// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/time/time.h" #include #include #include #if defined(OS_ANDROID) && !defined(__LP64__) #include #endif #include #include #include #include "base/logging.h" #include "build/build_config.h" namespace { #if !defined(OS_MACOSX) // Define a system-specific SysTime that wraps either to a time_t or // a time64_t depending on the host system, and associated convertion. // See crbug.com/162007 #if defined(OS_ANDROID) && !defined(__LP64__) typedef time64_t SysTime; SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { if (is_local) return mktime64(timestruct); else return timegm64(timestruct); } void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { if (is_local) localtime64_r(&t, timestruct); else gmtime64_r(&t, timestruct); } #else // OS_ANDROID && !__LP64__ typedef time_t SysTime; SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { if (is_local) return mktime(timestruct); else return timegm(timestruct); } void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { if (is_local) localtime_r(&t, timestruct); else gmtime_r(&t, timestruct); } #endif // OS_ANDROID int64_t ConvertTimespecToMicros(const struct timespec& ts) { base::CheckedNumeric result(ts.tv_sec); result *= base::Time::kMicrosecondsPerSecond; result += (ts.tv_nsec / base::Time::kNanosecondsPerMicrosecond); return result.ValueOrDie(); } // Helper function to get results from clock_gettime() and convert to a // microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported // on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines // _POSIX_MONOTONIC_CLOCK to -1. #if (defined(OS_POSIX) && \ defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ defined(OS_BSD) || defined(OS_ANDROID) int64_t ClockNow(clockid_t clk_id) { struct timespec ts; if (clock_gettime(clk_id, &ts) != 0) { NOTREACHED() << "clock_gettime(" << clk_id << ") failed."; return 0; } return ConvertTimespecToMicros(ts); } #else // _POSIX_MONOTONIC_CLOCK #error No usable tick clock function on this platform. #endif // _POSIX_MONOTONIC_CLOCK #endif // !defined(OS_MACOSX) } // namespace namespace base { struct timespec TimeDelta::ToTimeSpec() const { int64_t microseconds = InMicroseconds(); time_t seconds = 0; if (microseconds >= Time::kMicrosecondsPerSecond) { seconds = InSeconds(); microseconds -= seconds * Time::kMicrosecondsPerSecond; } struct timespec result = {seconds, static_cast(microseconds * Time::kNanosecondsPerMicrosecond)}; return result; } #if !defined(OS_MACOSX) // The Time routines in this file use standard POSIX routines, or almost- // standard routines in the case of timegm. We need to use a Mach-specific // function for TimeTicks::Now() on Mac OS X. // Time ----------------------------------------------------------------------- // Windows uses a Gregorian epoch of 1601. We need to match this internally // so that our time representations match across all platforms. See bug 14734. // irb(main):010:0> Time.at(0).getutc() // => Thu Jan 01 00:00:00 UTC 1970 // irb(main):011:0> Time.at(-11644473600).getutc() // => Mon Jan 01 00:00:00 UTC 1601 static const int64_t kWindowsEpochDeltaSeconds = 11644473600ll; // static const int64_t Time::kWindowsEpochDeltaMicroseconds = kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; // Some functions in time.cc use time_t directly, so we provide an offset // to convert from time_t (Unix epoch) and internal (Windows epoch). // static const int64_t Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; // static Time Time::Now() { struct timeval tv; struct timezone tz = { 0, 0 }; // UTC if (gettimeofday(&tv, &tz) != 0) { DCHECK(0) << "Could not determine time of day"; LOG(ERROR) << "Call to gettimeofday failed."; // Return null instead of uninitialized |tv| value, which contains random // garbage data. This may result in the crash seen in crbug.com/147570. return Time(); } // Combine seconds and microseconds in a 64-bit field containing microseconds // since the epoch. That's enough for nearly 600 centuries. Adjust from // Unix (1970) to Windows (1601) epoch. return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) + kWindowsEpochDeltaMicroseconds); } // static Time Time::NowFromSystemTime() { // Just use Now() because Now() returns the system time. return Now(); } void Time::Explode(bool is_local, Exploded* exploded) const { // Time stores times with microsecond resolution, but Exploded only carries // millisecond resolution, so begin by being lossy. Adjust from Windows // epoch (1601) to Unix epoch (1970); int64_t microseconds = us_ - kWindowsEpochDeltaMicroseconds; // The following values are all rounded towards -infinity. int64_t milliseconds; // Milliseconds since epoch. SysTime seconds; // Seconds since epoch. int millisecond; // Exploded millisecond value (0-999). if (microseconds >= 0) { // Rounding towards -infinity <=> rounding towards 0, in this case. milliseconds = microseconds / kMicrosecondsPerMillisecond; seconds = milliseconds / kMillisecondsPerSecond; millisecond = milliseconds % kMillisecondsPerSecond; } else { // Round these *down* (towards -infinity). milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) / kMicrosecondsPerMillisecond; seconds = (milliseconds - kMillisecondsPerSecond + 1) / kMillisecondsPerSecond; // Make this nonnegative (and between 0 and 999 inclusive). millisecond = milliseconds % kMillisecondsPerSecond; if (millisecond < 0) millisecond += kMillisecondsPerSecond; } struct tm timestruct; SysTimeToTimeStruct(seconds, ×truct, is_local); exploded->year = timestruct.tm_year + 1900; exploded->month = timestruct.tm_mon + 1; exploded->day_of_week = timestruct.tm_wday; exploded->day_of_month = timestruct.tm_mday; exploded->hour = timestruct.tm_hour; exploded->minute = timestruct.tm_min; exploded->second = timestruct.tm_sec; exploded->millisecond = millisecond; } // static bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { struct tm timestruct; timestruct.tm_sec = exploded.second; timestruct.tm_min = exploded.minute; timestruct.tm_hour = exploded.hour; timestruct.tm_mday = exploded.day_of_month; timestruct.tm_mon = exploded.month - 1; timestruct.tm_year = exploded.year - 1900; timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this timestruct.tm_yday = 0; // mktime/timegm ignore this timestruct.tm_isdst = -1; // attempt to figure it out #if !defined(OS_NACL) && !defined(OS_SOLARIS) timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore #endif int64_t milliseconds; SysTime seconds; // Certain exploded dates do not really exist due to daylight saving times, // and this causes mktime() to return implementation-defined values when // tm_isdst is set to -1. On Android, the function will return -1, while the // C libraries of other platforms typically return a liberally-chosen value. // Handling this requires the special code below. // SysTimeFromTimeStruct() modifies the input structure, save current value. struct tm timestruct0 = timestruct; seconds = SysTimeFromTimeStruct(×truct, is_local); if (seconds == -1) { // Get the time values with tm_isdst == 0 and 1, then select the closest one // to UTC 00:00:00 that isn't -1. timestruct = timestruct0; timestruct.tm_isdst = 0; int64_t seconds_isdst0 = SysTimeFromTimeStruct(×truct, is_local); timestruct = timestruct0; timestruct.tm_isdst = 1; int64_t seconds_isdst1 = SysTimeFromTimeStruct(×truct, is_local); // seconds_isdst0 or seconds_isdst1 can be -1 for some timezones. // E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'. if (seconds_isdst0 < 0) seconds = seconds_isdst1; else if (seconds_isdst1 < 0) seconds = seconds_isdst0; else seconds = std::min(seconds_isdst0, seconds_isdst1); } // Handle overflow. Clamping the range to what mktime and timegm might // return is the best that can be done here. It's not ideal, but it's better // than failing here or ignoring the overflow case and treating each time // overflow as one second prior to the epoch. if (seconds == -1 && (exploded.year < 1969 || exploded.year > 1970)) { // If exploded.year is 1969 or 1970, take -1 as correct, with the // time indicating 1 second prior to the epoch. (1970 is allowed to handle // time zone and DST offsets.) Otherwise, return the most future or past // time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. // // The minimum and maximum representible times that mktime and timegm could // return are used here instead of values outside that range to allow for // proper round-tripping between exploded and counter-type time // representations in the presence of possible truncation to time_t by // division and use with other functions that accept time_t. // // When representing the most distant time in the future, add in an extra // 999ms to avoid the time being less than any other possible value that // this function can return. // On Android, SysTime is int64_t, special care must be taken to avoid // overflows. const int64_t min_seconds = (sizeof(SysTime) < sizeof(int64_t)) ? std::numeric_limits::min() : std::numeric_limits::min(); const int64_t max_seconds = (sizeof(SysTime) < sizeof(int64_t)) ? std::numeric_limits::max() : std::numeric_limits::max(); if (exploded.year < 1969) { milliseconds = min_seconds * kMillisecondsPerSecond; } else { milliseconds = max_seconds * kMillisecondsPerSecond; milliseconds += (kMillisecondsPerSecond - 1); } } else { milliseconds = seconds * kMillisecondsPerSecond + exploded.millisecond; } // Adjust from Unix (1970) to Windows (1601) epoch. base::Time converted_time = Time((milliseconds * kMicrosecondsPerMillisecond) + kWindowsEpochDeltaMicroseconds); // If |exploded.day_of_month| is set to 31 on a 28-30 day month, it will // return the first day of the next month. Thus round-trip the time and // compare the initial |exploded| with |utc_to_exploded| time. base::Time::Exploded to_exploded; if (!is_local) converted_time.UTCExplode(&to_exploded); else converted_time.LocalExplode(&to_exploded); if (ExplodedMostlyEquals(to_exploded, exploded)) { *time = converted_time; return true; } *time = Time(0); return false; } // TimeTicks ------------------------------------------------------------------ // static TimeTicks TimeTicks::Now() { return TimeTicks(ClockNow(CLOCK_MONOTONIC)); } // static bool TimeTicks::IsHighResolution() { return true; } // static ThreadTicks ThreadTicks::Now() { #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ defined(OS_ANDROID) return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID)); #else NOTREACHED(); return ThreadTicks(); #endif } #endif // !OS_MACOSX // static Time Time::FromTimeVal(struct timeval t) { DCHECK_LT(t.tv_usec, static_cast(Time::kMicrosecondsPerSecond)); DCHECK_GE(t.tv_usec, 0); if (t.tv_usec == 0 && t.tv_sec == 0) return Time(); if (t.tv_usec == static_cast(Time::kMicrosecondsPerSecond) - 1 && t.tv_sec == std::numeric_limits::max()) return Max(); return Time((static_cast(t.tv_sec) * Time::kMicrosecondsPerSecond) + t.tv_usec + kTimeTToMicrosecondsOffset); } struct timeval Time::ToTimeVal() const { struct timeval result; if (is_null()) { result.tv_sec = 0; result.tv_usec = 0; return result; } if (is_max()) { result.tv_sec = std::numeric_limits::max(); result.tv_usec = static_cast(Time::kMicrosecondsPerSecond) - 1; return result; } int64_t us = us_ - kTimeTToMicrosecondsOffset; result.tv_sec = us / Time::kMicrosecondsPerSecond; result.tv_usec = us % Time::kMicrosecondsPerSecond; return result; } } // namespace base