// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "benchmark/benchmark.h" #include "benchmark_api_internal.h" #include "internal_macros.h" #ifndef BENCHMARK_OS_WINDOWS #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include "check.h" #include "colorprint.h" #include "commandlineflags.h" #include "complexity.h" #include "log.h" #include "mutex.h" #include "re.h" #include "stat.h" #include "string_util.h" #include "sysinfo.h" #include "timers.h" DEFINE_bool(benchmark_list_tests, false, "Print a list of benchmarks. This option overrides all other " "options."); DEFINE_string(benchmark_filter, ".", "A regular expression that specifies the set of benchmarks " "to execute. If this flag is empty, no benchmarks are run. " "If this flag is the string \"all\", all benchmarks linked " "into the process are run."); DEFINE_double(benchmark_min_time, 0.5, "Minimum number of seconds we should run benchmark before " "results are considered significant. For cpu-time based " "tests, this is the lower bound on the total cpu time " "used by all threads that make up the test. For real-time " "based tests, this is the lower bound on the elapsed time " "of the benchmark execution, regardless of number of " "threads."); DEFINE_int32(benchmark_repetitions, 1, "The number of runs of each benchmark. If greater than 1, the " "mean and standard deviation of the runs will be reported."); DEFINE_bool(benchmark_report_aggregates_only, false, "Report the result of each benchmark repetitions. When 'true' is " "specified only the mean, standard deviation, and other statistics " "are reported for repeated benchmarks."); DEFINE_string(benchmark_format, "console", "The format to use for console output. Valid values are " "'console', 'json', or 'csv'."); DEFINE_string(benchmark_out_format, "json", "The format to use for file output. Valid values are " "'console', 'json', or 'csv'."); DEFINE_string(benchmark_out, "", "The file to write additonal output to"); DEFINE_string(benchmark_color, "auto", "Whether to use colors in the output. Valid values: " "'true'/'yes'/1, 'false'/'no'/0, and 'auto'. 'auto' means to use " "colors if the output is being sent to a terminal and the TERM " "environment variable is set to a terminal type that supports " "colors."); DEFINE_int32(v, 0, "The level of verbose logging to output"); namespace benchmark { namespace internal { void UseCharPointer(char const volatile*) {} } // end namespace internal namespace { static const size_t kMaxIterations = 1000000000; } // end namespace namespace internal { class ThreadManager { public: ThreadManager(int num_threads) : alive_threads_(num_threads), start_stop_barrier_(num_threads) {} Mutex& GetBenchmarkMutex() const RETURN_CAPABILITY(benchmark_mutex_) { return benchmark_mutex_; } bool StartStopBarrier() EXCLUDES(end_cond_mutex_) { return start_stop_barrier_.wait(); } void NotifyThreadComplete() EXCLUDES(end_cond_mutex_) { start_stop_barrier_.removeThread(); if (--alive_threads_ == 0) { MutexLock lock(end_cond_mutex_); end_condition_.notify_all(); } } void WaitForAllThreads() EXCLUDES(end_cond_mutex_) { MutexLock lock(end_cond_mutex_); end_condition_.wait(lock.native_handle(), [this]() { return alive_threads_ == 0; }); } public: struct Result { double real_time_used = 0; double cpu_time_used = 0; double manual_time_used = 0; int64_t bytes_processed = 0; int64_t items_processed = 0; int complexity_n = 0; std::string report_label_; std::string error_message_; bool has_error_ = false; }; GUARDED_BY(GetBenchmarkMutex()) Result results; private: mutable Mutex benchmark_mutex_; std::atomic alive_threads_; Barrier start_stop_barrier_; Mutex end_cond_mutex_; Condition end_condition_; }; // Timer management class class ThreadTimer { public: ThreadTimer() = default; // Called by each thread void StartTimer() { running_ = true; start_real_time_ = ChronoClockNow(); start_cpu_time_ = ThreadCPUUsage(); } // Called by each thread void StopTimer() { CHECK(running_); running_ = false; real_time_used_ += ChronoClockNow() - start_real_time_; cpu_time_used_ += ThreadCPUUsage() - start_cpu_time_; } // Called by each thread void SetIterationTime(double seconds) { manual_time_used_ += seconds; } bool running() const { return running_; } // REQUIRES: timer is not running double real_time_used() { CHECK(!running_); return real_time_used_; } // REQUIRES: timer is not running double cpu_time_used() { CHECK(!running_); return cpu_time_used_; } // REQUIRES: timer is not running double manual_time_used() { CHECK(!running_); return manual_time_used_; } private: bool running_ = false; // Is the timer running double start_real_time_ = 0; // If running_ double start_cpu_time_ = 0; // If running_ // Accumulated time so far (does not contain current slice if running_) double real_time_used_ = 0; double cpu_time_used_ = 0; // Manually set iteration time. User sets this with SetIterationTime(seconds). double manual_time_used_ = 0; }; namespace { BenchmarkReporter::Run CreateRunReport( const benchmark::internal::Benchmark::Instance& b, const internal::ThreadManager::Result& results, size_t iters, double seconds) { // Create report about this benchmark run. BenchmarkReporter::Run report; report.benchmark_name = b.name; report.error_occurred = results.has_error_; report.error_message = results.error_message_; report.report_label = results.report_label_; // Report the total iterations across all threads. report.iterations = static_cast(iters) * b.threads; report.time_unit = b.time_unit; if (!report.error_occurred) { double bytes_per_second = 0; if (results.bytes_processed > 0 && seconds > 0.0) { bytes_per_second = (results.bytes_processed / seconds); } double items_per_second = 0; if (results.items_processed > 0 && seconds > 0.0) { items_per_second = (results.items_processed / seconds); } if (b.use_manual_time) { report.real_accumulated_time = results.manual_time_used; } else { report.real_accumulated_time = results.real_time_used; } report.cpu_accumulated_time = results.cpu_time_used; report.bytes_per_second = bytes_per_second; report.items_per_second = items_per_second; report.complexity_n = results.complexity_n; report.complexity = b.complexity; report.complexity_lambda = b.complexity_lambda; } return report; } // Execute one thread of benchmark b for the specified number of iterations. // Adds the stats collected for the thread into *total. void RunInThread(const benchmark::internal::Benchmark::Instance* b, size_t iters, int thread_id, internal::ThreadManager* manager) { internal::ThreadTimer timer; State st(iters, b->arg, thread_id, b->threads, &timer, manager); b->benchmark->Run(st); CHECK(st.iterations() == st.max_iterations) << "Benchmark returned before State::KeepRunning() returned false!"; { MutexLock l(manager->GetBenchmarkMutex()); internal::ThreadManager::Result& results = manager->results; results.cpu_time_used += timer.cpu_time_used(); results.real_time_used += timer.real_time_used(); results.manual_time_used += timer.manual_time_used(); results.bytes_processed += st.bytes_processed(); results.items_processed += st.items_processed(); results.complexity_n += st.complexity_length_n(); } manager->NotifyThreadComplete(); } std::vector RunBenchmark( const benchmark::internal::Benchmark::Instance& b, std::vector* complexity_reports) { std::vector reports; // return value size_t iters = 1; std::unique_ptr manager; std::vector pool(b.threads - 1); const int repeats = b.repetitions != 0 ? b.repetitions : FLAGS_benchmark_repetitions; const bool report_aggregates_only = repeats != 1 && (b.report_mode == internal::RM_Unspecified ? FLAGS_benchmark_report_aggregates_only : b.report_mode == internal::RM_ReportAggregatesOnly); for (int i = 0; i < repeats; i++) { for (;;) { // Try benchmark VLOG(2) << "Running " << b.name << " for " << iters << "\n"; manager.reset(new internal::ThreadManager(b.threads)); for (std::size_t ti = 0; ti < pool.size(); ++ti) { pool[ti] = std::thread(&RunInThread, &b, iters, static_cast(ti + 1), manager.get()); } RunInThread(&b, iters, 0, manager.get()); manager->WaitForAllThreads(); for (std::thread& thread : pool) thread.join(); internal::ThreadManager::Result results; { MutexLock l(manager->GetBenchmarkMutex()); results = manager->results; } manager.reset(); // Adjust real/manual time stats since they were reported per thread. results.real_time_used /= b.threads; results.manual_time_used /= b.threads; VLOG(2) << "Ran in " << results.cpu_time_used << "/" << results.real_time_used << "\n"; // Base decisions off of real time if requested by this benchmark. double seconds = results.cpu_time_used; if (b.use_manual_time) { seconds = results.manual_time_used; } else if (b.use_real_time) { seconds = results.real_time_used; } const double min_time = !IsZero(b.min_time) ? b.min_time : FLAGS_benchmark_min_time; // If this was the first run, was elapsed time or cpu time large enough? // If this is not the first run, go with the current value of iter. if ((i > 0) || results.has_error_ || (iters >= kMaxIterations) || (seconds >= min_time) || (results.real_time_used >= 5 * min_time)) { BenchmarkReporter::Run report = CreateRunReport(b, results, iters, seconds); if (!report.error_occurred && b.complexity != oNone) complexity_reports->push_back(report); reports.push_back(report); break; } // See how much iterations should be increased by // Note: Avoid division by zero with max(seconds, 1ns). double multiplier = min_time * 1.4 / std::max(seconds, 1e-9); // If our last run was at least 10% of FLAGS_benchmark_min_time then we // use the multiplier directly. Otherwise we use at most 10 times // expansion. // NOTE: When the last run was at least 10% of the min time the max // expansion should be 14x. bool is_significant = (seconds / min_time) > 0.1; multiplier = is_significant ? multiplier : std::min(10.0, multiplier); if (multiplier <= 1.0) multiplier = 2.0; double next_iters = std::max(multiplier * iters, iters + 1.0); if (next_iters > kMaxIterations) { next_iters = kMaxIterations; } VLOG(3) << "Next iters: " << next_iters << ", " << multiplier << "\n"; iters = static_cast(next_iters + 0.5); } } // Calculate additional statistics auto stat_reports = ComputeStats(reports); if ((b.complexity != oNone) && b.last_benchmark_instance) { auto additional_run_stats = ComputeBigO(*complexity_reports); stat_reports.insert(stat_reports.end(), additional_run_stats.begin(), additional_run_stats.end()); complexity_reports->clear(); } if (report_aggregates_only) reports.clear(); reports.insert(reports.end(), stat_reports.begin(), stat_reports.end()); return reports; } } // namespace } // namespace internal State::State(size_t max_iters, const std::vector& ranges, int thread_i, int n_threads, internal::ThreadTimer* timer, internal::ThreadManager* manager) : started_(false), finished_(false), total_iterations_(0), range_(ranges), bytes_processed_(0), items_processed_(0), complexity_n_(0), error_occurred_(false), thread_index(thread_i), threads(n_threads), max_iterations(max_iters), timer_(timer), manager_(manager) { CHECK(max_iterations != 0) << "At least one iteration must be run"; CHECK_LT(thread_index, threads) << "thread_index must be less than threads"; } void State::PauseTiming() { // Add in time accumulated so far CHECK(started_ && !finished_ && !error_occurred_); timer_->StopTimer(); } void State::ResumeTiming() { CHECK(started_ && !finished_ && !error_occurred_); timer_->StartTimer(); } void State::SkipWithError(const char* msg) { CHECK(msg); error_occurred_ = true; { MutexLock l(manager_->GetBenchmarkMutex()); if (manager_->results.has_error_ == false) { manager_->results.error_message_ = msg; manager_->results.has_error_ = true; } } total_iterations_ = max_iterations; if (timer_->running()) timer_->StopTimer(); } void State::SetIterationTime(double seconds) { timer_->SetIterationTime(seconds); } void State::SetLabel(const char* label) { MutexLock l(manager_->GetBenchmarkMutex()); manager_->results.report_label_ = label; } void State::StartKeepRunning() { CHECK(!started_ && !finished_); started_ = true; manager_->StartStopBarrier(); if (!error_occurred_) ResumeTiming(); } void State::FinishKeepRunning() { CHECK(started_ && (!finished_ || error_occurred_)); if (!error_occurred_) { PauseTiming(); } // Total iterations now is one greater than max iterations. Fix this. total_iterations_ = max_iterations; finished_ = true; manager_->StartStopBarrier(); } namespace internal { namespace { void RunBenchmarks(const std::vector& benchmarks, BenchmarkReporter* console_reporter, BenchmarkReporter* file_reporter) { // Note the file_reporter can be null. CHECK(console_reporter != nullptr); // Determine the width of the name field using a minimum width of 10. bool has_repetitions = FLAGS_benchmark_repetitions > 1; size_t name_field_width = 10; for (const Benchmark::Instance& benchmark : benchmarks) { name_field_width = std::max(name_field_width, benchmark.name.size()); has_repetitions |= benchmark.repetitions > 1; } if (has_repetitions) name_field_width += std::strlen("_stddev"); // Print header here BenchmarkReporter::Context context; context.num_cpus = NumCPUs(); context.mhz_per_cpu = CyclesPerSecond() / 1000000.0f; context.cpu_scaling_enabled = CpuScalingEnabled(); context.name_field_width = name_field_width; // Keep track of runing times of all instances of current benchmark std::vector complexity_reports; // We flush streams after invoking reporter methods that write to them. This // ensures users get timely updates even when streams are not line-buffered. auto flushStreams = [](BenchmarkReporter* reporter) { if (!reporter) return; std::flush(reporter->GetOutputStream()); std::flush(reporter->GetErrorStream()); }; if (console_reporter->ReportContext(context) && (!file_reporter || file_reporter->ReportContext(context))) { flushStreams(console_reporter); flushStreams(file_reporter); for (const auto& benchmark : benchmarks) { std::vector reports = RunBenchmark(benchmark, &complexity_reports); console_reporter->ReportRuns(reports); if (file_reporter) file_reporter->ReportRuns(reports); flushStreams(console_reporter); flushStreams(file_reporter); } } console_reporter->Finalize(); if (file_reporter) file_reporter->Finalize(); flushStreams(console_reporter); flushStreams(file_reporter); } std::unique_ptr CreateReporter( std::string const& name, ConsoleReporter::OutputOptions allow_color) { typedef std::unique_ptr PtrType; if (name == "console") { return PtrType(new ConsoleReporter(allow_color)); } else if (name == "json") { return PtrType(new JSONReporter); } else if (name == "csv") { return PtrType(new CSVReporter); } else { std::cerr << "Unexpected format: '" << name << "'\n"; std::exit(1); } } } // end namespace } // end namespace internal size_t RunSpecifiedBenchmarks() { return RunSpecifiedBenchmarks(nullptr, nullptr); } size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter) { return RunSpecifiedBenchmarks(console_reporter, nullptr); } size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter, BenchmarkReporter* file_reporter) { std::string spec = FLAGS_benchmark_filter; if (spec.empty() || spec == "all") spec = "."; // Regexp that matches all benchmarks // Setup the reporters std::ofstream output_file; std::unique_ptr default_console_reporter; std::unique_ptr default_file_reporter; if (!console_reporter) { auto output_opts = ConsoleReporter::OO_None; if (FLAGS_benchmark_color == "auto") output_opts = IsColorTerminal() ? ConsoleReporter::OO_Color : ConsoleReporter::OO_None; else output_opts = IsTruthyFlagValue(FLAGS_benchmark_color) ? ConsoleReporter::OO_Color : ConsoleReporter::OO_None; default_console_reporter = internal::CreateReporter(FLAGS_benchmark_format, output_opts); console_reporter = default_console_reporter.get(); } auto& Out = console_reporter->GetOutputStream(); auto& Err = console_reporter->GetErrorStream(); std::string const& fname = FLAGS_benchmark_out; if (fname == "" && file_reporter) { Err << "A custom file reporter was provided but " "--benchmark_out= was not specified." << std::endl; std::exit(1); } if (fname != "") { output_file.open(fname); if (!output_file.is_open()) { Err << "invalid file name: '" << fname << std::endl; std::exit(1); } if (!file_reporter) { default_file_reporter = internal::CreateReporter( FLAGS_benchmark_out_format, ConsoleReporter::OO_None); file_reporter = default_file_reporter.get(); } file_reporter->SetOutputStream(&output_file); file_reporter->SetErrorStream(&output_file); } std::vector benchmarks; if (!FindBenchmarksInternal(spec, &benchmarks, &Err)) return 0; if (benchmarks.empty()) { Err << "Failed to match any benchmarks against regex: " << spec << "\n"; return 0; } if (FLAGS_benchmark_list_tests) { for (auto const& benchmark : benchmarks) Out << benchmark.name << "\n"; } else { internal::RunBenchmarks(benchmarks, console_reporter, file_reporter); } return benchmarks.size(); } namespace internal { void PrintUsageAndExit() { fprintf(stdout, "benchmark" " [--benchmark_list_tests={true|false}]\n" " [--benchmark_filter=]\n" " [--benchmark_min_time=]\n" " [--benchmark_repetitions=]\n" " [--benchmark_report_aggregates_only={true|false}\n" " [--benchmark_format=]\n" " [--benchmark_out=]\n" " [--benchmark_out_format=]\n" " [--benchmark_color={auto|true|false}]\n" " [--v=]\n"); exit(0); } void ParseCommandLineFlags(int* argc, char** argv) { using namespace benchmark; for (int i = 1; i < *argc; ++i) { if (ParseBoolFlag(argv[i], "benchmark_list_tests", &FLAGS_benchmark_list_tests) || ParseStringFlag(argv[i], "benchmark_filter", &FLAGS_benchmark_filter) || ParseDoubleFlag(argv[i], "benchmark_min_time", &FLAGS_benchmark_min_time) || ParseInt32Flag(argv[i], "benchmark_repetitions", &FLAGS_benchmark_repetitions) || ParseBoolFlag(argv[i], "benchmark_report_aggregates_only", &FLAGS_benchmark_report_aggregates_only) || ParseStringFlag(argv[i], "benchmark_format", &FLAGS_benchmark_format) || ParseStringFlag(argv[i], "benchmark_out", &FLAGS_benchmark_out) || ParseStringFlag(argv[i], "benchmark_out_format", &FLAGS_benchmark_out_format) || ParseStringFlag(argv[i], "benchmark_color", &FLAGS_benchmark_color) || // "color_print" is the deprecated name for "benchmark_color". // TODO: Remove this. ParseStringFlag(argv[i], "color_print", &FLAGS_benchmark_color) || ParseInt32Flag(argv[i], "v", &FLAGS_v)) { for (int j = i; j != *argc; ++j) argv[j] = argv[j + 1]; --(*argc); --i; } else if (IsFlag(argv[i], "help")) { PrintUsageAndExit(); } } for (auto const* flag : {&FLAGS_benchmark_format, &FLAGS_benchmark_out_format}) if (*flag != "console" && *flag != "json" && *flag != "csv") { PrintUsageAndExit(); } if (FLAGS_benchmark_color.empty()) { PrintUsageAndExit(); } } int InitializeStreams() { static std::ios_base::Init init; return 0; } } // end namespace internal void Initialize(int* argc, char** argv) { internal::ParseCommandLineFlags(argc, argv); internal::LogLevel() = FLAGS_v; } } // end namespace benchmark