/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/common/vp9_reconintra.h" #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9_rtcd.h" DECLARE_ALIGNED(16, extern const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]); void vp9_subtract_block_c(int rows, int cols, int16_t *diff_ptr, ptrdiff_t diff_stride, const uint8_t *src_ptr, ptrdiff_t src_stride, const uint8_t *pred_ptr, ptrdiff_t pred_stride) { int r, c; for (r = 0; r < rows; r++) { for (c = 0; c < cols; c++) diff_ptr[c] = src_ptr[c] - pred_ptr[c]; diff_ptr += diff_stride; pred_ptr += pred_stride; src_ptr += src_stride; } } static void inverse_transform_b_4x4_add(MACROBLOCKD *xd, int eob, int16_t *dqcoeff, uint8_t *dest, int stride) { if (eob <= 1) xd->inv_txm4x4_1_add(dqcoeff, dest, stride); else xd->inv_txm4x4_add(dqcoeff, dest, stride); } static void subtract_plane(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const MACROBLOCKD *const xd = &x->e_mbd; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int bw = plane_block_width(bsize, pd); const int bh = plane_block_height(bsize, pd); vp9_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { subtract_plane(x, bsize, 0); } void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { int i; for (i = 1; i < MAX_MB_PLANE; i++) subtract_plane(x, bsize, i); } void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { vp9_subtract_sby(x, bsize); vp9_subtract_sbuv(x, bsize); } #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp9_token_state vp9_token_state; struct vp9_token_state { int rate; int error; int next; signed char token; short qc; }; // TODO: experiments to find optimal multiple numbers #define Y1_RD_MULT 4 #define UV_RD_MULT 2 static const int plane_rd_mult[4] = { Y1_RD_MULT, UV_RD_MULT, }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb, int idx, int token, uint8_t *token_cache) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = vp9_pt_energy_class[token]; pt = get_coef_context(nb, token_cache, idx + 1); token_cache[scan[idx]] = bak; return pt; } static void optimize_b(VP9_COMMON *const cm, MACROBLOCK *mb, int plane, int block, BLOCK_SIZE_TYPE bsize, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, TX_SIZE tx_size) { const int ref = mb->e_mbd.mode_info_context->mbmi.ref_frame[0] != INTRA_FRAME; MACROBLOCKD *const xd = &mb->e_mbd; vp9_token_state tokens[1025][2]; unsigned best_index[1025][2]; const int16_t *coeff_ptr = BLOCK_OFFSET(mb->plane[plane].coeff, block, 16); int16_t *qcoeff_ptr; int16_t *dqcoeff_ptr; int eob = xd->plane[plane].eobs[block], final_eob, sz = 0; const int i0 = 0; int rc, x, next, i; int64_t rdmult, rddiv, rd_cost0, rd_cost1; int rate0, rate1, error0, error1, t0, t1; int best, band, pt; PLANE_TYPE type = xd->plane[plane].plane_type; int err_mult = plane_rd_mult[type]; int default_eob; const int16_t *scan, *nb; const int mul = 1 + (tx_size == TX_32X32); uint8_t token_cache[1024]; const int ib = txfrm_block_to_raster_block(xd, bsize, plane, block, 2 * tx_size); const int16_t *dequant_ptr = xd->plane[plane].dequant; const uint8_t * band_translate; assert((!type && !plane) || (type && plane)); dqcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16); qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16); switch (tx_size) { default: case TX_4X4: default_eob = 16; scan = get_scan_4x4(get_tx_type_4x4(type, xd, ib)); band_translate = vp9_coefband_trans_4x4; break; case TX_8X8: scan = get_scan_8x8(get_tx_type_8x8(type, xd)); default_eob = 64; band_translate = vp9_coefband_trans_8x8plus; break; case TX_16X16: scan = get_scan_16x16(get_tx_type_16x16(type, xd)); default_eob = 256; band_translate = vp9_coefband_trans_8x8plus; break; case TX_32X32: scan = vp9_default_scan_32x32; default_eob = 1024; band_translate = vp9_coefband_trans_8x8plus; break; } assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (mb->e_mbd.mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME) rdmult = (rdmult * 9) >> 4; rddiv = mb->rddiv; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = 0; i < eob; i++) token_cache[scan[i]] = vp9_pt_energy_class[vp9_dct_value_tokens_ptr[ qcoeff_ptr[scan[i]]].token]; nb = vp9_get_coef_neighbors_handle(scan); for (i = eob; i-- > i0;) { int base_bits, d2, dx; rc = scan[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp9_dct_value_tokens_ptr + x)->token; /* Consider both possible successor states. */ if (next < default_eob) { band = get_coef_band(band_translate, i + 1); pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][0][band][pt] [tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][ref][0][band][pt] [tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]); d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) && (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token; } if (next < default_eob) { band = get_coef_band(band_translate, i + 1); if (t0 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][!x][band][pt] [tokens[next][0].token]; } if (t1 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache); rate1 += mb->token_costs[tx_size][type][ref][!x][band][pt] [tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); if (shortcut) { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = get_coef_band(band_translate, i + 1); t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][ref][1][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][ref][1][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } best_index[i][0] = best_index[i][1] = 0; /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = get_coef_band(band_translate, i + 1); pt = combine_entropy_contexts(*a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][ref][0][band][pt][t0]; rate1 += mb->token_costs[tx_size][type][ref][0][band][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = i0 - 1; vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2))); vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2))); for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) { final_eob = i; } rc = scan[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul; next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; xd->plane[plane].eobs[block] = final_eob; *a = *l = (final_eob > 0); } void vp9_optimize_b(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, VP9_COMMON *cm, MACROBLOCK *mb, struct optimize_ctx *ctx) { MACROBLOCKD *const xd = &mb->e_mbd; int x, y; // find current entropy context txfrm_block_to_raster_xy(xd, bsize, plane, block, ss_txfrm_size, &x, &y); optimize_b(cm, mb, plane, block, bsize, &ctx->ta[plane][x], &ctx->tl[plane][y], ss_txfrm_size / 2); } static void optimize_block(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { const struct encode_b_args* const args = arg; vp9_optimize_b(plane, block, bsize, ss_txfrm_size, args->cm, args->x, args->ctx); } void vp9_optimize_init(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, struct optimize_ctx *ctx) { int p; for (p = 0; p < MAX_MB_PLANE; p++) { const struct macroblockd_plane* const plane = &xd->plane[p]; const int bwl = b_width_log2(bsize) - plane->subsampling_x; const int bhl = b_height_log2(bsize) - plane->subsampling_y; const MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; const TX_SIZE tx_size = p ? get_uv_tx_size(mbmi) : mbmi->txfm_size; int i, j; for (i = 0; i < 1 << bwl; i += 1 << tx_size) { int c = 0; ctx->ta[p][i] = 0; for (j = 0; j < 1 << tx_size && !c; j++) { c = ctx->ta[p][i] |= plane->above_context[i + j]; } } for (i = 0; i < 1 << bhl; i += 1 << tx_size) { int c = 0; ctx->tl[p][i] = 0; for (j = 0; j < 1 << tx_size && !c; j++) { c = ctx->tl[p][i] |= plane->left_context[i + j]; } } } } void vp9_optimize_sby(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; vp9_optimize_init(&x->e_mbd, bsize, &ctx); foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, optimize_block, &arg); } void vp9_optimize_sbuv(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; vp9_optimize_init(&x->e_mbd, bsize, &ctx); foreach_transformed_block_uv(&x->e_mbd, bsize, optimize_block, &arg); } void xform_quant(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { struct encode_b_args* const args = arg; MACROBLOCK* const x = args->x; MACROBLOCKD* const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *coeff = BLOCK_OFFSET(p->coeff, block, 16); int16_t *qcoeff = BLOCK_OFFSET(pd->qcoeff, block, 16); int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block, 16); const TX_SIZE tx_size = (TX_SIZE)(ss_txfrm_size / 2); const int16_t *scan, *iscan; uint16_t *eob = &pd->eobs[block]; const int bwl = plane_block_width_log2by4(bsize, pd), bw = 1 << bwl; const int twl = bwl - tx_size, twmask = (1 << twl) - 1; int xoff, yoff; int16_t *src_diff; switch (tx_size) { case TX_32X32: scan = vp9_default_scan_32x32; iscan = vp9_default_iscan_32x32; block >>= 6; xoff = 32 * (block & twmask); yoff = 32 * (block >> twl); src_diff = p->src_diff + 4 * bw * yoff + xoff; if (x->rd_search) vp9_short_fdct32x32_rd(src_diff, coeff, bw * 8); else vp9_short_fdct32x32(src_diff, coeff, bw * 8); vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); break; case TX_16X16: scan = vp9_default_scan_16x16; iscan = vp9_default_iscan_16x16; block >>= 4; xoff = 16 * (block & twmask); yoff = 16 * (block >> twl); src_diff = p->src_diff + 4 * bw * yoff + xoff; x->fwd_txm16x16(src_diff, coeff, bw * 8); vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); break; case TX_8X8: scan = vp9_default_scan_8x8; iscan = vp9_default_iscan_8x8; block >>= 2; xoff = 8 * (block & twmask); yoff = 8 * (block >> twl); src_diff = p->src_diff + 4 * bw * yoff + xoff; x->fwd_txm8x8(src_diff, coeff, bw * 8); vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); break; case TX_4X4: scan = vp9_default_scan_4x4; iscan = vp9_default_iscan_4x4; xoff = 4 * (block & twmask); yoff = 4 * (block >> twl); src_diff = p->src_diff + 4 * bw * yoff + xoff; x->fwd_txm4x4(src_diff, coeff, bw * 8); vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); break; default: assert(0); } } static void encode_block(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane, block, ss_txfrm_size); struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block, 16); uint8_t *const dst = raster_block_offset_uint8(xd, bsize, plane, raster_block, pd->dst.buf, pd->dst.stride); xform_quant(plane, block, bsize, ss_txfrm_size, arg); if (x->optimize) vp9_optimize_b(plane, block, bsize, ss_txfrm_size, args->cm, x, args->ctx); if (x->skip_encode) return; if (pd->eobs[block] == 0) return; switch (ss_txfrm_size / 2) { case TX_32X32: vp9_short_idct32x32_add(dqcoeff, dst, pd->dst.stride); break; case TX_16X16: vp9_short_idct16x16_add(dqcoeff, dst, pd->dst.stride); break; case TX_8X8: vp9_short_idct8x8_add(dqcoeff, dst, pd->dst.stride); break; case TX_4X4: // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. inverse_transform_b_4x4_add(xd, pd->eobs[block], dqcoeff, dst, pd->dst.stride); break; } } void vp9_xform_quant_sby(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD* const xd = &x->e_mbd; struct encode_b_args arg = {cm, x, NULL}; foreach_transformed_block_in_plane(xd, bsize, 0, xform_quant, &arg); } void vp9_xform_quant_sbuv(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD* const xd = &x->e_mbd; struct encode_b_args arg = {cm, x, NULL}; foreach_transformed_block_uv(xd, bsize, xform_quant, &arg); } void vp9_encode_sby(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; vp9_subtract_sby(x, bsize); if (x->optimize) vp9_optimize_init(xd, bsize, &ctx); foreach_transformed_block_in_plane(xd, bsize, 0, encode_block, &arg); } void vp9_encode_sbuv(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; vp9_subtract_sbuv(x, bsize); if (x->optimize) vp9_optimize_init(xd, bsize, &ctx); foreach_transformed_block_uv(xd, bsize, encode_block, &arg); } void vp9_encode_sb(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; vp9_subtract_sb(x, bsize); if (x->optimize) vp9_optimize_init(xd, bsize, &ctx); foreach_transformed_block(xd, bsize, encode_block, &arg); } void encode_block_intra(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { struct encode_b_args* const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; const TX_SIZE tx_size = (TX_SIZE)(ss_txfrm_size / 2); struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t *coeff = BLOCK_OFFSET(p->coeff, block, 16); int16_t *qcoeff = BLOCK_OFFSET(pd->qcoeff, block, 16); int16_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block, 16); const int16_t *scan, *iscan; TX_TYPE tx_type; MB_PREDICTION_MODE mode; const int bwl = b_width_log2(bsize) - pd->subsampling_x, bw = 1 << bwl; const int twl = bwl - tx_size, twmask = (1 << twl) - 1; int xoff, yoff; uint8_t *src, *dst; int16_t *src_diff; uint16_t *eob = &pd->eobs[block]; if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) { extend_for_intra(xd, plane, block, bsize, ss_txfrm_size); } // if (x->optimize) // vp9_optimize_b(plane, block, bsize, ss_txfrm_size, // args->cm, x, args->ctx); switch (tx_size) { case TX_32X32: scan = vp9_default_scan_32x32; iscan = vp9_default_iscan_32x32; mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; block >>= 6; xoff = 32 * (block & twmask); yoff = 32 * (block >> twl); dst = pd->dst.buf + yoff * pd->dst.stride + xoff; src = p->src.buf + yoff * p->src.stride + xoff; src_diff = p->src_diff + 4 * bw * yoff + xoff; vp9_predict_intra_block(xd, block, bwl, TX_32X32, mode, dst, pd->dst.stride, dst, pd->dst.stride); vp9_subtract_block(32, 32, src_diff, bw * 4, src, p->src.stride, dst, pd->dst.stride); if (x->rd_search) vp9_short_fdct32x32_rd(src_diff, coeff, bw * 8); else vp9_short_fdct32x32(src_diff, coeff, bw * 8); vp9_quantize_b_32x32(coeff, 1024, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); if (!x->skip_encode && *eob) vp9_short_idct32x32_add(dqcoeff, dst, pd->dst.stride); break; case TX_16X16: tx_type = get_tx_type_16x16(pd->plane_type, xd); scan = get_scan_16x16(tx_type); iscan = get_iscan_16x16(tx_type); mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; block >>= 4; xoff = 16 * (block & twmask); yoff = 16 * (block >> twl); dst = pd->dst.buf + yoff * pd->dst.stride + xoff; src = p->src.buf + yoff * p->src.stride + xoff; src_diff = p->src_diff + 4 * bw * yoff + xoff; vp9_predict_intra_block(xd, block, bwl, TX_16X16, mode, dst, pd->dst.stride, dst, pd->dst.stride); vp9_subtract_block(16, 16, src_diff, bw * 4, src, p->src.stride, dst, pd->dst.stride); if (tx_type != DCT_DCT) vp9_short_fht16x16(src_diff, coeff, bw * 4, tx_type); else x->fwd_txm16x16(src_diff, coeff, bw * 8); vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); if (!x->skip_encode && *eob) { if (tx_type == DCT_DCT) vp9_short_idct16x16_add(dqcoeff, dst, pd->dst.stride); else vp9_short_iht16x16_add(dqcoeff, dst, pd->dst.stride, tx_type); } break; case TX_8X8: tx_type = get_tx_type_8x8(pd->plane_type, xd); scan = get_scan_8x8(tx_type); iscan = get_iscan_8x8(tx_type); mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; block >>= 2; xoff = 8 * (block & twmask); yoff = 8 * (block >> twl); dst = pd->dst.buf + yoff * pd->dst.stride + xoff; src = p->src.buf + yoff * p->src.stride + xoff; src_diff = p->src_diff + 4 * bw * yoff + xoff; vp9_predict_intra_block(xd, block, bwl, TX_8X8, mode, dst, pd->dst.stride, dst, pd->dst.stride); vp9_subtract_block(8, 8, src_diff, bw * 4, src, p->src.stride, dst, pd->dst.stride); if (tx_type != DCT_DCT) vp9_short_fht8x8(src_diff, coeff, bw * 4, tx_type); else x->fwd_txm8x8(src_diff, coeff, bw * 8); vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); if (!x->skip_encode && *eob) { if (tx_type == DCT_DCT) vp9_short_idct8x8_add(dqcoeff, dst, pd->dst.stride); else vp9_short_iht8x8_add(dqcoeff, dst, pd->dst.stride, tx_type); } break; case TX_4X4: tx_type = get_tx_type_4x4(pd->plane_type, xd, block); scan = get_scan_4x4(tx_type); iscan = get_iscan_4x4(tx_type); if (mbmi->sb_type < BLOCK_SIZE_SB8X8 && plane == 0) { mode = xd->mode_info_context->bmi[block].as_mode; } else { mode = plane == 0 ? mbmi->mode : mbmi->uv_mode; } xoff = 4 * (block & twmask); yoff = 4 * (block >> twl); dst = pd->dst.buf + yoff * pd->dst.stride + xoff; src = p->src.buf + yoff * p->src.stride + xoff; src_diff = p->src_diff + 4 * bw * yoff + xoff; vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode, dst, pd->dst.stride, dst, pd->dst.stride); vp9_subtract_block(4, 4, src_diff, bw * 4, src, p->src.stride, dst, pd->dst.stride); if (tx_type != DCT_DCT) vp9_short_fht4x4(src_diff, coeff, bw * 4, tx_type); else x->fwd_txm4x4(src_diff, coeff, bw * 8); vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round, p->quant, p->quant_shift, qcoeff, dqcoeff, pd->dequant, p->zbin_extra, eob, scan, iscan); if (!x->skip_encode && *eob) { if (tx_type == DCT_DCT) // this is like vp9_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. inverse_transform_b_4x4_add(xd, *eob, dqcoeff, dst, pd->dst.stride); else vp9_short_iht4x4_add(dqcoeff, dst, pd->dst.stride, tx_type); } break; default: assert(0); } } void vp9_encode_intra_block_y(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD* const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; foreach_transformed_block_in_plane(xd, bsize, 0, encode_block_intra, &arg); } void vp9_encode_intra_block_uv(VP9_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD* const xd = &x->e_mbd; struct optimize_ctx ctx; struct encode_b_args arg = {cm, x, &ctx}; foreach_transformed_block_uv(xd, bsize, encode_block_intra, &arg); }