aboutsummaryrefslogtreecommitdiff
path: root/libvpx/vp9/common/vp9_reconinter.c
blob: 0b65e06108d7db101a703f226be3cf7c4cc6a98d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <assert.h>

#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "./vpx_scale_rtcd.h"

static int scale_value_x_with_scaling(int val,
                                      const struct scale_factors *scale) {
  return (val * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT);
}

static int scale_value_y_with_scaling(int val,
                                      const struct scale_factors *scale) {
  return (val * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT);
}

static int unscaled_value(int val, const struct scale_factors *scale) {
  (void) scale;
  return val;
}

static MV32 mv_q3_to_q4_with_scaling(const MV *mv,
                                     const struct scale_factors *scale) {
  const MV32 res = {
    ((mv->row << 1) * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT)
        + scale->y_offset_q4,
    ((mv->col << 1) * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT)
        + scale->x_offset_q4
  };
  return res;
}

static MV32 mv_q3_to_q4_without_scaling(const MV *mv,
                                        const struct scale_factors *scale) {
  const MV32 res = {
     mv->row << 1,
     mv->col << 1
  };
  return res;
}

static MV32 mv_q4_with_scaling(const MV *mv,
                               const struct scale_factors *scale) {
  const MV32 res = {
    (mv->row * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->y_offset_q4,
    (mv->col * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->x_offset_q4
  };
  return res;
}

static MV32 mv_q4_without_scaling(const MV *mv,
                                  const struct scale_factors *scale) {
  const MV32 res = {
    mv->row,
    mv->col
  };
  return res;
}

static void set_offsets_with_scaling(struct scale_factors *scale,
                                     int row, int col) {
  const int x_q4 = 16 * col;
  const int y_q4 = 16 * row;

  scale->x_offset_q4 = (x_q4 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf;
  scale->y_offset_q4 = (y_q4 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf;
}

static void set_offsets_without_scaling(struct scale_factors *scale,
                                        int row, int col) {
  scale->x_offset_q4 = 0;
  scale->y_offset_q4 = 0;
}

static int get_fixed_point_scale_factor(int other_size, int this_size) {
  // Calculate scaling factor once for each reference frame
  // and use fixed point scaling factors in decoding and encoding routines.
  // Hardware implementations can calculate scale factor in device driver
  // and use multiplication and shifting on hardware instead of division.
  return (other_size << VP9_REF_SCALE_SHIFT) / this_size;
}

void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
                                       int other_w, int other_h,
                                       int this_w, int this_h) {
  scale->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
  scale->x_offset_q4 = 0;  // calculated per-mb
  scale->x_step_q4 = (16 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT);

  scale->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
  scale->y_offset_q4 = 0;  // calculated per-mb
  scale->y_step_q4 = (16 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT);

  if ((other_w == this_w) && (other_h == this_h)) {
    scale->scale_value_x = unscaled_value;
    scale->scale_value_y = unscaled_value;
    scale->set_scaled_offsets = set_offsets_without_scaling;
    scale->scale_mv_q3_to_q4 = mv_q3_to_q4_without_scaling;
    scale->scale_mv_q4 = mv_q4_without_scaling;
  } else {
    scale->scale_value_x = scale_value_x_with_scaling;
    scale->scale_value_y = scale_value_y_with_scaling;
    scale->set_scaled_offsets = set_offsets_with_scaling;
    scale->scale_mv_q3_to_q4 = mv_q3_to_q4_with_scaling;
    scale->scale_mv_q4 = mv_q4_with_scaling;
  }

  // TODO(agrange): Investigate the best choice of functions to use here
  // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
  // to do at full-pel offsets. The current selection, where the filter is
  // applied in one direction only, and not at all for 0,0, seems to give the
  // best quality, but it may be worth trying an additional mode that does
  // do the filtering on full-pel.
  if (scale->x_step_q4 == 16) {
    if (scale->y_step_q4 == 16) {
      // No scaling in either direction.
      scale->predict[0][0][0] = vp9_convolve_copy;
      scale->predict[0][0][1] = vp9_convolve_avg;
      scale->predict[0][1][0] = vp9_convolve8_vert;
      scale->predict[0][1][1] = vp9_convolve8_avg_vert;
      scale->predict[1][0][0] = vp9_convolve8_horiz;
      scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
    } else {
      // No scaling in x direction. Must always scale in the y direction.
      scale->predict[0][0][0] = vp9_convolve8_vert;
      scale->predict[0][0][1] = vp9_convolve8_avg_vert;
      scale->predict[0][1][0] = vp9_convolve8_vert;
      scale->predict[0][1][1] = vp9_convolve8_avg_vert;
      scale->predict[1][0][0] = vp9_convolve8;
      scale->predict[1][0][1] = vp9_convolve8_avg;
    }
  } else {
    if (scale->y_step_q4 == 16) {
      // No scaling in the y direction. Must always scale in the x direction.
      scale->predict[0][0][0] = vp9_convolve8_horiz;
      scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
      scale->predict[0][1][0] = vp9_convolve8;
      scale->predict[0][1][1] = vp9_convolve8_avg;
      scale->predict[1][0][0] = vp9_convolve8_horiz;
      scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
    } else {
      // Must always scale in both directions.
      scale->predict[0][0][0] = vp9_convolve8;
      scale->predict[0][0][1] = vp9_convolve8_avg;
      scale->predict[0][1][0] = vp9_convolve8;
      scale->predict[0][1][1] = vp9_convolve8_avg;
      scale->predict[1][0][0] = vp9_convolve8;
      scale->predict[1][0][1] = vp9_convolve8_avg;
    }
  }
  // 2D subpel motion always gets filtered in both directions
  scale->predict[1][1][0] = vp9_convolve8;
  scale->predict[1][1][1] = vp9_convolve8_avg;
}

void vp9_setup_interp_filters(MACROBLOCKD *xd,
                              INTERPOLATIONFILTERTYPE mcomp_filter_type,
                              VP9_COMMON *cm) {
  if (xd->mode_info_context) {
    MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;

    set_scale_factors(xd, mbmi->ref_frame[0] - 1, mbmi->ref_frame[1] - 1,
                      cm->active_ref_scale);
  }

  switch (mcomp_filter_type) {
    case EIGHTTAP:
    case SWITCHABLE:
      xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
      break;
    case EIGHTTAP_SMOOTH:
      xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
      break;
    case EIGHTTAP_SHARP:
      xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
      break;
    case BILINEAR:
      xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
      break;
  }
  assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}

void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
                               uint8_t *dst, int dst_stride,
                               const MV *src_mv,
                               const struct scale_factors *scale,
                               int w, int h, int weight,
                               const struct subpix_fn_table *subpix,
                               enum mv_precision precision) {
  const MV32 mv = precision == MV_PRECISION_Q4
                     ? scale->scale_mv_q4(src_mv, scale)
                     : scale->scale_mv_q3_to_q4(src_mv, scale);
  const int subpel_x = mv.col & 15;
  const int subpel_y = mv.row & 15;

  src += (mv.row >> 4) * src_stride + (mv.col >> 4);
  scale->predict[!!subpel_x][!!subpel_y][weight](
      src, src_stride, dst, dst_stride,
      subpix->filter_x[subpel_x], scale->x_step_q4,
      subpix->filter_y[subpel_y], scale->y_step_q4,
      w, h);
}

static INLINE int round_mv_comp_q4(int value) {
  return (value < 0 ? value - 2 : value + 2) / 4;
}

static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
  MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
                              mi->bmi[1].as_mv[idx].as_mv.row +
                              mi->bmi[2].as_mv[idx].as_mv.row +
                              mi->bmi[3].as_mv[idx].as_mv.row),
             round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
                              mi->bmi[1].as_mv[idx].as_mv.col +
                              mi->bmi[2].as_mv[idx].as_mv.col +
                              mi->bmi[3].as_mv[idx].as_mv.col) };
  return res;
}



// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
    int bwl, int bhl, int ss_x, int ss_y,
    int mb_to_left_edge, int mb_to_top_edge,
    int mb_to_right_edge, int mb_to_bottom_edge) {
  // If the MV points so far into the UMV border that no visible pixels
  // are used for reconstruction, the subpel part of the MV can be
  // discarded and the MV limited to 16 pixels with equivalent results.
  const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4;
  const int spel_right = spel_left - (1 << 4);
  const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4;
  const int spel_bottom = spel_top - (1 << 4);
  MV clamped_mv = {
    src_mv->row << (1 - ss_y),
    src_mv->col << (1 - ss_x)
  };
  assert(ss_x <= 1);
  assert(ss_y <= 1);

  clamp_mv(&clamped_mv, (mb_to_left_edge << (1 - ss_x)) - spel_left,
                        (mb_to_right_edge << (1 - ss_x)) + spel_right,
                        (mb_to_top_edge << (1 - ss_y)) - spel_top,
                        (mb_to_bottom_edge << (1 - ss_y)) + spel_bottom);

  return clamped_mv;
}

struct build_inter_predictors_args {
  MACROBLOCKD *xd;
  int x;
  int y;
  uint8_t* dst[MAX_MB_PLANE];
  int dst_stride[MAX_MB_PLANE];
  uint8_t* pre[2][MAX_MB_PLANE];
  int pre_stride[2][MAX_MB_PLANE];
};
static void build_inter_predictors(int plane, int block,
                                   BLOCK_SIZE_TYPE bsize,
                                   int pred_w, int pred_h,
                                   void *argv) {
  const struct build_inter_predictors_args* const arg = argv;
  MACROBLOCKD * const xd = arg->xd;
  const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
  const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
  const int x = 4 * (block & ((1 << bwl) - 1)), y = 4 * (block >> bwl);
  const MODE_INFO *const mi = xd->mode_info_context;
  const int use_second_ref = mi->mbmi.ref_frame[1] > 0;
  int which_mv;

  assert(x < (4 << bwl));
  assert(y < (4 << bhl));
  assert(mi->mbmi.sb_type < BLOCK_SIZE_SB8X8 || 4 << pred_w == (4 << bwl));
  assert(mi->mbmi.sb_type < BLOCK_SIZE_SB8X8 || 4 << pred_h == (4 << bhl));

  for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
    // source
    const uint8_t * const base_pre = arg->pre[which_mv][plane];
    const int pre_stride = arg->pre_stride[which_mv][plane];
    const uint8_t *const pre = base_pre +
        scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]);
    struct scale_factors * const scale = &xd->scale_factor[which_mv];

    // dest
    uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x;

    // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
    // same MV (the average of the 4 luma MVs) but we could do something
    // smarter for non-4:2:0. Just punt for now, pending the changes to get
    // rid of SPLITMV mode entirely.
    const MV mv = mi->mbmi.sb_type < BLOCK_SIZE_SB8X8
               ? (plane == 0 ? mi->bmi[block].as_mv[which_mv].as_mv
                             : mi_mv_pred_q4(mi, which_mv))
               : mi->mbmi.mv[which_mv].as_mv;

    // TODO(jkoleszar): This clamping is done in the incorrect place for the
    // scaling case. It needs to be done on the scaled MV, not the pre-scaling
    // MV. Note however that it performs the subsampling aware scaling so
    // that the result is always q4.
    const MV res_mv = clamp_mv_to_umv_border_sb(&mv, bwl, bhl,
                                                xd->plane[plane].subsampling_x,
                                                xd->plane[plane].subsampling_y,
                                                xd->mb_to_left_edge,
                                                xd->mb_to_top_edge,
                                                xd->mb_to_right_edge,
                                                xd->mb_to_bottom_edge);
    scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
    vp9_build_inter_predictor(pre, pre_stride,
                              dst, arg->dst_stride[plane],
                              &res_mv, &xd->scale_factor[which_mv],
                              4 << pred_w, 4 << pred_h, which_mv,
                              &xd->subpix, MV_PRECISION_Q4);
  }
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
                                    int mi_row,
                                    int mi_col,
                                    BLOCK_SIZE_TYPE bsize) {
  struct build_inter_predictors_args args = {
    xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
    {xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0},
    {{xd->plane[0].pre[0].buf, NULL, NULL},
     {xd->plane[0].pre[1].buf, NULL, NULL}},
    {{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}},
  };

  foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
                                     int mi_row,
                                     int mi_col,
                                     BLOCK_SIZE_TYPE bsize) {
  struct build_inter_predictors_args args = {
    xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
#if CONFIG_ALPHA
    {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf,
     xd->plane[3].dst.buf},
    {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride,
     xd->plane[3].dst.stride},
    {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf,
      xd->plane[3].pre[0].buf},
     {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf,
      xd->plane[3].pre[1].buf}},
    {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride,
      xd->plane[3].pre[0].stride},
     {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride,
      xd->plane[3].pre[1].stride}},
#else
    {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf},
    {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride},
    {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf},
     {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}},
    {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride},
     {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}},
#endif
  };
  foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd,
                                   int mi_row, int mi_col,
                                   BLOCK_SIZE_TYPE bsize) {

  vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
  vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
}

// TODO(dkovalev: find better place for this function)
void vp9_setup_scale_factors(VP9_COMMON *cm, int i) {
  const int ref = cm->active_ref_idx[i];
  struct scale_factors *const sf = &cm->active_ref_scale[i];
  if (ref >= NUM_YV12_BUFFERS) {
    vp9_zero(*sf);
  } else {
    YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref];
    vp9_setup_scale_factors_for_frame(sf,
                                      fb->y_crop_width, fb->y_crop_height,
                                      cm->width, cm->height);

    if (sf->x_scale_fp != VP9_REF_NO_SCALE ||
        sf->y_scale_fp != VP9_REF_NO_SCALE)
      vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y);
  }
}