aboutsummaryrefslogtreecommitdiff
path: root/simd/arm/common/jquanti-neon.c
blob: 6f8a3ab8a625519a1ae0aab397b1aabafdc9323f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
 * jquanti-neon.c - sample conversion and integer quantization (Arm NEON)
 *
 * Copyright 2020 The Chromium Authors. All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

#define JPEG_INTERNALS
#include "../../../jinclude.h"
#include "../../../jpeglib.h"
#include "../../../jsimd.h"
#include "../../../jdct.h"
#include "../../../jsimddct.h"
#include "../../jsimd.h"

#include <arm_neon.h>

/*
 * Pixel channel sample values have range [0,255]. The Discrete Cosine
 * Transform (DCT) operates on values centered around 0.
 *
 * To prepare sample values for the DCT, load samples into a DCT workspace,
 * subtracting CENTREJSAMPLE (128). The samples, now in range [-128, 127],
 * are also widened from 8- to 16-bit.
 *
 * The equivalent scalar C function 'convsamp' can be found in jcdctmgr.c.
 */

void jsimd_convsamp_neon(JSAMPARRAY sample_data,
                         JDIMENSION start_col,
                         DCTELEM *workspace)
{
  uint8x8_t samp_row0 = vld1_u8(sample_data[0] + start_col);
  uint8x8_t samp_row1 = vld1_u8(sample_data[1] + start_col);
  uint8x8_t samp_row2 = vld1_u8(sample_data[2] + start_col);
  uint8x8_t samp_row3 = vld1_u8(sample_data[3] + start_col);
  uint8x8_t samp_row4 = vld1_u8(sample_data[4] + start_col);
  uint8x8_t samp_row5 = vld1_u8(sample_data[5] + start_col);
  uint8x8_t samp_row6 = vld1_u8(sample_data[6] + start_col);
  uint8x8_t samp_row7 = vld1_u8(sample_data[7] + start_col);

  int16x8_t row0 = vreinterpretq_s16_u16(vsubl_u8(samp_row0,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row1 = vreinterpretq_s16_u16(vsubl_u8(samp_row1,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row2 = vreinterpretq_s16_u16(vsubl_u8(samp_row2,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row3 = vreinterpretq_s16_u16(vsubl_u8(samp_row3,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row4 = vreinterpretq_s16_u16(vsubl_u8(samp_row4,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row5 = vreinterpretq_s16_u16(vsubl_u8(samp_row5,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row6 = vreinterpretq_s16_u16(vsubl_u8(samp_row6,
                                                  vdup_n_u8(CENTERJSAMPLE)));
  int16x8_t row7 = vreinterpretq_s16_u16(vsubl_u8(samp_row7,
                                                  vdup_n_u8(CENTERJSAMPLE)));

  vst1q_s16(workspace + 0 * DCTSIZE, row0);
  vst1q_s16(workspace + 1 * DCTSIZE, row1);
  vst1q_s16(workspace + 2 * DCTSIZE, row2);
  vst1q_s16(workspace + 3 * DCTSIZE, row3);
  vst1q_s16(workspace + 4 * DCTSIZE, row4);
  vst1q_s16(workspace + 5 * DCTSIZE, row5);
  vst1q_s16(workspace + 6 * DCTSIZE, row6);
  vst1q_s16(workspace + 7 * DCTSIZE, row7);
}


/*
 * After the DCT, the resulting coefficient values need to be divided by a
 * quantization value.
 *
 * To avoid a slow division operation, the DCT coefficients are multiplied by
 * the (scaled) reciprocal of the quantization values and then right-shifted.
 *
 * The equivalent scalar C function 'quantize' can be found in jcdctmgr.c.
 */

void jsimd_quantize_neon(JCOEFPTR coef_block,
                         DCTELEM *divisors,
                         DCTELEM *workspace)
{
  JCOEFPTR out_ptr = coef_block;
  UDCTELEM *recip_ptr = (UDCTELEM *)divisors;
  UDCTELEM *corr_ptr = (UDCTELEM *)divisors + DCTSIZE2;
  DCTELEM *shift_ptr = divisors + 3 * DCTSIZE2;

  for (int i = 0; i < DCTSIZE; i += DCTSIZE / 2) {
    /* Load DCT coefficients. */
    int16x8_t row0 = vld1q_s16(workspace + (i + 0) * DCTSIZE);
    int16x8_t row1 = vld1q_s16(workspace + (i + 1) * DCTSIZE);
    int16x8_t row2 = vld1q_s16(workspace + (i + 2) * DCTSIZE);
    int16x8_t row3 = vld1q_s16(workspace + (i + 3) * DCTSIZE);
    /* Load reciprocals of quantization values. */
    uint16x8_t recip0 = vld1q_u16(recip_ptr + (i + 0) * DCTSIZE);
    uint16x8_t recip1 = vld1q_u16(recip_ptr + (i + 1) * DCTSIZE);
    uint16x8_t recip2 = vld1q_u16(recip_ptr + (i + 2) * DCTSIZE);
    uint16x8_t recip3 = vld1q_u16(recip_ptr + (i + 3) * DCTSIZE);
    uint16x8_t corr0 = vld1q_u16(corr_ptr + (i + 0) * DCTSIZE);
    uint16x8_t corr1 = vld1q_u16(corr_ptr + (i + 1) * DCTSIZE);
    uint16x8_t corr2 = vld1q_u16(corr_ptr + (i + 2) * DCTSIZE);
    uint16x8_t corr3 = vld1q_u16(corr_ptr + (i + 3) * DCTSIZE);
    int16x8_t shift0 = vld1q_s16(shift_ptr + (i + 0) * DCTSIZE);
    int16x8_t shift1 = vld1q_s16(shift_ptr + (i + 1) * DCTSIZE);
    int16x8_t shift2 = vld1q_s16(shift_ptr + (i + 2) * DCTSIZE);
    int16x8_t shift3 = vld1q_s16(shift_ptr + (i + 3) * DCTSIZE);

    /* Extract sign from coefficients. */
    int16x8_t sign_row0 = vshrq_n_s16(row0, 15);
    int16x8_t sign_row1 = vshrq_n_s16(row1, 15);
    int16x8_t sign_row2 = vshrq_n_s16(row2, 15);
    int16x8_t sign_row3 = vshrq_n_s16(row3, 15);
    /* Get absolute value of DCT coefficients. */
    uint16x8_t abs_row0 = vreinterpretq_u16_s16(vabsq_s16(row0));
    uint16x8_t abs_row1 = vreinterpretq_u16_s16(vabsq_s16(row1));
    uint16x8_t abs_row2 = vreinterpretq_u16_s16(vabsq_s16(row2));
    uint16x8_t abs_row3 = vreinterpretq_u16_s16(vabsq_s16(row3));
    /* Add correction. */
    abs_row0 = vaddq_u16(abs_row0, corr0);
    abs_row1 = vaddq_u16(abs_row1, corr1);
    abs_row2 = vaddq_u16(abs_row2, corr2);
    abs_row3 = vaddq_u16(abs_row3, corr3);

    /* Multiply DCT coefficients by quantization reciprocal. */
    int32x4_t row0_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row0),
                                                       vget_low_u16(recip0)));
    int32x4_t row0_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row0),
                                                       vget_high_u16(recip0)));
    int32x4_t row1_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row1),
                                                       vget_low_u16(recip1)));
    int32x4_t row1_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row1),
                                                       vget_high_u16(recip1)));
    int32x4_t row2_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row2),
                                                       vget_low_u16(recip2)));
    int32x4_t row2_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row2),
                                                       vget_high_u16(recip2)));
    int32x4_t row3_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row3),
                                                       vget_low_u16(recip3)));
    int32x4_t row3_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row3),
                                                       vget_high_u16(recip3)));
    /* Narrow back to 16-bit. */
    row0 = vcombine_s16(vshrn_n_s32(row0_l, 16), vshrn_n_s32(row0_h, 16));
    row1 = vcombine_s16(vshrn_n_s32(row1_l, 16), vshrn_n_s32(row1_h, 16));
    row2 = vcombine_s16(vshrn_n_s32(row2_l, 16), vshrn_n_s32(row2_h, 16));
    row3 = vcombine_s16(vshrn_n_s32(row3_l, 16), vshrn_n_s32(row3_h, 16));

    /* Since VSHR only supports an immediate as its second argument, negate */
    /* the shift value and shift left. */
    row0 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row0),
                                           vnegq_s16(shift0)));
    row1 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row1),
                                           vnegq_s16(shift1)));
    row2 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row2),
                                           vnegq_s16(shift2)));
    row3 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row3),
                                           vnegq_s16(shift3)));

    /* Restore sign to original product. */
    row0 = veorq_s16(row0, sign_row0);
    row0 = vsubq_s16(row0, sign_row0);
    row1 = veorq_s16(row1, sign_row1);
    row1 = vsubq_s16(row1, sign_row1);
    row2 = veorq_s16(row2, sign_row2);
    row2 = vsubq_s16(row2, sign_row2);
    row3 = veorq_s16(row3, sign_row3);
    row3 = vsubq_s16(row3, sign_row3);

    /* Store quantized coefficients to memory. */
    vst1q_s16(out_ptr + (i + 0) * DCTSIZE, row0);
    vst1q_s16(out_ptr + (i + 1) * DCTSIZE, row1);
    vst1q_s16(out_ptr + (i + 2) * DCTSIZE, row2);
    vst1q_s16(out_ptr + (i + 3) * DCTSIZE, row3);
  }
}