/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_extend.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_segmentation.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/vpx_timer.h" #include "vpx_scale/vpx_scale.h" static int fixed_divide[512]; static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr, int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col, uint8_t *pred, struct scale_factors *scale, int x, int y) { const int which_mv = 0; const MV mv = { mv_row, mv_col }; const InterpKernel *const kernel = vp9_get_interp_kernel(xd->mi[0]->mbmi.interp_filter); enum mv_precision mv_precision_uv; int uv_stride; if (uv_block_width == 8) { uv_stride = (stride + 1) >> 1; mv_precision_uv = MV_PRECISION_Q4; } else { uv_stride = stride; mv_precision_uv = MV_PRECISION_Q3; } vp9_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16, which_mv, kernel, MV_PRECISION_Q3, x, y); vp9_build_inter_predictor(u_mb_ptr, uv_stride, &pred[256], uv_block_width, &mv, scale, uv_block_width, uv_block_height, which_mv, kernel, mv_precision_uv, x, y); vp9_build_inter_predictor(v_mb_ptr, uv_stride, &pred[512], uv_block_width, &mv, scale, uv_block_width, uv_block_height, which_mv, kernel, mv_precision_uv, x, y); } void vp9_temporal_filter_init() { int i; fixed_divide[0] = 0; for (i = 1; i < 512; ++i) fixed_divide[i] = 0x80000 / i; } void vp9_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride, uint8_t *frame2, unsigned int block_width, unsigned int block_height, int strength, int filter_weight, unsigned int *accumulator, uint16_t *count) { unsigned int i, j, k; int modifier; int byte = 0; const int rounding = strength > 0 ? 1 << (strength - 1) : 0; for (i = 0, k = 0; i < block_height; i++) { for (j = 0; j < block_width; j++, k++) { int src_byte = frame1[byte]; int pixel_value = *frame2++; modifier = src_byte - pixel_value; // This is an integer approximation of: // float coeff = (3.0 * modifer * modifier) / pow(2, strength); // modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff); modifier *= modifier; modifier *= 3; modifier += rounding; modifier >>= strength; if (modifier > 16) modifier = 16; modifier = 16 - modifier; modifier *= filter_weight; count[k] += modifier; accumulator[k] += modifier * pixel_value; byte++; } byte += stride - block_width; } } static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi, uint8_t *arf_frame_buf, uint8_t *frame_ptr_buf, int stride) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; int step_param; int sadpb = x->sadperbit16; int bestsme = INT_MAX; int distortion; unsigned int sse; MV best_ref_mv1 = {0, 0}; MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv; // Save input state struct buf_2d src = x->plane[0].src; struct buf_2d pre = xd->plane[0].pre[0]; best_ref_mv1_full.col = best_ref_mv1.col >> 3; best_ref_mv1_full.row = best_ref_mv1.row >> 3; // Setup frame pointers x->plane[0].src.buf = arf_frame_buf; x->plane[0].src.stride = stride; xd->plane[0].pre[0].buf = frame_ptr_buf; xd->plane[0].pre[0].stride = stride; step_param = mv_sf->reduce_first_step_size; step_param = MIN(step_param, MAX_MVSEARCH_STEPS - 2); // Ignore mv costing by sending NULL pointer instead of cost arrays vp9_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1, &cpi->fn_ptr[BLOCK_16X16], 0, &best_ref_mv1, ref_mv); // Ignore mv costing by sending NULL pointer instead of cost array bestsme = cpi->find_fractional_mv_step(x, ref_mv, &best_ref_mv1, cpi->common.allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[BLOCK_16X16], 0, mv_sf->subpel_iters_per_step, NULL, NULL, &distortion, &sse, NULL, 0, 0); // Restore input state x->plane[0].src = src; xd->plane[0].pre[0] = pre; return bestsme; } static void temporal_filter_iterate_c(VP9_COMP *cpi, int frame_count, int alt_ref_index, int strength, struct scale_factors *scale) { int byte; int frame; int mb_col, mb_row; unsigned int filter_weight; int mb_cols = cpi->common.mb_cols; int mb_rows = cpi->common.mb_rows; int mb_y_offset = 0; int mb_uv_offset = 0; DECLARE_ALIGNED_ARRAY(16, unsigned int, accumulator, 16 * 16 * 3); DECLARE_ALIGNED_ARRAY(16, uint16_t, count, 16 * 16 * 3); MACROBLOCKD *mbd = &cpi->mb.e_mbd; YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index]; uint8_t *dst1, *dst2; DECLARE_ALIGNED_ARRAY(16, uint8_t, predictor, 16 * 16 * 3); const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y; const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x; // Save input state uint8_t* input_buffer[MAX_MB_PLANE]; int i; for (i = 0; i < MAX_MB_PLANE; i++) input_buffer[i] = mbd->plane[i].pre[0].buf; for (mb_row = 0; mb_row < mb_rows; mb_row++) { // Source frames are extended to 16 pixels. This is different than // L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS) // A 6/8 tap filter is used for motion search. This requires 2 pixels // before and 3 pixels after. So the largest Y mv on a border would // then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the // Y and therefore only extended by 8. The largest mv that a UV block // can support is 8 - VP9_INTERP_EXTEND. A UV mv is half of a Y mv. // (16 - VP9_INTERP_EXTEND) >> 1 which is greater than // 8 - VP9_INTERP_EXTEND. // To keep the mv in play for both Y and UV planes the max that it // can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1). cpi->mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND)); cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16) + (17 - 2 * VP9_INTERP_EXTEND); for (mb_col = 0; mb_col < mb_cols; mb_col++) { int i, j, k; int stride; vpx_memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0])); vpx_memset(count, 0, 16 * 16 * 3 * sizeof(count[0])); cpi->mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND)); cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16) + (17 - 2 * VP9_INTERP_EXTEND); for (frame = 0; frame < frame_count; frame++) { const int thresh_low = 10000; const int thresh_high = 20000; if (cpi->frames[frame] == NULL) continue; mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0; mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0; if (frame == alt_ref_index) { filter_weight = 2; } else { // Find best match in this frame by MC int err = temporal_filter_find_matching_mb_c(cpi, cpi->frames[alt_ref_index]->y_buffer + mb_y_offset, cpi->frames[frame]->y_buffer + mb_y_offset, cpi->frames[frame]->y_stride); // Assign higher weight to matching MB if it's error // score is lower. If not applying MC default behavior // is to weight all MBs equal. filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0; } if (filter_weight != 0) { // Construct the predictors temporal_filter_predictors_mb_c(mbd, cpi->frames[frame]->y_buffer + mb_y_offset, cpi->frames[frame]->u_buffer + mb_uv_offset, cpi->frames[frame]->v_buffer + mb_uv_offset, cpi->frames[frame]->y_stride, mb_uv_width, mb_uv_height, mbd->mi[0]->bmi[0].as_mv[0].as_mv.row, mbd->mi[0]->bmi[0].as_mv[0].as_mv.col, predictor, scale, mb_col * 16, mb_row * 16); // Apply the filter (YUV) vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16, strength, filter_weight, accumulator, count); vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, mb_uv_width, mb_uv_height, strength, filter_weight, accumulator + 256, count + 256); vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, mb_uv_width, mb_uv_height, strength, filter_weight, accumulator + 512, count + 512); } } // Normalize filter output to produce AltRef frame dst1 = cpi->alt_ref_buffer.y_buffer; stride = cpi->alt_ref_buffer.y_stride; byte = mb_y_offset; for (i = 0, k = 0; i < 16; i++) { for (j = 0; j < 16; j++, k++) { unsigned int pval = accumulator[k] + (count[k] >> 1); pval *= fixed_divide[count[k]]; pval >>= 19; dst1[byte] = (uint8_t)pval; // move to next pixel byte++; } byte += stride - 16; } dst1 = cpi->alt_ref_buffer.u_buffer; dst2 = cpi->alt_ref_buffer.v_buffer; stride = cpi->alt_ref_buffer.uv_stride; byte = mb_uv_offset; for (i = 0, k = 256; i < mb_uv_height; i++) { for (j = 0; j < mb_uv_width; j++, k++) { int m = k + 256; // U unsigned int pval = accumulator[k] + (count[k] >> 1); pval *= fixed_divide[count[k]]; pval >>= 19; dst1[byte] = (uint8_t)pval; // V pval = accumulator[m] + (count[m] >> 1); pval *= fixed_divide[count[m]]; pval >>= 19; dst2[byte] = (uint8_t)pval; // move to next pixel byte++; } byte += stride - mb_uv_width; } mb_y_offset += 16; mb_uv_offset += mb_uv_width; } mb_y_offset += 16 * (f->y_stride - mb_cols); mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols; } // Restore input state for (i = 0; i < MAX_MB_PLANE; i++) mbd->plane[i].pre[0].buf = input_buffer[i]; } // Apply buffer limits and context specific adjustments to arnr filter. static void adjust_arnr_filter(VP9_COMP *cpi, int distance, int group_boost) { const int frames_after_arf = vp9_lookahead_depth(cpi->lookahead) - distance - 1; int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; int frames_bwd; int q; // Define the forward and backwards filter limits for this arnr group. if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; if (frames_fwd > distance) frames_fwd = distance; frames_bwd = frames_fwd; // For even length filter there is one more frame backward // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. if (frames_bwd < distance) frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1; // Set the baseline active filter size. cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; // Adjust the strength based on active max q. if (cpi->common.current_video_frame > 1) q = ((int)vp9_convert_qindex_to_q( cpi->rc.avg_frame_qindex[INTER_FRAME])); else q = ((int)vp9_convert_qindex_to_q( cpi->rc.avg_frame_qindex[KEY_FRAME])); if (q > 16) { cpi->active_arnr_strength = cpi->oxcf.arnr_strength; } else { cpi->active_arnr_strength = cpi->oxcf.arnr_strength - ((16 - q) / 2); if (cpi->active_arnr_strength < 0) cpi->active_arnr_strength = 0; } // Adjust number of frames in filter and strength based on gf boost level. if (cpi->active_arnr_frames > (group_boost / 150)) { cpi->active_arnr_frames = (group_boost / 150); cpi->active_arnr_frames += !(cpi->active_arnr_frames & 1); } if (cpi->active_arnr_strength > (group_boost / 300)) { cpi->active_arnr_strength = (group_boost / 300); } // Adjustments for second level arf in multi arf case. if (cpi->oxcf.pass == 2 && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; if (gf_group->rf_level[gf_group->index] != GF_ARF_STD) { cpi->active_arnr_strength >>= 1; } } } void vp9_temporal_filter(VP9_COMP *cpi, int distance) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int frame; int frames_to_blur; int start_frame; int strength; int frames_to_blur_backward; int frames_to_blur_forward; struct scale_factors sf; // Apply context specific adjustments to the arnr filter parameters. adjust_arnr_filter(cpi, distance, rc->gfu_boost); strength = cpi->active_arnr_strength; frames_to_blur = cpi->active_arnr_frames; frames_to_blur_backward = (frames_to_blur / 2); frames_to_blur_forward = ((frames_to_blur - 1) / 2); start_frame = distance + frames_to_blur_forward; // Setup frame pointers, NULL indicates frame not included in filter. vp9_zero(cpi->frames); for (frame = 0; frame < frames_to_blur; ++frame) { const int which_buffer = start_frame - frame; struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead, which_buffer); cpi->frames[frames_to_blur - 1 - frame] = &buf->img; } // Setup scaling factors. Scaling on each of the arnr frames is not supported if (is_spatial_svc(cpi)) { // In spatial svc the scaling factors might be less then 1/2. So we will use // non-normative scaling. int frame_used = 0; vp9_setup_scale_factors_for_frame(&sf, get_frame_new_buffer(cm)->y_crop_width, get_frame_new_buffer(cm)->y_crop_height, get_frame_new_buffer(cm)->y_crop_width, get_frame_new_buffer(cm)->y_crop_height); for (frame = 0; frame < frames_to_blur; ++frame) { if (cm->mi_cols * MI_SIZE != cpi->frames[frame]->y_width || cm->mi_rows * MI_SIZE != cpi->frames[frame]->y_height) { if (vp9_realloc_frame_buffer(&cpi->svc.scaled_frames[frame_used], cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to reallocate alt_ref_buffer"); cpi->frames[frame] = vp9_scale_if_required(cm, cpi->frames[frame], &cpi->svc.scaled_frames[frame_used]); ++frame_used; } } } else { vp9_setup_scale_factors_for_frame(&sf, get_frame_new_buffer(cm)->y_crop_width, get_frame_new_buffer(cm)->y_crop_height, cm->width, cm->height); } temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward, strength, &sf); }