/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_itrans_recon_16x16.c * * @brief * Contains function definitions for inverse transform and reconstruction 16x16 * * * @author * 100470 * * @par List of Functions: * - ihevc_itrans_recon_16x16() * * @remarks * None * ******************************************************************************* */ #include #include #include "ihevc_typedefs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_defs.h" #include "ihevc_trans_tables.h" #include "ihevc_itrans_recon.h" #include "ihevc_func_selector.h" #include "ihevc_trans_macros.h" /** ******************************************************************************* * * @brief * This function performs Inverse transform and reconstruction for 16x16 * input block * * @par Description: * Performs inverse transform and adds the prediction data and clips output * to 8 bit * * @param[in] pi2_src * Input 16x16 coefficients * * @param[in] pi2_tmp * Temporary 16x16 buffer for storing inverse * * transform * 1st stage output * * @param[in] pu1_pred * Prediction 16x16 block * * @param[out] pu1_dst * Output 16x16 block * * @param[in] src_strd * Input stride * * @param[in] pred_strd * Prediction stride * * @param[in] dst_strd * Output Stride * * @param[in] shift * Output shift * * @param[in] zero_cols * Zero columns in pi2_src * * @returns Void * * @remarks * None * ******************************************************************************* */ void ihevc_itrans_recon_16x16(WORD16 *pi2_src, WORD16 *pi2_tmp, UWORD8 *pu1_pred, UWORD8 *pu1_dst, WORD32 src_strd, WORD32 pred_strd, WORD32 dst_strd, WORD32 zero_cols, WORD32 zero_rows) { WORD32 j, k; WORD32 e[8], o[8]; WORD32 ee[4], eo[4]; WORD32 eee[2], eeo[2]; WORD32 add; WORD32 shift; WORD16 *pi2_tmp_orig; WORD32 trans_size; WORD32 zero_rows_2nd_stage = zero_cols; WORD32 row_limit_2nd_stage; if((zero_cols & 0xFFF0) == 0xFFF0) row_limit_2nd_stage = 4; else if((zero_cols & 0xFF00) == 0xFF00) row_limit_2nd_stage = 8; else row_limit_2nd_stage = TRANS_SIZE_16; trans_size = TRANS_SIZE_16; pi2_tmp_orig = pi2_tmp; if((zero_rows & 0xFFF0) == 0xFFF0) /* First 4 rows of input are non-zero */ { /* Inverse Transform 1st stage */ /************************************************************************************************/ /**********************************START - IT_RECON_16x16****************************************/ /************************************************************************************************/ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < row_limit_2nd_stage; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_16[3][k] * pi2_src[3 * src_strd]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd]; } eeo[0] = 0; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0]; eeo[1] = 0; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { pi2_tmp[k] = CLIP_S16(((e[k] + o[k] + add) >> shift)); pi2_tmp[k + 8] = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); } } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]; } eeo[0] = 0; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; eeo[1] = 0; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_16[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_16[7][k] * pi2_tmp[7 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_16[6][k] * pi2_tmp[6 * trans_size]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else /* All rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_16[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_16[7][k] * pi2_tmp[7 * trans_size] + g_ai2_ihevc_trans_16[9][k] * pi2_tmp[9 * trans_size] + g_ai2_ihevc_trans_16[11][k] * pi2_tmp[11 * trans_size] + g_ai2_ihevc_trans_16[13][k] * pi2_tmp[13 * trans_size] + g_ai2_ihevc_trans_16[15][k] * pi2_tmp[15 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_16[6][k] * pi2_tmp[6 * trans_size] + g_ai2_ihevc_trans_16[10][k] * pi2_tmp[10 * trans_size] + g_ai2_ihevc_trans_16[14][k] * pi2_tmp[14 * trans_size]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size] + g_ai2_ihevc_trans_16[12][0] * pi2_tmp[12 * trans_size]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size] + g_ai2_ihevc_trans_16[12][1] * pi2_tmp[12 * trans_size]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } /************************************************************************************************/ /************************************END - IT_RECON_16x16****************************************/ /************************************************************************************************/ } else if((zero_rows & 0xFF00) == 0xFF00) /* First 8 rows of input are non-zero */ { /* Inverse Transform 1st stage */ /************************************************************************************************/ /**********************************START - IT_RECON_16x16****************************************/ /************************************************************************************************/ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < row_limit_2nd_stage; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_16[3][k] * pi2_src[3 * src_strd] + g_ai2_ihevc_trans_16[5][k] * pi2_src[5 * src_strd] + g_ai2_ihevc_trans_16[7][k] * pi2_src[7 * src_strd]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_16[6][k] * pi2_src[6 * src_strd]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { pi2_tmp[k] = CLIP_S16(((e[k] + o[k] + add) >> shift)); pi2_tmp[k + 8] = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); } } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]; } eeo[0] = 0; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; eeo[1] = 0; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_16[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_16[7][k] * pi2_tmp[7 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_16[6][k] * pi2_tmp[6 * trans_size]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else /* All rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_16[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_16[7][k] * pi2_tmp[7 * trans_size] + g_ai2_ihevc_trans_16[9][k] * pi2_tmp[9 * trans_size] + g_ai2_ihevc_trans_16[11][k] * pi2_tmp[11 * trans_size] + g_ai2_ihevc_trans_16[13][k] * pi2_tmp[13 * trans_size] + g_ai2_ihevc_trans_16[15][k] * pi2_tmp[15 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_16[6][k] * pi2_tmp[6 * trans_size] + g_ai2_ihevc_trans_16[10][k] * pi2_tmp[10 * trans_size] + g_ai2_ihevc_trans_16[14][k] * pi2_tmp[14 * trans_size]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size] + g_ai2_ihevc_trans_16[12][0] * pi2_tmp[12 * trans_size]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size] + g_ai2_ihevc_trans_16[12][1] * pi2_tmp[12 * trans_size]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } /************************************************************************************************/ /************************************END - IT_RECON_16x16****************************************/ /************************************************************************************************/ } else /* All rows of input are non-zero */ { /* Inverse Transform 1st stage */ /************************************************************************************************/ /**********************************START - IT_RECON_16x16****************************************/ /************************************************************************************************/ shift = IT_SHIFT_STAGE_1; add = 1 << (shift - 1); for(j = 0; j < row_limit_2nd_stage; j++) { /* Checking for Zero Cols */ if((zero_cols & 1) == 1) { memset(pi2_tmp, 0, trans_size * sizeof(WORD16)); } else { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_src[src_strd] + g_ai2_ihevc_trans_16[3][k] * pi2_src[3 * src_strd] + g_ai2_ihevc_trans_16[5][k] * pi2_src[5 * src_strd] + g_ai2_ihevc_trans_16[7][k] * pi2_src[7 * src_strd] + g_ai2_ihevc_trans_16[9][k] * pi2_src[9 * src_strd] + g_ai2_ihevc_trans_16[11][k] * pi2_src[11 * src_strd] + g_ai2_ihevc_trans_16[13][k] * pi2_src[13 * src_strd] + g_ai2_ihevc_trans_16[15][k] * pi2_src[15 * src_strd]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_src[2 * src_strd] + g_ai2_ihevc_trans_16[6][k] * pi2_src[6 * src_strd] + g_ai2_ihevc_trans_16[10][k] * pi2_src[10 * src_strd] + g_ai2_ihevc_trans_16[14][k] * pi2_src[14 * src_strd]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_src[4 * src_strd] + g_ai2_ihevc_trans_16[12][0] * pi2_src[12 * src_strd]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_src[0] + g_ai2_ihevc_trans_16[8][0] * pi2_src[8 * src_strd]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_src[4 * src_strd] + g_ai2_ihevc_trans_16[12][1] * pi2_src[12 * src_strd]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_src[0] + g_ai2_ihevc_trans_16[8][1] * pi2_src[8 * src_strd]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { pi2_tmp[k] = CLIP_S16(((e[k] + o[k] + add) >> shift)); pi2_tmp[k + 8] = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); } } pi2_src++; pi2_tmp += trans_size; zero_cols = zero_cols >> 1; } pi2_tmp = pi2_tmp_orig; /* Inverse Transform 2nd stage */ shift = IT_SHIFT_STAGE_2; add = 1 << (shift - 1); if((zero_rows_2nd_stage & 0xFFF0) == 0xFFF0) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size]; } eeo[0] = 0; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; eeo[1] = 0; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else if((zero_rows_2nd_stage & 0xFF00) == 0xFF00) /* First 4 rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_16[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_16[7][k] * pi2_tmp[7 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_16[6][k] * pi2_tmp[6 * trans_size]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } else /* All rows of output of 1st stage are non-zero */ { for(j = 0; j < trans_size; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for(k = 0; k < 8; k++) { o[k] = g_ai2_ihevc_trans_16[1][k] * pi2_tmp[trans_size] + g_ai2_ihevc_trans_16[3][k] * pi2_tmp[3 * trans_size] + g_ai2_ihevc_trans_16[5][k] * pi2_tmp[5 * trans_size] + g_ai2_ihevc_trans_16[7][k] * pi2_tmp[7 * trans_size] + g_ai2_ihevc_trans_16[9][k] * pi2_tmp[9 * trans_size] + g_ai2_ihevc_trans_16[11][k] * pi2_tmp[11 * trans_size] + g_ai2_ihevc_trans_16[13][k] * pi2_tmp[13 * trans_size] + g_ai2_ihevc_trans_16[15][k] * pi2_tmp[15 * trans_size]; } for(k = 0; k < 4; k++) { eo[k] = g_ai2_ihevc_trans_16[2][k] * pi2_tmp[2 * trans_size] + g_ai2_ihevc_trans_16[6][k] * pi2_tmp[6 * trans_size] + g_ai2_ihevc_trans_16[10][k] * pi2_tmp[10 * trans_size] + g_ai2_ihevc_trans_16[14][k] * pi2_tmp[14 * trans_size]; } eeo[0] = g_ai2_ihevc_trans_16[4][0] * pi2_tmp[4 * trans_size] + g_ai2_ihevc_trans_16[12][0] * pi2_tmp[12 * trans_size]; eee[0] = g_ai2_ihevc_trans_16[0][0] * pi2_tmp[0] + g_ai2_ihevc_trans_16[8][0] * pi2_tmp[8 * trans_size]; eeo[1] = g_ai2_ihevc_trans_16[4][1] * pi2_tmp[4 * trans_size] + g_ai2_ihevc_trans_16[12][1] * pi2_tmp[12 * trans_size]; eee[1] = g_ai2_ihevc_trans_16[0][1] * pi2_tmp[0] + g_ai2_ihevc_trans_16[8][1] * pi2_tmp[8 * trans_size]; /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */ for(k = 0; k < 2; k++) { ee[k] = eee[k] + eeo[k]; ee[k + 2] = eee[1 - k] - eeo[1 - k]; } for(k = 0; k < 4; k++) { e[k] = ee[k] + eo[k]; e[k + 4] = ee[3 - k] - eo[3 - k]; } for(k = 0; k < 8; k++) { WORD32 itrans_out; itrans_out = CLIP_S16(((e[k] + o[k] + add) >> shift)); pu1_dst[k] = CLIP_U8((itrans_out + pu1_pred[k])); itrans_out = CLIP_S16(((e[7 - k] - o[7 - k] + add) >> shift)); pu1_dst[k + 8] = CLIP_U8((itrans_out + pu1_pred[k + 8])); } pi2_tmp++; pu1_pred += pred_strd; pu1_dst += dst_strd; } } /************************************************************************************************/ /************************************END - IT_RECON_16x16****************************************/ /************************************************************************************************/ } }