clone(), cv.clone())),
            Box::pin(dec(mu.clone(), cv.clone())),
        ];

        for f in &mut futures {
            if let Poll::Ready(()) = f.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }

        *block_on(mu.lock()) = futures.len();
        cv.notify_all();

        // Since the lock is not held, instead of transferring the waiters to the waiter list we
        // should just wake them all up.
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS, 0);

        for f in &mut futures {
            if let Poll::Pending = f.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn transfer_reader_writer() {
        async fn read(mu: Arc<Mutex<usize>>, cv: Arc<Condvar>) {
            let mut count = mu.read_lock().await;
            while *count == 0 {
                count = cv.wait_read(count).await;
            }

            // Yield once while holding the read lock, which should prevent the writer from waking
            // up.
            pending!();
        }

        async fn write(mu: Arc<Mutex<usize>>, cv: Arc<Condvar>) {
            let mut count = mu.lock().await;
            while *count == 0 {
                count = cv.wait(count).await;
            }

            *count -= 1;
        }

        async fn lock(mu: Arc<Mutex<usize>>) {
            mem::drop(mu.lock().await);
        }

        let mu = Arc::new(Mutex::new(0));
        let cv = Arc::new(Condvar::new());

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        let mut futures: [Pin<Box<dyn Future<Output = ()>>>; 5] = [
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(write(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
        ];
        const NUM_READERS: usize = 4;

        let mut l = Box::pin(lock(mu.clone()));

        for f in &mut futures {
            if let Poll::Ready(()) = f.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);

        let mut count = block_on(mu.lock());
        *count = 1;

        // Now poll the lock function. Since the lock is held by us, it will get queued on the
        // waiter list.
        if let Poll::Ready(()) = l.as_mut().poll(&mut cx) {
            panic!("lock() unexpectedly ready");
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & (HAS_WAITERS | WRITER_WAITING),
            HAS_WAITERS | WRITER_WAITING
        );

        // Wake up waiters while holding the lock. This should end with them transferred to the
        // mutex's waiter list.
        cv.notify_all();

        // Drop the lock.  This should wake up the lock function.
        mem::drop(count);

        if let Poll::Pending = l.as_mut().poll(&mut cx) {
            panic!("lock() unable to complete");
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & (HAS_WAITERS | WRITER_WAITING),
            HAS_WAITERS | WRITER_WAITING
        );

        // Poll everything again. The readers should be able to make progress (but not complete) but
        // the writer should be blocked.
        for f in &mut futures {
            if let Poll::Ready(()) = f.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }

        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed) & READ_MASK,
            READ_LOCK * NUM_READERS
        );

        // All the readers can now finish but the writer needs to be polled again.
        let mut needs_poll = None;
        for (i, r) in futures.iter_mut().enumerate() {
            match r.as_mut().poll(&mut cx) {
                Poll::Ready(()) => {}
                Poll::Pending => {
                    if needs_poll.is_some() {
                        panic!("More than one future unable to complete");
                    }
                    needs_poll = Some(i);
                }
            }
        }

        if let Poll::Pending = futures[needs_poll.expect("Writer unexpectedly able to complete")]
            .as_mut()
            .poll(&mut cx)
        {
            panic!("Writer unable to complete");
        }

        assert_eq!(*block_on(mu.lock()), 0);
        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }

    #[test]
    fn transfer_readers_with_read_lock() {
        async fn read(mu: Arc<Mutex<usize>>, cv: Arc<Condvar>) {
            let mut count = mu.read_lock().await;
            while *count == 0 {
                count = cv.wait_read(count).await;
            }

            // Yield once while holding the read lock.
            pending!();
        }

        let mu = Arc::new(Mutex::new(0));
        let cv = Arc::new(Condvar::new());

        let arc_waker = Arc::new(TestWaker);
        let waker = waker_ref(&arc_waker);
        let mut cx = Context::from_waker(&waker);

        let mut futures = [
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
            Box::pin(read(mu.clone(), cv.clone())),
        ];

        for f in &mut futures {
            if let Poll::Ready(()) = f.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }

        // Increment the count and then grab a read lock.
        *block_on(mu.lock()) = 1;

        let g = block_on(mu.read_lock());

        // Notify the condvar while holding the read lock. This should wake up all the waiters
        // rather than just transferring them.
        cv.notify_all();
        assert_eq!(mu.raw.state.load(Ordering::Relaxed) & HAS_WAITERS, 0);

        mem::drop(g);

        for f in &mut futures {
            if let Poll::Ready(()) = f.as_mut().poll(&mut cx) {
                panic!("future unexpectedly ready");
            }
        }
        assert_eq!(
            mu.raw.state.load(Ordering::Relaxed),
            READ_LOCK * futures.len()
        );

        for f in &mut futures {
            if let Poll::Pending = f.as_mut().poll(&mut cx) {
                panic!("future unable to complete");
            }
        }

        assert_eq!(mu.raw.state.load(Ordering::Relaxed), 0);
    }
}