/* * Copyright 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "ultrahdr/ultrahdrcommon.h" #include "ultrahdr/icc.h" namespace ultrahdr { static void Matrix3x3_apply(const Matrix3x3* m, float* x) { float y0 = x[0] * m->vals[0][0] + x[1] * m->vals[0][1] + x[2] * m->vals[0][2]; float y1 = x[0] * m->vals[1][0] + x[1] * m->vals[1][1] + x[2] * m->vals[1][2]; float y2 = x[0] * m->vals[2][0] + x[1] * m->vals[2][1] + x[2] * m->vals[2][2]; x[0] = y0; x[1] = y1; x[2] = y2; } bool Matrix3x3_invert(const Matrix3x3* src, Matrix3x3* dst) { double a00 = src->vals[0][0]; double a01 = src->vals[1][0]; double a02 = src->vals[2][0]; double a10 = src->vals[0][1]; double a11 = src->vals[1][1]; double a12 = src->vals[2][1]; double a20 = src->vals[0][2]; double a21 = src->vals[1][2]; double a22 = src->vals[2][2]; double b0 = a00 * a11 - a01 * a10; double b1 = a00 * a12 - a02 * a10; double b2 = a01 * a12 - a02 * a11; double b3 = a20; double b4 = a21; double b5 = a22; double determinant = b0 * b5 - b1 * b4 + b2 * b3; if (determinant == 0) { return false; } double invdet = 1.0 / determinant; if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) { return false; } b0 *= invdet; b1 *= invdet; b2 *= invdet; b3 *= invdet; b4 *= invdet; b5 *= invdet; dst->vals[0][0] = (float)(a11 * b5 - a12 * b4); dst->vals[1][0] = (float)(a02 * b4 - a01 * b5); dst->vals[2][0] = (float)(+b2); dst->vals[0][1] = (float)(a12 * b3 - a10 * b5); dst->vals[1][1] = (float)(a00 * b5 - a02 * b3); dst->vals[2][1] = (float)(-b1); dst->vals[0][2] = (float)(a10 * b4 - a11 * b3); dst->vals[1][2] = (float)(a01 * b3 - a00 * b4); dst->vals[2][2] = (float)(+b0); for (int r = 0; r < 3; ++r) for (int c = 0; c < 3; ++c) { if (!isfinitef_(dst->vals[r][c])) { return false; } } return true; } static Matrix3x3 Matrix3x3_concat(const Matrix3x3* A, const Matrix3x3* B) { Matrix3x3 m = {{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}}; for (int r = 0; r < 3; r++) for (int c = 0; c < 3; c++) { m.vals[r][c] = A->vals[r][0] * B->vals[0][c] + A->vals[r][1] * B->vals[1][c] + A->vals[r][2] * B->vals[2][c]; } return m; } static void float_XYZD50_to_grid16_lab(const float* xyz_float, uint8_t* grid16_lab) { float v[3] = { xyz_float[0] / kD50_x, xyz_float[1] / kD50_y, xyz_float[2] / kD50_z, }; for (size_t i = 0; i < 3; ++i) { v[i] = v[i] > 0.008856f ? cbrtf(v[i]) : v[i] * 7.787f + (16 / 116.0f); } const float L = v[1] * 116.0f - 16.0f; const float a = (v[0] - v[1]) * 500.0f; const float b = (v[1] - v[2]) * 200.0f; const float Lab_unorm[3] = { L * (1 / 100.f), (a + 128.0f) * (1 / 255.0f), (b + 128.0f) * (1 / 255.0f), }; // This will encode L=1 as 0xFFFF. This matches how skcms will interpret the // table, but the spec appears to indicate that the value should be 0xFF00. // https://crbug.com/skia/13807 for (size_t i = 0; i < 3; ++i) { reinterpret_cast(grid16_lab)[i] = Endian_SwapBE16(float_round_to_unorm16(Lab_unorm[i])); } } std::string IccHelper::get_desc_string(const ultrahdr_transfer_function tf, const ultrahdr_color_gamut gamut) { std::string result; switch (gamut) { case ULTRAHDR_COLORGAMUT_BT709: result += "sRGB"; break; case ULTRAHDR_COLORGAMUT_P3: result += "Display P3"; break; case ULTRAHDR_COLORGAMUT_BT2100: result += "Rec2020"; break; default: result += "Unknown"; break; } result += " Gamut with "; switch (tf) { case ULTRAHDR_TF_SRGB: result += "sRGB"; break; case ULTRAHDR_TF_LINEAR: result += "Linear"; break; case ULTRAHDR_TF_PQ: result += "PQ"; break; case ULTRAHDR_TF_HLG: result += "HLG"; break; default: result += "Unknown"; break; } result += " Transfer"; return result; } std::shared_ptr IccHelper::write_text_tag(const char* text) { uint32_t text_length = strlen(text); uint32_t header[] = { Endian_SwapBE32(kTAG_TextType), // Type signature 0, // Reserved Endian_SwapBE32(1), // Number of records Endian_SwapBE32(12), // Record size (must be 12) Endian_SwapBE32(SetFourByteTag('e', 'n', 'U', 'S')), // English USA Endian_SwapBE32(2 * text_length), // Length of string in bytes Endian_SwapBE32(28), // Offset of string }; uint32_t total_length = text_length * 2 + sizeof(header); total_length = (((total_length + 2) >> 2) << 2); // 4 aligned std::shared_ptr dataStruct = std::make_shared(total_length); if (!dataStruct->write(header, sizeof(header))) { ALOGE("write_text_tag(): error in writing data"); return dataStruct; } for (size_t i = 0; i < text_length; i++) { // Convert ASCII to big-endian UTF-16. dataStruct->write8(0); dataStruct->write8(text[i]); } return dataStruct; } std::shared_ptr IccHelper::write_xyz_tag(float x, float y, float z) { uint32_t data[] = { Endian_SwapBE32(kXYZ_PCSSpace), 0, static_cast(Endian_SwapBE32(float_round_to_fixed(x))), static_cast(Endian_SwapBE32(float_round_to_fixed(y))), static_cast(Endian_SwapBE32(float_round_to_fixed(z))), }; std::shared_ptr dataStruct = std::make_shared(sizeof(data)); dataStruct->write(&data, sizeof(data)); return dataStruct; } std::shared_ptr IccHelper::write_trc_tag(const int table_entries, const void* table_16) { int total_length = 4 + 4 + 4 + table_entries * 2; total_length = (((total_length + 2) >> 2) << 2); // 4 aligned std::shared_ptr dataStruct = std::make_shared(total_length); dataStruct->write32(Endian_SwapBE32(kTAG_CurveType)); // Type dataStruct->write32(0); // Reserved dataStruct->write32(Endian_SwapBE32(table_entries)); // Value count for (int i = 0; i < table_entries; ++i) { uint16_t value = reinterpret_cast(table_16)[i]; dataStruct->write16(value); } return dataStruct; } std::shared_ptr IccHelper::write_trc_tag(const TransferFunction& fn) { if (fn.a == 1.f && fn.b == 0.f && fn.c == 0.f && fn.d == 0.f && fn.e == 0.f && fn.f == 0.f) { int total_length = 16; std::shared_ptr dataStruct = std::make_shared(total_length); dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type dataStruct->write32(0); // Reserved dataStruct->write32(Endian_SwapBE16(kExponential_ParaCurveType)); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g))); return dataStruct; } int total_length = 40; std::shared_ptr dataStruct = std::make_shared(total_length); dataStruct->write32(Endian_SwapBE32(kTAG_ParaCurveType)); // Type dataStruct->write32(0); // Reserved dataStruct->write32(Endian_SwapBE16(kGABCDEF_ParaCurveType)); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.g))); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.a))); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.b))); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.c))); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.d))); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.e))); dataStruct->write32(Endian_SwapBE32(float_round_to_fixed(fn.f))); return dataStruct; } float IccHelper::compute_tone_map_gain(const ultrahdr_transfer_function tf, float L) { if (L <= 0.f) { return 1.f; } if (tf == ULTRAHDR_TF_PQ) { // The PQ transfer function will map to the range [0, 1]. Linearly scale // it up to the range [0, 10,000/203]. We will then tone map that back // down to [0, 1]. constexpr float kInputMaxLuminance = 10000 / 203.f; constexpr float kOutputMaxLuminance = 1.0; L *= kInputMaxLuminance; // Compute the tone map gain which will tone map from 10,000/203 to 1.0. constexpr float kToneMapA = kOutputMaxLuminance / (kInputMaxLuminance * kInputMaxLuminance); constexpr float kToneMapB = 1.f / kOutputMaxLuminance; return kInputMaxLuminance * (1.f + kToneMapA * L) / (1.f + kToneMapB * L); } if (tf == ULTRAHDR_TF_HLG) { // Let Lw be the brightness of the display in nits. constexpr float Lw = 203.f; const float gamma = 1.2f + 0.42f * std::log(Lw / 1000.f) / std::log(10.f); return std::pow(L, gamma - 1.f); } return 1.f; } std::shared_ptr IccHelper::write_cicp_tag(uint32_t color_primaries, uint32_t transfer_characteristics) { int total_length = 12; // 4 + 4 + 1 + 1 + 1 + 1 std::shared_ptr dataStruct = std::make_shared(total_length); dataStruct->write32(Endian_SwapBE32(kTAG_cicp)); // Type signature dataStruct->write32(0); // Reserved dataStruct->write8(color_primaries); // Color primaries dataStruct->write8(transfer_characteristics); // Transfer characteristics dataStruct->write8(0); // RGB matrix dataStruct->write8(1); // Full range return dataStruct; } void IccHelper::compute_lut_entry(const Matrix3x3& src_to_XYZD50, float rgb[3]) { // Compute the matrices to convert from source to Rec2020, and from Rec2020 to XYZD50. Matrix3x3 src_to_rec2020; const Matrix3x3 rec2020_to_XYZD50 = kRec2020; { Matrix3x3 XYZD50_to_rec2020; Matrix3x3_invert(&rec2020_to_XYZD50, &XYZD50_to_rec2020); src_to_rec2020 = Matrix3x3_concat(&XYZD50_to_rec2020, &src_to_XYZD50); } // Convert the source signal to linear. for (size_t i = 0; i < kNumChannels; ++i) { rgb[i] = pqOetf(rgb[i]); } // Convert source gamut to Rec2020. Matrix3x3_apply(&src_to_rec2020, rgb); // Compute the luminance of the signal. float L = bt2100Luminance({{{rgb[0], rgb[1], rgb[2]}}}); // Compute the tone map gain based on the luminance. float tone_map_gain = compute_tone_map_gain(ULTRAHDR_TF_PQ, L); // Apply the tone map gain. for (size_t i = 0; i < kNumChannels; ++i) { rgb[i] *= tone_map_gain; } // Convert from Rec2020-linear to XYZD50. Matrix3x3_apply(&rec2020_to_XYZD50, rgb); } std::shared_ptr IccHelper::write_clut(const uint8_t* grid_points, const uint8_t* grid_16) { uint32_t value_count = kNumChannels; for (uint32_t i = 0; i < kNumChannels; ++i) { value_count *= grid_points[i]; } int total_length = 20 + 2 * value_count; total_length = (((total_length + 2) >> 2) << 2); // 4 aligned std::shared_ptr dataStruct = std::make_shared(total_length); for (size_t i = 0; i < 16; ++i) { dataStruct->write8(i < kNumChannels ? grid_points[i] : 0); // Grid size } dataStruct->write8(2); // Grid byte width (always 16-bit) dataStruct->write8(0); // Reserved dataStruct->write8(0); // Reserved dataStruct->write8(0); // Reserved for (uint32_t i = 0; i < value_count; ++i) { uint16_t value = reinterpret_cast(grid_16)[i]; dataStruct->write16(value); } return dataStruct; } std::shared_ptr IccHelper::write_mAB_or_mBA_tag(uint32_t type, bool has_a_curves, const uint8_t* grid_points, const uint8_t* grid_16) { const size_t b_curves_offset = 32; std::shared_ptr b_curves_data[kNumChannels]; std::shared_ptr a_curves_data[kNumChannels]; size_t clut_offset = 0; std::shared_ptr clut; size_t a_curves_offset = 0; // The "B" curve is required. for (size_t i = 0; i < kNumChannels; ++i) { b_curves_data[i] = write_trc_tag(kLinear_TransFun); } // The "A" curve and CLUT are optional. if (has_a_curves) { clut_offset = b_curves_offset; for (size_t i = 0; i < kNumChannels; ++i) { clut_offset += b_curves_data[i]->getLength(); } clut = write_clut(grid_points, grid_16); a_curves_offset = clut_offset + clut->getLength(); for (size_t i = 0; i < kNumChannels; ++i) { a_curves_data[i] = write_trc_tag(kLinear_TransFun); } } int total_length = b_curves_offset; for (size_t i = 0; i < kNumChannels; ++i) { total_length += b_curves_data[i]->getLength(); } if (has_a_curves) { total_length += clut->getLength(); for (size_t i = 0; i < kNumChannels; ++i) { total_length += a_curves_data[i]->getLength(); } } std::shared_ptr dataStruct = std::make_shared(total_length); dataStruct->write32(Endian_SwapBE32(type)); // Type signature dataStruct->write32(0); // Reserved dataStruct->write8(kNumChannels); // Input channels dataStruct->write8(kNumChannels); // Output channels dataStruct->write16(0); // Reserved dataStruct->write32(Endian_SwapBE32(b_curves_offset)); // B curve offset dataStruct->write32(Endian_SwapBE32(0)); // Matrix offset (ignored) dataStruct->write32(Endian_SwapBE32(0)); // M curve offset (ignored) dataStruct->write32(Endian_SwapBE32(clut_offset)); // CLUT offset dataStruct->write32(Endian_SwapBE32(a_curves_offset)); // A curve offset for (size_t i = 0; i < kNumChannels; ++i) { if (dataStruct->write(b_curves_data[i]->getData(), b_curves_data[i]->getLength())) { return dataStruct; } } if (has_a_curves) { dataStruct->write(clut->getData(), clut->getLength()); for (size_t i = 0; i < kNumChannels; ++i) { dataStruct->write(a_curves_data[i]->getData(), a_curves_data[i]->getLength()); } } return dataStruct; } std::shared_ptr IccHelper::writeIccProfile(ultrahdr_transfer_function tf, ultrahdr_color_gamut gamut) { ICCHeader header; std::vector>> tags; // Compute profile description tag std::string desc = get_desc_string(tf, gamut); tags.emplace_back(kTAG_desc, write_text_tag(desc.c_str())); Matrix3x3 toXYZD50; switch (gamut) { case ULTRAHDR_COLORGAMUT_BT709: toXYZD50 = kSRGB; break; case ULTRAHDR_COLORGAMUT_P3: toXYZD50 = kDisplayP3; break; case ULTRAHDR_COLORGAMUT_BT2100: toXYZD50 = kRec2020; break; default: // Should not fall here. return nullptr; } // Compute primaries. { tags.emplace_back(kTAG_rXYZ, write_xyz_tag(toXYZD50.vals[0][0], toXYZD50.vals[1][0], toXYZD50.vals[2][0])); tags.emplace_back(kTAG_gXYZ, write_xyz_tag(toXYZD50.vals[0][1], toXYZD50.vals[1][1], toXYZD50.vals[2][1])); tags.emplace_back(kTAG_bXYZ, write_xyz_tag(toXYZD50.vals[0][2], toXYZD50.vals[1][2], toXYZD50.vals[2][2])); } // Compute white point tag (must be D50) tags.emplace_back(kTAG_wtpt, write_xyz_tag(kD50_x, kD50_y, kD50_z)); // Compute transfer curves. if (tf != ULTRAHDR_TF_PQ) { if (tf == ULTRAHDR_TF_HLG) { std::vector trc_table; trc_table.resize(kTrcTableSize * 2); for (uint32_t i = 0; i < kTrcTableSize; ++i) { float x = i / (kTrcTableSize - 1.f); float y = hlgOetf(x); y *= compute_tone_map_gain(tf, y); float_to_table16(y, &trc_table[2 * i]); } tags.emplace_back(kTAG_rTRC, write_trc_tag(kTrcTableSize, reinterpret_cast(trc_table.data()))); tags.emplace_back(kTAG_gTRC, write_trc_tag(kTrcTableSize, reinterpret_cast(trc_table.data()))); tags.emplace_back(kTAG_bTRC, write_trc_tag(kTrcTableSize, reinterpret_cast(trc_table.data()))); } else { tags.emplace_back(kTAG_rTRC, write_trc_tag(kSRGB_TransFun)); tags.emplace_back(kTAG_gTRC, write_trc_tag(kSRGB_TransFun)); tags.emplace_back(kTAG_bTRC, write_trc_tag(kSRGB_TransFun)); } } // Compute CICP. if (tf == ULTRAHDR_TF_HLG || tf == ULTRAHDR_TF_PQ) { // The CICP tag is present in ICC 4.4, so update the header's version. header.version = Endian_SwapBE32(0x04400000); uint32_t color_primaries = 0; if (gamut == ULTRAHDR_COLORGAMUT_BT709) { color_primaries = kCICPPrimariesSRGB; } else if (gamut == ULTRAHDR_COLORGAMUT_P3) { color_primaries = kCICPPrimariesP3; } uint32_t transfer_characteristics = 0; if (tf == ULTRAHDR_TF_SRGB) { transfer_characteristics = kCICPTrfnSRGB; } else if (tf == ULTRAHDR_TF_LINEAR) { transfer_characteristics = kCICPTrfnLinear; } else if (tf == ULTRAHDR_TF_PQ) { transfer_characteristics = kCICPTrfnPQ; } else if (tf == ULTRAHDR_TF_HLG) { transfer_characteristics = kCICPTrfnHLG; } tags.emplace_back(kTAG_cicp, write_cicp_tag(color_primaries, transfer_characteristics)); } // Compute A2B0. if (tf == ULTRAHDR_TF_PQ) { std::vector a2b_grid; a2b_grid.resize(kGridSize * kGridSize * kGridSize * kNumChannels * 2); size_t a2b_grid_index = 0; for (uint32_t r_index = 0; r_index < kGridSize; ++r_index) { for (uint32_t g_index = 0; g_index < kGridSize; ++g_index) { for (uint32_t b_index = 0; b_index < kGridSize; ++b_index) { float rgb[3] = { r_index / (kGridSize - 1.f), g_index / (kGridSize - 1.f), b_index / (kGridSize - 1.f), }; compute_lut_entry(toXYZD50, rgb); float_XYZD50_to_grid16_lab(rgb, &a2b_grid[a2b_grid_index]); a2b_grid_index += 6; } } } const uint8_t* grid_16 = reinterpret_cast(a2b_grid.data()); uint8_t grid_points[kNumChannels]; for (size_t i = 0; i < kNumChannels; ++i) { grid_points[i] = kGridSize; } auto a2b_data = write_mAB_or_mBA_tag(kTAG_mABType, /* has_a_curves */ true, grid_points, grid_16); tags.emplace_back(kTAG_A2B0, std::move(a2b_data)); } // Compute B2A0. if (tf == ULTRAHDR_TF_PQ) { auto b2a_data = write_mAB_or_mBA_tag(kTAG_mBAType, /* has_a_curves */ false, /* grid_points */ nullptr, /* grid_16 */ nullptr); tags.emplace_back(kTAG_B2A0, std::move(b2a_data)); } // Compute copyright tag tags.emplace_back(kTAG_cprt, write_text_tag("Google Inc. 2022")); // Compute the size of the profile. size_t tag_data_size = 0; for (const auto& tag : tags) { tag_data_size += tag.second->getLength(); } size_t tag_table_size = kICCTagTableEntrySize * tags.size(); size_t profile_size = kICCHeaderSize + tag_table_size + tag_data_size; std::shared_ptr dataStruct = std::make_shared(profile_size + kICCIdentifierSize); // Write identifier, chunk count, and chunk ID if (!dataStruct->write(kICCIdentifier, sizeof(kICCIdentifier)) || !dataStruct->write8(1) || !dataStruct->write8(1)) { ALOGE("writeIccProfile(): error in identifier"); return dataStruct; } // Write the header. header.data_color_space = Endian_SwapBE32(Signature_RGB); header.pcs = Endian_SwapBE32(tf == ULTRAHDR_TF_PQ ? Signature_Lab : Signature_XYZ); header.size = Endian_SwapBE32(profile_size); header.tag_count = Endian_SwapBE32(tags.size()); if (!dataStruct->write(&header, sizeof(header))) { ALOGE("writeIccProfile(): error in header"); return dataStruct; } // Write the tag table. Track the offset and size of the previous tag to // compute each tag's offset. An empty SkData indicates that the previous // tag is to be reused. uint32_t last_tag_offset = sizeof(header) + tag_table_size; uint32_t last_tag_size = 0; for (const auto& tag : tags) { last_tag_offset = last_tag_offset + last_tag_size; last_tag_size = tag.second->getLength(); uint32_t tag_table_entry[3] = { Endian_SwapBE32(tag.first), Endian_SwapBE32(last_tag_offset), Endian_SwapBE32(last_tag_size), }; if (!dataStruct->write(tag_table_entry, sizeof(tag_table_entry))) { ALOGE("writeIccProfile(): error in writing tag table"); return dataStruct; } } // Write the tags. for (const auto& tag : tags) { if (!dataStruct->write(tag.second->getData(), tag.second->getLength())) { ALOGE("writeIccProfile(): error in writing tags"); return dataStruct; } } return dataStruct; } bool IccHelper::tagsEqualToMatrix(const Matrix3x3& matrix, const uint8_t* red_tag, const uint8_t* green_tag, const uint8_t* blue_tag) { std::shared_ptr red_tag_test = write_xyz_tag(matrix.vals[0][0], matrix.vals[1][0], matrix.vals[2][0]); std::shared_ptr green_tag_test = write_xyz_tag(matrix.vals[0][1], matrix.vals[1][1], matrix.vals[2][1]); std::shared_ptr blue_tag_test = write_xyz_tag(matrix.vals[0][2], matrix.vals[1][2], matrix.vals[2][2]); return memcmp(red_tag, red_tag_test->getData(), kColorantTagSize) == 0 && memcmp(green_tag, green_tag_test->getData(), kColorantTagSize) == 0 && memcmp(blue_tag, blue_tag_test->getData(), kColorantTagSize) == 0; } ultrahdr_color_gamut IccHelper::readIccColorGamut(void* icc_data, size_t icc_size) { // Each tag table entry consists of 3 fields of 4 bytes each. static const size_t kTagTableEntrySize = 12; if (icc_data == nullptr || icc_size < sizeof(ICCHeader) + kICCIdentifierSize) { return ULTRAHDR_COLORGAMUT_UNSPECIFIED; } if (memcmp(icc_data, kICCIdentifier, sizeof(kICCIdentifier)) != 0) { return ULTRAHDR_COLORGAMUT_UNSPECIFIED; } uint8_t* icc_bytes = reinterpret_cast(icc_data) + kICCIdentifierSize; ICCHeader* header = reinterpret_cast(icc_bytes); // Use 0 to indicate not found, since offsets are always relative to start // of ICC data and therefore a tag offset of zero would never be valid. size_t red_primary_offset = 0, green_primary_offset = 0, blue_primary_offset = 0; size_t red_primary_size = 0, green_primary_size = 0, blue_primary_size = 0; for (size_t tag_idx = 0; tag_idx < Endian_SwapBE32(header->tag_count); ++tag_idx) { if (icc_size < kICCIdentifierSize + sizeof(ICCHeader) + ((tag_idx + 1) * kTagTableEntrySize)) { ALOGE( "Insufficient buffer size during icc parsing. tag index %zu, header %zu, tag size %zu, " "icc size %zu", tag_idx, kICCIdentifierSize + sizeof(ICCHeader), kTagTableEntrySize, icc_size); return ULTRAHDR_COLORGAMUT_UNSPECIFIED; } uint32_t* tag_entry_start = reinterpret_cast(icc_bytes + sizeof(ICCHeader) + tag_idx * kTagTableEntrySize); // first 4 bytes are the tag signature, next 4 bytes are the tag offset, // last 4 bytes are the tag length in bytes. if (red_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_rXYZ)) { red_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1)); red_primary_size = Endian_SwapBE32(*(tag_entry_start + 2)); } else if (green_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_gXYZ)) { green_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1)); green_primary_size = Endian_SwapBE32(*(tag_entry_start + 2)); } else if (blue_primary_offset == 0 && *tag_entry_start == Endian_SwapBE32(kTAG_bXYZ)) { blue_primary_offset = Endian_SwapBE32(*(tag_entry_start + 1)); blue_primary_size = Endian_SwapBE32(*(tag_entry_start + 2)); } } if (red_primary_offset == 0 || red_primary_size != kColorantTagSize || kICCIdentifierSize + red_primary_offset + red_primary_size > icc_size || green_primary_offset == 0 || green_primary_size != kColorantTagSize || kICCIdentifierSize + green_primary_offset + green_primary_size > icc_size || blue_primary_offset == 0 || blue_primary_size != kColorantTagSize || kICCIdentifierSize + blue_primary_offset + blue_primary_size > icc_size) { return ULTRAHDR_COLORGAMUT_UNSPECIFIED; } uint8_t* red_tag = icc_bytes + red_primary_offset; uint8_t* green_tag = icc_bytes + green_primary_offset; uint8_t* blue_tag = icc_bytes + blue_primary_offset; // Serialize tags as we do on encode and compare what we find to that to // determine the gamut (since we don't have a need yet for full deserialize). if (tagsEqualToMatrix(kSRGB, red_tag, green_tag, blue_tag)) { return ULTRAHDR_COLORGAMUT_BT709; } else if (tagsEqualToMatrix(kDisplayP3, red_tag, green_tag, blue_tag)) { return ULTRAHDR_COLORGAMUT_P3; } else if (tagsEqualToMatrix(kRec2020, red_tag, green_tag, blue_tag)) { return ULTRAHDR_COLORGAMUT_BT2100; } // Didn't find a match to one of the profiles we write; indicate the gamut // is unspecified since we don't understand it. return ULTRAHDR_COLORGAMUT_UNSPECIFIED; } } // namespace ultrahdr