aboutsummaryrefslogtreecommitdiff
path: root/vpx_dsp/arm/variance_neon.c
blob: efb2c1d8da7909bcb7062cf7721d3f8cbfd74901 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <arm_neon.h>
#include <assert.h>

#include "./vpx_dsp_rtcd.h"
#include "./vpx_config.h"

#include "vpx/vpx_integer.h"
#include "vpx_dsp/arm/mem_neon.h"
#include "vpx_dsp/arm/sum_neon.h"
#include "vpx_ports/mem.h"

// Process a block of width 4 two rows at a time.
static INLINE void variance_4xh_neon(const uint8_t *src_ptr, int src_stride,
                                     const uint8_t *ref_ptr, int ref_stride,
                                     int h, uint32_t *sse, int *sum) {
  int16x8_t sum_s16 = vdupq_n_s16(0);
  int32x4_t sse_s32 = vdupq_n_s32(0);
  int i = h;

  // Number of rows we can process before 'sum_s16' overflows:
  // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows.
  assert(h <= 256);

  do {
    const uint8x8_t s = load_unaligned_u8(src_ptr, src_stride);
    const uint8x8_t r = load_unaligned_u8(ref_ptr, ref_stride);
    const int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));

    sum_s16 = vaddq_s16(sum_s16, diff);

    sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff));
    sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff));

    src_ptr += 2 * src_stride;
    ref_ptr += 2 * ref_stride;
    i -= 2;
  } while (i != 0);

  *sum = horizontal_add_int16x8(sum_s16);
  *sse = (uint32_t)horizontal_add_int32x4(sse_s32);
}

// Process a block of width 8 one row at a time.
static INLINE void variance_8xh_neon(const uint8_t *src_ptr, int src_stride,
                                     const uint8_t *ref_ptr, int ref_stride,
                                     int h, uint32_t *sse, int *sum) {
  int16x8_t sum_s16 = vdupq_n_s16(0);
  int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
  int i = h;

  // Number of rows we can process before 'sum_s16' overflows:
  // 32767 / 255 ~= 128
  assert(h <= 128);

  do {
    const uint8x8_t s = vld1_u8(src_ptr);
    const uint8x8_t r = vld1_u8(ref_ptr);
    const int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r));

    sum_s16 = vaddq_s16(sum_s16, diff);

    sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff));
    sse_s32[1] =
        vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff));

    src_ptr += src_stride;
    ref_ptr += ref_stride;
  } while (--i != 0);

  *sum = horizontal_add_int16x8(sum_s16);
  *sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}

// Process a block of width 16 one row at a time.
static INLINE void variance_16xh_neon(const uint8_t *src_ptr, int src_stride,
                                      const uint8_t *ref_ptr, int ref_stride,
                                      int h, uint32_t *sse, int *sum) {
  int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
  int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
  int i = h;

  // Number of rows we can process before 'sum_s16' accumulators overflow:
  // 32767 / 255 ~= 128, so 128 16-wide rows.
  assert(h <= 128);

  do {
    const uint8x16_t s = vld1q_u8(src_ptr);
    const uint8x16_t r = vld1q_u8(ref_ptr);

    const int16x8_t diff_l =
        vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
    const int16x8_t diff_h =
        vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));

    sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
    sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);

    sse_s32[0] =
        vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
    sse_s32[1] =
        vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
    sse_s32[0] =
        vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
    sse_s32[1] =
        vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));

    src_ptr += src_stride;
    ref_ptr += ref_stride;
  } while (--i != 0);

  *sum = horizontal_add_int16x8(vaddq_s16(sum_s16[0], sum_s16[1]));
  *sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}

// Process a block of any size where the width is divisible by 16.
static INLINE void variance_large_neon(const uint8_t *src_ptr, int src_stride,
                                       const uint8_t *ref_ptr, int ref_stride,
                                       int w, int h, int h_limit,
                                       unsigned int *sse, int *sum) {
  int32x4_t sum_s32 = vdupq_n_s32(0);
  int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };

  // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit
  // accumulator overflows. After hitting this limit we accumulate into 32-bit
  // elements.
  int h_tmp = h > h_limit ? h_limit : h;

  int i = 0;
  do {
    int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) };
    do {
      int j = 0;
      do {
        const uint8x16_t s = vld1q_u8(src_ptr + j);
        const uint8x16_t r = vld1q_u8(ref_ptr + j);

        const int16x8_t diff_l =
            vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r)));
        const int16x8_t diff_h =
            vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r)));

        sum_s16[0] = vaddq_s16(sum_s16[0], diff_l);
        sum_s16[1] = vaddq_s16(sum_s16[1], diff_h);

        sse_s32[0] =
            vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l));
        sse_s32[1] =
            vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l));
        sse_s32[0] =
            vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h));
        sse_s32[1] =
            vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h));

        j += 16;
      } while (j < w);

      src_ptr += src_stride;
      ref_ptr += ref_stride;
      i++;
    } while (i < h_tmp);

    sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]);
    sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]);

    h_tmp += h_limit;
  } while (i < h);

  *sum = horizontal_add_int32x4(sum_s32);
  *sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1]));
}

static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride,
                                      const uint8_t *ref, int ref_stride, int h,
                                      uint32_t *sse, int *sum) {
  variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum);
}

static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride,
                                      const uint8_t *ref, int ref_stride, int h,
                                      uint32_t *sse, int *sum) {
  variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum);
}

void vpx_get8x8var_neon(const uint8_t *src_ptr, int src_stride,
                        const uint8_t *ref_ptr, int ref_stride,
                        unsigned int *sse, int *sum) {
  variance_8xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 8, sse, sum);
}

void vpx_get16x16var_neon(const uint8_t *src_ptr, int src_stride,
                          const uint8_t *ref_ptr, int ref_stride,
                          unsigned int *sse, int *sum) {
  variance_16xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 16, sse, sum);
}

#define VARIANCE_WXH_NEON(w, h, shift)                                        \
  unsigned int vpx_variance##w##x##h##_neon(                                  \
      const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
      unsigned int *sse) {                                                    \
    int sum;                                                                  \
    variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum);    \
    return *sse - (uint32_t)(((int64_t)sum * sum) >> shift);                  \
  }

VARIANCE_WXH_NEON(4, 4, 4)
VARIANCE_WXH_NEON(4, 8, 5)

VARIANCE_WXH_NEON(8, 4, 5)
VARIANCE_WXH_NEON(8, 8, 6)
VARIANCE_WXH_NEON(8, 16, 7)

VARIANCE_WXH_NEON(16, 8, 7)
VARIANCE_WXH_NEON(16, 16, 8)
VARIANCE_WXH_NEON(16, 32, 9)

VARIANCE_WXH_NEON(32, 16, 9)
VARIANCE_WXH_NEON(32, 32, 10)
VARIANCE_WXH_NEON(32, 64, 11)

VARIANCE_WXH_NEON(64, 32, 11)
VARIANCE_WXH_NEON(64, 64, 12)

#undef VARIANCE_WXH_NEON

static INLINE unsigned int vpx_mse8xh_neon(const unsigned char *src_ptr,
                                           int src_stride,
                                           const unsigned char *ref_ptr,
                                           int ref_stride, int h) {
  uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };

  int i = h / 2;
  do {
    uint8x8_t s0, s1, r0, r1, diff0, diff1;
    uint16x8_t sse0, sse1;

    s0 = vld1_u8(src_ptr);
    src_ptr += src_stride;
    s1 = vld1_u8(src_ptr);
    src_ptr += src_stride;
    r0 = vld1_u8(ref_ptr);
    ref_ptr += ref_stride;
    r1 = vld1_u8(ref_ptr);
    ref_ptr += ref_stride;

    diff0 = vabd_u8(s0, r0);
    diff1 = vabd_u8(s1, r1);

    sse0 = vmull_u8(diff0, diff0);
    sse_u32[0] = vpadalq_u16(sse_u32[0], sse0);
    sse1 = vmull_u8(diff1, diff1);
    sse_u32[1] = vpadalq_u16(sse_u32[1], sse1);
  } while (--i != 0);

  return horizontal_add_uint32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
}

static INLINE unsigned int vpx_mse16xh_neon(const unsigned char *src_ptr,
                                            int src_stride,
                                            const unsigned char *ref_ptr,
                                            int ref_stride, int h) {
  uint32x4_t sse_u32[2] = { vdupq_n_u32(0), vdupq_n_u32(0) };

  int i = h;
  do {
    uint8x16_t s, r, diff;
    uint16x8_t sse0, sse1;

    s = vld1q_u8(src_ptr);
    src_ptr += src_stride;
    r = vld1q_u8(ref_ptr);
    ref_ptr += ref_stride;

    diff = vabdq_u8(s, r);

    sse0 = vmull_u8(vget_low_u8(diff), vget_low_u8(diff));
    sse_u32[0] = vpadalq_u16(sse_u32[0], sse0);
    sse1 = vmull_u8(vget_high_u8(diff), vget_high_u8(diff));
    sse_u32[1] = vpadalq_u16(sse_u32[1], sse1);
  } while (--i != 0);

  return horizontal_add_uint32x4(vaddq_u32(sse_u32[0], sse_u32[1]));
}

unsigned int vpx_get4x4sse_cs_neon(const unsigned char *src_ptr, int src_stride,
                                   const unsigned char *ref_ptr,
                                   int ref_stride) {
  uint8x8_t s[2], r[2];
  uint16x8_t abs_diff[2];
  uint32x4_t sse;

  s[0] = load_u8(src_ptr, src_stride);
  r[0] = load_u8(ref_ptr, ref_stride);
  src_ptr += 2 * src_stride;
  ref_ptr += 2 * ref_stride;
  s[1] = load_u8(src_ptr, src_stride);
  r[1] = load_u8(ref_ptr, ref_stride);

  abs_diff[0] = vabdl_u8(s[0], r[0]);
  abs_diff[1] = vabdl_u8(s[1], r[1]);

  sse = vmull_u16(vget_low_u16(abs_diff[0]), vget_low_u16(abs_diff[0]));
  sse = vmlal_u16(sse, vget_high_u16(abs_diff[0]), vget_high_u16(abs_diff[0]));
  sse = vmlal_u16(sse, vget_low_u16(abs_diff[1]), vget_low_u16(abs_diff[1]));
  sse = vmlal_u16(sse, vget_high_u16(abs_diff[1]), vget_high_u16(abs_diff[1]));

  return horizontal_add_uint32x4(sse);
}

#define VPX_MSE_WXH_NEON(w, h)                                               \
  unsigned int vpx_mse##w##x##h##_neon(                                      \
      const unsigned char *src_ptr, int src_stride,                          \
      const unsigned char *ref_ptr, int ref_stride, unsigned int *sse) {     \
    *sse = vpx_mse##w##xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, h); \
    return *sse;                                                             \
  }

VPX_MSE_WXH_NEON(8, 8)
VPX_MSE_WXH_NEON(8, 16)
VPX_MSE_WXH_NEON(16, 8)
VPX_MSE_WXH_NEON(16, 16)

#undef VPX_MSE_WXH_NEON