aboutsummaryrefslogtreecommitdiff
path: root/files/source/row_common.cc
diff options
context:
space:
mode:
authorAndroid Build Coastguard Worker <android-build-coastguard-worker@google.com>2023-02-23 16:23:35 +0000
committerGerrit Code Review <noreply-gerritcodereview@google.com>2023-02-23 16:23:35 +0000
commit06d64850caa240513108c6540a89fc6d78505596 (patch)
treee8cf5f7cdc94a5abfe84a758a4245d7269b65f8f /files/source/row_common.cc
parent6205f63ad9833e257bedd4f86721c3643fb96ac0 (diff)
parent0519d39ccdf49f86a5f62941f17c83ae9c6d7397 (diff)
downloadlibyuv-06d64850caa240513108c6540a89fc6d78505596.tar.gz
Merge "Snap for 9640907 from 435db9f11b09187e0d60683813a28d07cc13166b to androidx-core-release" into androidx-core-release
Diffstat (limited to 'files/source/row_common.cc')
-rw-r--r--files/source/row_common.cc2245
1 files changed, 1613 insertions, 632 deletions
diff --git a/files/source/row_common.cc b/files/source/row_common.cc
index 8951d003..83442496 100644
--- a/files/source/row_common.cc
+++ b/files/source/row_common.cc
@@ -10,34 +10,67 @@
#include "libyuv/row.h"
-#include <stdio.h>
+#include <assert.h>
#include <string.h> // For memcpy and memset.
#include "libyuv/basic_types.h"
+#include "libyuv/convert_argb.h" // For kYuvI601Constants
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
+// This macro controls YUV to RGB using unsigned math to extend range of
+// YUV to RGB coefficients to 0 to 4 instead of 0 to 2 for more accuracy on B:
+// LIBYUV_UNLIMITED_DATA
+
+// Macros to enable unlimited data for each colorspace
+// LIBYUV_UNLIMITED_BT601
+// LIBYUV_UNLIMITED_BT709
+// LIBYUV_UNLIMITED_BT2020
+
+// The following macro from row_win makes the C code match the row_win code,
+// which is 7 bit fixed point for ARGBToI420:
+#if !defined(LIBYUV_BIT_EXACT) && !defined(LIBYUV_DISABLE_X86) && \
+ defined(_MSC_VER) && !defined(__clang__) && \
+ (defined(_M_IX86) || defined(_M_X64))
+#define LIBYUV_RGB7 1
+#endif
+
+#if !defined(LIBYUV_BIT_EXACT) && (defined(__x86_64__) || defined(_M_X64) || \
+ defined(__i386__) || defined(_M_IX86))
+#define LIBYUV_ARGBTOUV_PAVGB 1
+#define LIBYUV_RGBTOU_TRUNCATE 1
+#define LIBYUV_ATTENUATE_DUP 1
+#endif
+#if defined(LIBYUV_BIT_EXACT)
+#define LIBYUV_UNATTENUATE_DUP 1
+#endif
+
// llvm x86 is poor at ternary operator, so use branchless min/max.
#define USE_BRANCHLESS 1
#if USE_BRANCHLESS
static __inline int32_t clamp0(int32_t v) {
- return ((-(v) >> 31) & (v));
+ return -(v >= 0) & v;
}
-
+// TODO(fbarchard): make clamp255 preserve negative values.
static __inline int32_t clamp255(int32_t v) {
- return (((255 - (v)) >> 31) | (v)) & 255;
+ return (-(v >= 255) | v) & 255;
}
static __inline int32_t clamp1023(int32_t v) {
- return (((1023 - (v)) >> 31) | (v)) & 1023;
+ return (-(v >= 1023) | v) & 1023;
+}
+
+// clamp to max
+static __inline int32_t ClampMax(int32_t v, int32_t max) {
+ return (-(v >= max) | v) & max;
}
static __inline uint32_t Abs(int32_t v) {
- int m = v >> 31;
+ int m = -(v < 0);
return (v + m) ^ m;
}
#else // USE_BRANCHLESS
@@ -53,6 +86,10 @@ static __inline int32_t clamp1023(int32_t v) {
return (v > 1023) ? 1023 : v;
}
+static __inline int32_t ClampMax(int32_t v, int32_t max) {
+ return (v > max) ? max : v;
+}
+
static __inline uint32_t Abs(int32_t v) {
return (v < 0) ? -v : v;
}
@@ -111,6 +148,21 @@ void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) {
}
}
+void RAWToRGBARow_C(const uint8_t* src_raw, uint8_t* dst_rgba, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t r = src_raw[0];
+ uint8_t g = src_raw[1];
+ uint8_t b = src_raw[2];
+ dst_rgba[0] = 255u;
+ dst_rgba[1] = b;
+ dst_rgba[2] = g;
+ dst_rgba[3] = r;
+ dst_rgba += 4;
+ src_raw += 3;
+ }
+}
+
void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) {
int x;
for (x = 0; x < width; ++x) {
@@ -181,7 +233,8 @@ void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444,
void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) {
int x;
for (x = 0; x < width; ++x) {
- uint32_t ar30 = *(const uint32_t*)src_ar30;
+ uint32_t ar30;
+ memcpy(&ar30, src_ar30, sizeof ar30);
uint32_t b = (ar30 >> 2) & 0xff;
uint32_t g = (ar30 >> 12) & 0xff;
uint32_t r = (ar30 >> 22) & 0xff;
@@ -195,7 +248,8 @@ void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) {
void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) {
int x;
for (x = 0; x < width; ++x) {
- uint32_t ar30 = *(const uint32_t*)src_ar30;
+ uint32_t ar30;
+ memcpy(&ar30, src_ar30, sizeof ar30);
uint32_t b = (ar30 >> 2) & 0xff;
uint32_t g = (ar30 >> 12) & 0xff;
uint32_t r = (ar30 >> 22) & 0xff;
@@ -209,7 +263,8 @@ void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) {
void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) {
int x;
for (x = 0; x < width; ++x) {
- uint32_t ar30 = *(const uint32_t*)src_ar30;
+ uint32_t ar30;
+ memcpy(&ar30, src_ar30, sizeof ar30);
uint32_t b = ar30 & 0x3ff;
uint32_t ga = ar30 & 0xc00ffc00;
uint32_t r = (ar30 >> 20) & 0x3ff;
@@ -291,8 +346,8 @@ void ARGBToRGB565DitherRow_C(const uint8_t* src_argb,
uint8_t b1 = clamp255(src_argb[4] + dither1) >> 3;
uint8_t g1 = clamp255(src_argb[5] + dither1) >> 2;
uint8_t r1 = clamp255(src_argb[6] + dither1) >> 3;
- WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) |
- (r1 << 27));
+ *(uint16_t*)(dst_rgb + 0) = b0 | (g0 << 5) | (r0 << 11);
+ *(uint16_t*)(dst_rgb + 2) = b1 | (g1 << 5) | (r1 << 11);
dst_rgb += 4;
src_argb += 8;
}
@@ -316,8 +371,8 @@ void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
uint8_t g1 = src_argb[5] >> 3;
uint8_t r1 = src_argb[6] >> 3;
uint8_t a1 = src_argb[7] >> 7;
- *(uint32_t*)(dst_rgb) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15) |
- (b1 << 16) | (g1 << 21) | (r1 << 26) | (a1 << 31);
+ *(uint16_t*)(dst_rgb + 0) = b0 | (g0 << 5) | (r0 << 10) | (a0 << 15);
+ *(uint16_t*)(dst_rgb + 2) = b1 | (g1 << 5) | (r1 << 10) | (a1 << 15);
dst_rgb += 4;
src_argb += 8;
}
@@ -341,8 +396,8 @@ void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
uint8_t g1 = src_argb[5] >> 4;
uint8_t r1 = src_argb[6] >> 4;
uint8_t a1 = src_argb[7] >> 4;
- *(uint32_t*)(dst_rgb) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12) |
- (b1 << 16) | (g1 << 20) | (r1 << 24) | (a1 << 28);
+ *(uint16_t*)(dst_rgb + 0) = b0 | (g0 << 4) | (r0 << 8) | (a0 << 12);
+ *(uint16_t*)(dst_rgb + 2) = b1 | (g1 << 4) | (r1 << 8) | (a1 << 12);
dst_rgb += 4;
src_argb += 8;
}
@@ -381,56 +436,208 @@ void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) {
}
}
+void ARGBToAR64Row_C(const uint8_t* src_argb, uint16_t* dst_ar64, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_ar64[0] = src_argb[0] * 0x0101;
+ dst_ar64[1] = src_argb[1] * 0x0101;
+ dst_ar64[2] = src_argb[2] * 0x0101;
+ dst_ar64[3] = src_argb[3] * 0x0101;
+ dst_ar64 += 4;
+ src_argb += 4;
+ }
+}
+
+void ARGBToAB64Row_C(const uint8_t* src_argb, uint16_t* dst_ab64, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_ab64[0] = src_argb[2] * 0x0101;
+ dst_ab64[1] = src_argb[1] * 0x0101;
+ dst_ab64[2] = src_argb[0] * 0x0101;
+ dst_ab64[3] = src_argb[3] * 0x0101;
+ dst_ab64 += 4;
+ src_argb += 4;
+ }
+}
+
+void AR64ToARGBRow_C(const uint16_t* src_ar64, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = src_ar64[0] >> 8;
+ dst_argb[1] = src_ar64[1] >> 8;
+ dst_argb[2] = src_ar64[2] >> 8;
+ dst_argb[3] = src_ar64[3] >> 8;
+ dst_argb += 4;
+ src_ar64 += 4;
+ }
+}
+
+void AB64ToARGBRow_C(const uint16_t* src_ab64, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = src_ab64[2] >> 8;
+ dst_argb[1] = src_ab64[1] >> 8;
+ dst_argb[2] = src_ab64[0] >> 8;
+ dst_argb[3] = src_ab64[3] >> 8;
+ dst_argb += 4;
+ src_ab64 += 4;
+ }
+}
+
+// TODO(fbarchard): Make shuffle compatible with SIMD versions
+void AR64ShuffleRow_C(const uint8_t* src_ar64,
+ uint8_t* dst_ar64,
+ const uint8_t* shuffler,
+ int width) {
+ const uint16_t* src_ar64_16 = (const uint16_t*)src_ar64;
+ uint16_t* dst_ar64_16 = (uint16_t*)dst_ar64;
+ int index0 = shuffler[0] / 2;
+ int index1 = shuffler[2] / 2;
+ int index2 = shuffler[4] / 2;
+ int index3 = shuffler[6] / 2;
+ // Shuffle a row of AR64.
+ int x;
+ for (x = 0; x < width / 2; ++x) {
+ // To support in-place conversion.
+ uint16_t b = src_ar64_16[index0];
+ uint16_t g = src_ar64_16[index1];
+ uint16_t r = src_ar64_16[index2];
+ uint16_t a = src_ar64_16[index3];
+ dst_ar64_16[0] = b;
+ dst_ar64_16[1] = g;
+ dst_ar64_16[2] = r;
+ dst_ar64_16[3] = a;
+ src_ar64_16 += 4;
+ dst_ar64_16 += 4;
+ }
+}
+
+#ifdef LIBYUV_RGB7
+// Old 7 bit math for compatibility on unsupported platforms.
+static __inline int RGBToY(uint8_t r, uint8_t g, uint8_t b) {
+ return ((33 * r + 65 * g + 13 * b) >> 7) + 16;
+}
+#else
+// 8 bit
+// Intel SSE/AVX uses the following equivalent formula
+// 0x7e80 = (66 + 129 + 25) * -128 + 0x1000 (for +16) and 0x0080 for round.
+// return (66 * ((int)r - 128) + 129 * ((int)g - 128) + 25 * ((int)b - 128) +
+// 0x7e80) >> 8;
+
static __inline int RGBToY(uint8_t r, uint8_t g, uint8_t b) {
return (66 * r + 129 * g + 25 * b + 0x1080) >> 8;
}
+#endif
+
+#define AVGB(a, b) (((a) + (b) + 1) >> 1)
+// LIBYUV_RGBTOU_TRUNCATE mimics x86 code that does not round.
+#ifdef LIBYUV_RGBTOU_TRUNCATE
+static __inline int RGBToU(uint8_t r, uint8_t g, uint8_t b) {
+ return (112 * b - 74 * g - 38 * r + 0x8000) >> 8;
+}
+static __inline int RGBToV(uint8_t r, uint8_t g, uint8_t b) {
+ return (112 * r - 94 * g - 18 * b + 0x8000) >> 8;
+}
+#else
+// TODO(fbarchard): Add rounding to x86 SIMD and use this
static __inline int RGBToU(uint8_t r, uint8_t g, uint8_t b) {
return (112 * b - 74 * g - 38 * r + 0x8080) >> 8;
}
static __inline int RGBToV(uint8_t r, uint8_t g, uint8_t b) {
return (112 * r - 94 * g - 18 * b + 0x8080) >> 8;
}
+#endif
+
+// LIBYUV_ARGBTOUV_PAVGB mimics x86 code that subsamples with 2 pavgb.
+#if !defined(LIBYUV_ARGBTOUV_PAVGB)
+static __inline int RGB2xToU(uint16_t r, uint16_t g, uint16_t b) {
+ return ((112 / 2) * b - (74 / 2) * g - (38 / 2) * r + 0x8080) >> 8;
+}
+static __inline int RGB2xToV(uint16_t r, uint16_t g, uint16_t b) {
+ return ((112 / 2) * r - (94 / 2) * g - (18 / 2) * b + 0x8080) >> 8;
+}
+#endif
// ARGBToY_C and ARGBToUV_C
-#define MAKEROWY(NAME, R, G, B, BPP) \
- void NAME##ToYRow_C(const uint8_t* src_argb0, uint8_t* dst_y, int width) { \
- int x; \
- for (x = 0; x < width; ++x) { \
- dst_y[0] = RGBToY(src_argb0[R], src_argb0[G], src_argb0[B]); \
- src_argb0 += BPP; \
- dst_y += 1; \
- } \
- } \
- void NAME##ToUVRow_C(const uint8_t* src_rgb0, int src_stride_rgb, \
- uint8_t* dst_u, uint8_t* dst_v, int width) { \
- const uint8_t* src_rgb1 = src_rgb0 + src_stride_rgb; \
- int x; \
- for (x = 0; x < width - 1; x += 2) { \
- uint8_t ab = (src_rgb0[B] + src_rgb0[B + BPP] + src_rgb1[B] + \
- src_rgb1[B + BPP]) >> \
- 2; \
- uint8_t ag = (src_rgb0[G] + src_rgb0[G + BPP] + src_rgb1[G] + \
- src_rgb1[G + BPP]) >> \
- 2; \
- uint8_t ar = (src_rgb0[R] + src_rgb0[R + BPP] + src_rgb1[R] + \
- src_rgb1[R + BPP]) >> \
- 2; \
- dst_u[0] = RGBToU(ar, ag, ab); \
- dst_v[0] = RGBToV(ar, ag, ab); \
- src_rgb0 += BPP * 2; \
- src_rgb1 += BPP * 2; \
- dst_u += 1; \
- dst_v += 1; \
- } \
- if (width & 1) { \
- uint8_t ab = (src_rgb0[B] + src_rgb1[B]) >> 1; \
- uint8_t ag = (src_rgb0[G] + src_rgb1[G]) >> 1; \
- uint8_t ar = (src_rgb0[R] + src_rgb1[R]) >> 1; \
- dst_u[0] = RGBToU(ar, ag, ab); \
- dst_v[0] = RGBToV(ar, ag, ab); \
- } \
+// Intel version mimic SSE/AVX which does 2 pavgb
+#if LIBYUV_ARGBTOUV_PAVGB
+#define MAKEROWY(NAME, R, G, B, BPP) \
+ void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \
+ AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \
+ uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \
+ AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \
+ uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \
+ AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \
+ dst_u[0] = RGBToU(ar, ag, ab); \
+ dst_v[0] = RGBToV(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \
+ uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \
+ uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \
+ dst_u[0] = RGBToU(ar, ag, ab); \
+ dst_v[0] = RGBToV(ar, ag, ab); \
+ } \
}
+#else
+// ARM version does sum / 2 then multiply by 2x smaller coefficients
+#define MAKEROWY(NAME, R, G, B, BPP) \
+ void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \
+ src_rgb1[B + BPP] + 1) >> \
+ 1; \
+ uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \
+ src_rgb1[G + BPP] + 1) >> \
+ 1; \
+ uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \
+ src_rgb1[R + BPP] + 1) >> \
+ 1; \
+ dst_u[0] = RGB2xToU(ar, ag, ab); \
+ dst_v[0] = RGB2xToV(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint16_t ab = src_rgb[B] + src_rgb1[B]; \
+ uint16_t ag = src_rgb[G] + src_rgb1[G]; \
+ uint16_t ar = src_rgb[R] + src_rgb1[R]; \
+ dst_u[0] = RGB2xToU(ar, ag, ab); \
+ dst_v[0] = RGB2xToV(ar, ag, ab); \
+ } \
+ }
+#endif
MAKEROWY(ARGB, 2, 1, 0, 4)
MAKEROWY(BGRA, 1, 2, 3, 4)
@@ -448,14 +655,14 @@ MAKEROWY(RAW, 0, 1, 2, 3)
// b 0.1016 * 255 = 25.908 = 25
// g 0.5078 * 255 = 129.489 = 129
// r 0.2578 * 255 = 65.739 = 66
-// JPeg 8 bit Y (not used):
-// b 0.11400 * 256 = 29.184 = 29
-// g 0.58700 * 256 = 150.272 = 150
-// r 0.29900 * 256 = 76.544 = 77
-// JPeg 7 bit Y:
+// JPeg 7 bit Y (deprecated)
// b 0.11400 * 128 = 14.592 = 15
// g 0.58700 * 128 = 75.136 = 75
// r 0.29900 * 128 = 38.272 = 38
+// JPeg 8 bit Y:
+// b 0.11400 * 256 = 29.184 = 29
+// g 0.58700 * 256 = 150.272 = 150
+// r 0.29900 * 256 = 76.544 = 77
// JPeg 8 bit U:
// b 0.50000 * 255 = 127.5 = 127
// g -0.33126 * 255 = -84.4713 = -84
@@ -465,57 +672,119 @@ MAKEROWY(RAW, 0, 1, 2, 3)
// g -0.41869 * 255 = -106.76595 = -107
// r 0.50000 * 255 = 127.5 = 127
+#ifdef LIBYUV_RGB7
+// Old 7 bit math for compatibility on unsupported platforms.
static __inline int RGBToYJ(uint8_t r, uint8_t g, uint8_t b) {
return (38 * r + 75 * g + 15 * b + 64) >> 7;
}
+#else
+// 8 bit
+static __inline int RGBToYJ(uint8_t r, uint8_t g, uint8_t b) {
+ return (77 * r + 150 * g + 29 * b + 128) >> 8;
+}
+#endif
+#if defined(LIBYUV_ARGBTOUV_PAVGB)
static __inline int RGBToUJ(uint8_t r, uint8_t g, uint8_t b) {
return (127 * b - 84 * g - 43 * r + 0x8080) >> 8;
}
static __inline int RGBToVJ(uint8_t r, uint8_t g, uint8_t b) {
return (127 * r - 107 * g - 20 * b + 0x8080) >> 8;
}
-
-#define AVGB(a, b) (((a) + (b) + 1) >> 1)
+#else
+static __inline int RGB2xToUJ(uint16_t r, uint16_t g, uint16_t b) {
+ return ((127 / 2) * b - (84 / 2) * g - (43 / 2) * r + 0x8080) >> 8;
+}
+static __inline int RGB2xToVJ(uint16_t r, uint16_t g, uint16_t b) {
+ return ((127 / 2) * r - (107 / 2) * g - (20 / 2) * b + 0x8080) >> 8;
+}
+#endif
// ARGBToYJ_C and ARGBToUVJ_C
-#define MAKEROWYJ(NAME, R, G, B, BPP) \
- void NAME##ToYJRow_C(const uint8_t* src_argb0, uint8_t* dst_y, int width) { \
- int x; \
- for (x = 0; x < width; ++x) { \
- dst_y[0] = RGBToYJ(src_argb0[R], src_argb0[G], src_argb0[B]); \
- src_argb0 += BPP; \
- dst_y += 1; \
- } \
- } \
- void NAME##ToUVJRow_C(const uint8_t* src_rgb0, int src_stride_rgb, \
- uint8_t* dst_u, uint8_t* dst_v, int width) { \
- const uint8_t* src_rgb1 = src_rgb0 + src_stride_rgb; \
- int x; \
- for (x = 0; x < width - 1; x += 2) { \
- uint8_t ab = AVGB(AVGB(src_rgb0[B], src_rgb1[B]), \
- AVGB(src_rgb0[B + BPP], src_rgb1[B + BPP])); \
- uint8_t ag = AVGB(AVGB(src_rgb0[G], src_rgb1[G]), \
- AVGB(src_rgb0[G + BPP], src_rgb1[G + BPP])); \
- uint8_t ar = AVGB(AVGB(src_rgb0[R], src_rgb1[R]), \
- AVGB(src_rgb0[R + BPP], src_rgb1[R + BPP])); \
- dst_u[0] = RGBToUJ(ar, ag, ab); \
- dst_v[0] = RGBToVJ(ar, ag, ab); \
- src_rgb0 += BPP * 2; \
- src_rgb1 += BPP * 2; \
- dst_u += 1; \
- dst_v += 1; \
- } \
- if (width & 1) { \
- uint8_t ab = AVGB(src_rgb0[B], src_rgb1[B]); \
- uint8_t ag = AVGB(src_rgb0[G], src_rgb1[G]); \
- uint8_t ar = AVGB(src_rgb0[R], src_rgb1[R]); \
- dst_u[0] = RGBToUJ(ar, ag, ab); \
- dst_v[0] = RGBToVJ(ar, ag, ab); \
- } \
+// Intel version mimic SSE/AVX which does 2 pavgb
+#if LIBYUV_ARGBTOUV_PAVGB
+#define MAKEROWYJ(NAME, R, G, B, BPP) \
+ void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \
+ AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \
+ uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \
+ AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \
+ uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \
+ AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \
+ dst_u[0] = RGBToUJ(ar, ag, ab); \
+ dst_v[0] = RGBToVJ(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \
+ uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \
+ uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \
+ dst_u[0] = RGBToUJ(ar, ag, ab); \
+ dst_v[0] = RGBToVJ(ar, ag, ab); \
+ } \
}
+#else
+// ARM version does sum / 2 then multiply by 2x smaller coefficients
+#define MAKEROWYJ(NAME, R, G, B, BPP) \
+ void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \
+ src_rgb1[B + BPP] + 1) >> \
+ 1; \
+ uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \
+ src_rgb1[G + BPP] + 1) >> \
+ 1; \
+ uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \
+ src_rgb1[R + BPP] + 1) >> \
+ 1; \
+ dst_u[0] = RGB2xToUJ(ar, ag, ab); \
+ dst_v[0] = RGB2xToVJ(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint16_t ab = (src_rgb[B] + src_rgb1[B]); \
+ uint16_t ag = (src_rgb[G] + src_rgb1[G]); \
+ uint16_t ar = (src_rgb[R] + src_rgb1[R]); \
+ dst_u[0] = RGB2xToUJ(ar, ag, ab); \
+ dst_v[0] = RGB2xToVJ(ar, ag, ab); \
+ } \
+ }
+
+#endif
MAKEROWYJ(ARGB, 2, 1, 0, 4)
+MAKEROWYJ(RGBA, 3, 2, 1, 4)
+MAKEROWYJ(RGB24, 2, 1, 0, 3)
+MAKEROWYJ(RAW, 0, 1, 2, 3)
#undef MAKEROWYJ
void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) {
@@ -583,13 +852,34 @@ void RGB565ToUVRow_C(const uint8_t* src_rgb565,
uint8_t b3 = next_rgb565[2] & 0x1f;
uint8_t g3 = (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3);
uint8_t r3 = next_rgb565[3] >> 3;
- uint8_t b = (b0 + b1 + b2 + b3); // 565 * 4 = 787.
- uint8_t g = (g0 + g1 + g2 + g3);
- uint8_t r = (r0 + r1 + r2 + r3);
- b = (b << 1) | (b >> 6); // 787 -> 888.
- r = (r << 1) | (r >> 6);
- dst_u[0] = RGBToU(r, g, b);
- dst_v[0] = RGBToV(r, g, b);
+
+ b0 = (b0 << 3) | (b0 >> 2);
+ g0 = (g0 << 2) | (g0 >> 4);
+ r0 = (r0 << 3) | (r0 >> 2);
+ b1 = (b1 << 3) | (b1 >> 2);
+ g1 = (g1 << 2) | (g1 >> 4);
+ r1 = (r1 << 3) | (r1 >> 2);
+ b2 = (b2 << 3) | (b2 >> 2);
+ g2 = (g2 << 2) | (g2 >> 4);
+ r2 = (r2 << 3) | (r2 >> 2);
+ b3 = (b3 << 3) | (b3 >> 2);
+ g3 = (g3 << 2) | (g3 >> 4);
+ r3 = (r3 << 3) | (r3 >> 2);
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3));
+ uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3));
+ uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3));
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1;
+ uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1;
+ uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+
src_rgb565 += 4;
next_rgb565 += 4;
dst_u += 1;
@@ -602,14 +892,27 @@ void RGB565ToUVRow_C(const uint8_t* src_rgb565,
uint8_t b2 = next_rgb565[0] & 0x1f;
uint8_t g2 = (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3);
uint8_t r2 = next_rgb565[1] >> 3;
- uint8_t b = (b0 + b2); // 565 * 2 = 676.
- uint8_t g = (g0 + g2);
- uint8_t r = (r0 + r2);
- b = (b << 2) | (b >> 4); // 676 -> 888
- g = (g << 1) | (g >> 6);
- r = (r << 2) | (r >> 4);
- dst_u[0] = RGBToU(r, g, b);
- dst_v[0] = RGBToV(r, g, b);
+
+ b0 = (b0 << 3) | (b0 >> 2);
+ g0 = (g0 << 2) | (g0 >> 4);
+ r0 = (r0 << 3) | (r0 >> 2);
+ b2 = (b2 << 3) | (b2 >> 2);
+ g2 = (g2 << 2) | (g2 >> 4);
+ r2 = (r2 << 3) | (r2 >> 2);
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(b0, b2);
+ uint8_t ag = AVGB(g0, g2);
+ uint8_t ar = AVGB(r0, r2);
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = b0 + b2;
+ uint16_t g = g0 + g2;
+ uint16_t r = r0 + r2;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
}
}
@@ -633,14 +936,34 @@ void ARGB1555ToUVRow_C(const uint8_t* src_argb1555,
uint8_t b3 = next_argb1555[2] & 0x1f;
uint8_t g3 = (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3);
uint8_t r3 = (next_argb1555[3] & 0x7c) >> 2;
- uint8_t b = (b0 + b1 + b2 + b3); // 555 * 4 = 777.
- uint8_t g = (g0 + g1 + g2 + g3);
- uint8_t r = (r0 + r1 + r2 + r3);
- b = (b << 1) | (b >> 6); // 777 -> 888.
- g = (g << 1) | (g >> 6);
- r = (r << 1) | (r >> 6);
- dst_u[0] = RGBToU(r, g, b);
- dst_v[0] = RGBToV(r, g, b);
+
+ b0 = (b0 << 3) | (b0 >> 2);
+ g0 = (g0 << 3) | (g0 >> 2);
+ r0 = (r0 << 3) | (r0 >> 2);
+ b1 = (b1 << 3) | (b1 >> 2);
+ g1 = (g1 << 3) | (g1 >> 2);
+ r1 = (r1 << 3) | (r1 >> 2);
+ b2 = (b2 << 3) | (b2 >> 2);
+ g2 = (g2 << 3) | (g2 >> 2);
+ r2 = (r2 << 3) | (r2 >> 2);
+ b3 = (b3 << 3) | (b3 >> 2);
+ g3 = (g3 << 3) | (g3 >> 2);
+ r3 = (r3 << 3) | (r3 >> 2);
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3));
+ uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3));
+ uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3));
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1;
+ uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1;
+ uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+
src_argb1555 += 4;
next_argb1555 += 4;
dst_u += 1;
@@ -652,15 +975,28 @@ void ARGB1555ToUVRow_C(const uint8_t* src_argb1555,
uint8_t r0 = (src_argb1555[1] & 0x7c) >> 2;
uint8_t b2 = next_argb1555[0] & 0x1f;
uint8_t g2 = (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3);
- uint8_t r2 = next_argb1555[1] >> 3;
- uint8_t b = (b0 + b2); // 555 * 2 = 666.
- uint8_t g = (g0 + g2);
- uint8_t r = (r0 + r2);
- b = (b << 2) | (b >> 4); // 666 -> 888.
- g = (g << 2) | (g >> 4);
- r = (r << 2) | (r >> 4);
- dst_u[0] = RGBToU(r, g, b);
- dst_v[0] = RGBToV(r, g, b);
+ uint8_t r2 = (next_argb1555[1] & 0x7c) >> 2;
+
+ b0 = (b0 << 3) | (b0 >> 2);
+ g0 = (g0 << 3) | (g0 >> 2);
+ r0 = (r0 << 3) | (r0 >> 2);
+ b2 = (b2 << 3) | (b2 >> 2);
+ g2 = (g2 << 3) | (g2 >> 2);
+ r2 = (r2 << 3) | (r2 >> 2);
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(b0, b2);
+ uint8_t ag = AVGB(g0, g2);
+ uint8_t ar = AVGB(r0, r2);
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = b0 + b2;
+ uint16_t g = g0 + g2;
+ uint16_t r = r0 + r2;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
}
}
@@ -684,14 +1020,34 @@ void ARGB4444ToUVRow_C(const uint8_t* src_argb4444,
uint8_t b3 = next_argb4444[2] & 0x0f;
uint8_t g3 = next_argb4444[2] >> 4;
uint8_t r3 = next_argb4444[3] & 0x0f;
- uint8_t b = (b0 + b1 + b2 + b3); // 444 * 4 = 666.
- uint8_t g = (g0 + g1 + g2 + g3);
- uint8_t r = (r0 + r1 + r2 + r3);
- b = (b << 2) | (b >> 4); // 666 -> 888.
- g = (g << 2) | (g >> 4);
- r = (r << 2) | (r >> 4);
- dst_u[0] = RGBToU(r, g, b);
- dst_v[0] = RGBToV(r, g, b);
+
+ b0 = (b0 << 4) | b0;
+ g0 = (g0 << 4) | g0;
+ r0 = (r0 << 4) | r0;
+ b1 = (b1 << 4) | b1;
+ g1 = (g1 << 4) | g1;
+ r1 = (r1 << 4) | r1;
+ b2 = (b2 << 4) | b2;
+ g2 = (g2 << 4) | g2;
+ r2 = (r2 << 4) | r2;
+ b3 = (b3 << 4) | b3;
+ g3 = (g3 << 4) | g3;
+ r3 = (r3 << 4) | r3;
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3));
+ uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3));
+ uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3));
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1;
+ uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1;
+ uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+
src_argb4444 += 4;
next_argb4444 += 4;
dst_u += 1;
@@ -704,14 +1060,27 @@ void ARGB4444ToUVRow_C(const uint8_t* src_argb4444,
uint8_t b2 = next_argb4444[0] & 0x0f;
uint8_t g2 = next_argb4444[0] >> 4;
uint8_t r2 = next_argb4444[1] & 0x0f;
- uint8_t b = (b0 + b2); // 444 * 2 = 555.
- uint8_t g = (g0 + g2);
- uint8_t r = (r0 + r2);
- b = (b << 3) | (b >> 2); // 555 -> 888.
- g = (g << 3) | (g >> 2);
- r = (r << 3) | (r >> 2);
- dst_u[0] = RGBToU(r, g, b);
- dst_v[0] = RGBToV(r, g, b);
+
+ b0 = (b0 << 4) | b0;
+ g0 = (g0 << 4) | g0;
+ r0 = (r0 << 4) | r0;
+ b2 = (b2 << 4) | b2;
+ g2 = (g2 << 4) | g2;
+ r2 = (r2 << 4) | r2;
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(b0, b2);
+ uint8_t ag = AVGB(g0, g2);
+ uint8_t ar = AVGB(r0, r2);
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = b0 + b2;
+ uint16_t g = g0 + g2;
+ uint16_t r = r0 + r2;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
}
}
@@ -877,16 +1246,16 @@ void ARGBShadeRow_C(const uint8_t* src_argb,
#define REPEAT8(v) (v) | ((v) << 8)
#define SHADE(f, v) v* f >> 16
-void ARGBMultiplyRow_C(const uint8_t* src_argb0,
+void ARGBMultiplyRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
- const uint32_t b = REPEAT8(src_argb0[0]);
- const uint32_t g = REPEAT8(src_argb0[1]);
- const uint32_t r = REPEAT8(src_argb0[2]);
- const uint32_t a = REPEAT8(src_argb0[3]);
+ const uint32_t b = REPEAT8(src_argb[0]);
+ const uint32_t g = REPEAT8(src_argb[1]);
+ const uint32_t r = REPEAT8(src_argb[2]);
+ const uint32_t a = REPEAT8(src_argb[3]);
const uint32_t b_scale = src_argb1[0];
const uint32_t g_scale = src_argb1[1];
const uint32_t r_scale = src_argb1[2];
@@ -895,7 +1264,7 @@ void ARGBMultiplyRow_C(const uint8_t* src_argb0,
dst_argb[1] = SHADE(g, g_scale);
dst_argb[2] = SHADE(r, r_scale);
dst_argb[3] = SHADE(a, a_scale);
- src_argb0 += 4;
+ src_argb += 4;
src_argb1 += 4;
dst_argb += 4;
}
@@ -905,16 +1274,16 @@ void ARGBMultiplyRow_C(const uint8_t* src_argb0,
#define SHADE(f, v) clamp255(v + f)
-void ARGBAddRow_C(const uint8_t* src_argb0,
+void ARGBAddRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
- const int b = src_argb0[0];
- const int g = src_argb0[1];
- const int r = src_argb0[2];
- const int a = src_argb0[3];
+ const int b = src_argb[0];
+ const int g = src_argb[1];
+ const int r = src_argb[2];
+ const int a = src_argb[3];
const int b_add = src_argb1[0];
const int g_add = src_argb1[1];
const int r_add = src_argb1[2];
@@ -923,7 +1292,7 @@ void ARGBAddRow_C(const uint8_t* src_argb0,
dst_argb[1] = SHADE(g, g_add);
dst_argb[2] = SHADE(r, r_add);
dst_argb[3] = SHADE(a, a_add);
- src_argb0 += 4;
+ src_argb += 4;
src_argb1 += 4;
dst_argb += 4;
}
@@ -932,16 +1301,16 @@ void ARGBAddRow_C(const uint8_t* src_argb0,
#define SHADE(f, v) clamp0(f - v)
-void ARGBSubtractRow_C(const uint8_t* src_argb0,
+void ARGBSubtractRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int i;
for (i = 0; i < width; ++i) {
- const int b = src_argb0[0];
- const int g = src_argb0[1];
- const int r = src_argb0[2];
- const int a = src_argb0[3];
+ const int b = src_argb[0];
+ const int g = src_argb[1];
+ const int r = src_argb[2];
+ const int a = src_argb[3];
const int b_sub = src_argb1[0];
const int g_sub = src_argb1[1];
const int r_sub = src_argb1[2];
@@ -950,7 +1319,7 @@ void ARGBSubtractRow_C(const uint8_t* src_argb0,
dst_argb[1] = SHADE(g, g_sub);
dst_argb[2] = SHADE(r, r_sub);
dst_argb[3] = SHADE(a, a_sub);
- src_argb0 += 4;
+ src_argb += 4;
src_argb1 += 4;
dst_argb += 4;
}
@@ -1058,257 +1427,244 @@ void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) {
}
}
-// TODO(fbarchard): Unify these structures to be platform independent.
-// TODO(fbarchard): Generate SIMD structures from float matrix.
+// Macros to create SIMD specific yuv to rgb conversion constants.
-// BT.601 YUV to RGB reference
-// R = (Y - 16) * 1.164 - V * -1.596
-// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813
-// B = (Y - 16) * 1.164 - U * -2.018
+// clang-format off
-// Y contribution to R,G,B. Scale and bias.
-#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
-#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
+#if defined(__aarch64__) || defined(__arm__)
+// Bias values include subtract 128 from U and V, bias from Y and rounding.
+// For B and R bias is negative. For G bias is positive.
+#define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \
+ {{UB, VR, UG, VG, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, \
+ {YG, (UB * 128 - YB), (UG * 128 + VG * 128 + YB), (VR * 128 - YB), YB, 0, \
+ 0, 0}}
+#else
+#define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \
+ {{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, \
+ UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, \
+ {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, \
+ UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, \
+ {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, \
+ 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, \
+ {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}, \
+ {YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB}}
+#endif
+
+// clang-format on
+
+#define MAKEYUVCONSTANTS(name, YG, YB, UB, UG, VG, VR) \
+ const struct YuvConstants SIMD_ALIGNED(kYuv##name##Constants) = \
+ YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR); \
+ const struct YuvConstants SIMD_ALIGNED(kYvu##name##Constants) = \
+ YUVCONSTANTSBODY(YG, YB, VR, VG, UG, UB);
+
+// TODO(fbarchard): Generate SIMD structures from float matrix.
+
+// BT.601 limited range YUV to RGB reference
+// R = (Y - 16) * 1.164 + V * 1.596
+// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813
+// B = (Y - 16) * 1.164 + U * 2.018
+// KR = 0.299; KB = 0.114
// U and V contributions to R,G,B.
-#define UB -128 /* max(-128, round(-2.018 * 64)) */
-#define UG 25 /* round(0.391 * 64) */
-#define VG 52 /* round(0.813 * 64) */
-#define VR -102 /* round(-1.596 * 64) */
-
-// Bias values to subtract 16 from Y and 128 from U and V.
-#define BB (UB * 128 + YGB)
-#define BG (UG * 128 + VG * 128 + YGB)
-#define BR (VR * 128 + YGB)
-
-#if defined(__aarch64__) // 64 bit arm
-const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
- {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
- {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
- {UG, VG, UG, VG, UG, VG, UG, VG},
- {UG, VG, UG, VG, UG, VG, UG, VG},
- {BB, BG, BR, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
- {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
- {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
- {VG, UG, VG, UG, VG, UG, VG, UG},
- {VG, UG, VG, UG, VG, UG, VG, UG},
- {BR, BG, BB, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-#elif defined(__arm__) // 32 bit arm
-const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
- {-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0},
- {UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0},
- {BB, BG, BR, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
- {-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0},
- {VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0},
- {BR, BG, BB, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
+#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT601)
+#define UB 129 /* round(2.018 * 64) */
#else
-const struct YuvConstants SIMD_ALIGNED(kYuvI601Constants) = {
- {UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
- UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0},
- {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
- UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG},
- {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
- 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR},
- {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
- {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
- {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
- {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
-const struct YuvConstants SIMD_ALIGNED(kYvuI601Constants) = {
- {VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
- VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0},
- {VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
- VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG},
- {0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
- 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB},
- {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
- {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
- {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
- {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
+#define UB 128 /* max(128, round(2.018 * 64)) */
#endif
+#define UG 25 /* round(0.391 * 64) */
+#define VG 52 /* round(0.813 * 64) */
+#define VR 102 /* round(1.596 * 64) */
-#undef BB
-#undef BG
-#undef BR
-#undef YGB
+// Y contribution to R,G,B. Scale and bias.
+#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
+#define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
+
+MAKEYUVCONSTANTS(I601, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
-#undef YG
-// JPEG YUV to RGB reference
-// * R = Y - V * -1.40200
-// * G = Y - U * 0.34414 - V * 0.71414
-// * B = Y - U * -1.77200
+// BT.601 full range YUV to RGB reference (aka JPEG)
+// * R = Y + V * 1.40200
+// * G = Y - U * 0.34414 - V * 0.71414
+// * B = Y + U * 1.77200
+// KR = 0.299; KB = 0.114
+
+// U and V contributions to R,G,B.
+#define UB 113 /* round(1.77200 * 64) */
+#define UG 22 /* round(0.34414 * 64) */
+#define VG 46 /* round(0.71414 * 64) */
+#define VR 90 /* round(1.40200 * 64) */
// Y contribution to R,G,B. Scale and bias.
#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */
-#define YGB 32 /* 64 / 2 */
+#define YB 32 /* 64 / 2 */
+
+MAKEYUVCONSTANTS(JPEG, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.709 limited range YUV to RGB reference
+// R = (Y - 16) * 1.164 + V * 1.793
+// G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533
+// B = (Y - 16) * 1.164 + U * 2.112
+// KR = 0.2126, KB = 0.0722
// U and V contributions to R,G,B.
-#define UB -113 /* round(-1.77200 * 64) */
-#define UG 22 /* round(0.34414 * 64) */
-#define VG 46 /* round(0.71414 * 64) */
-#define VR -90 /* round(-1.40200 * 64) */
-
-// Bias values to round, and subtract 128 from U and V.
-#define BB (UB * 128 + YGB)
-#define BG (UG * 128 + VG * 128 + YGB)
-#define BR (VR * 128 + YGB)
-
-#if defined(__aarch64__)
-const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
- {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
- {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
- {UG, VG, UG, VG, UG, VG, UG, VG},
- {UG, VG, UG, VG, UG, VG, UG, VG},
- {BB, BG, BR, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
- {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
- {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
- {VG, UG, VG, UG, VG, UG, VG, UG},
- {VG, UG, VG, UG, VG, UG, VG, UG},
- {BR, BG, BB, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-#elif defined(__arm__)
-const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
- {-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0},
- {UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0},
- {BB, BG, BR, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
- {-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0},
- {VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0},
- {BR, BG, BB, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
+#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT709)
+#define UB 135 /* round(2.112 * 64) */
#else
-const struct YuvConstants SIMD_ALIGNED(kYuvJPEGConstants) = {
- {UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
- UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0},
- {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
- UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG},
- {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
- 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR},
- {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
- {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
- {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
- {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
-const struct YuvConstants SIMD_ALIGNED(kYvuJPEGConstants) = {
- {VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
- VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0},
- {VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
- VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG},
- {0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
- 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB},
- {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
- {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
- {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
- {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
+#define UB 128 /* max(128, round(2.112 * 64)) */
#endif
+#define UG 14 /* round(0.213 * 64) */
+#define VG 34 /* round(0.533 * 64) */
+#define VR 115 /* round(1.793 * 64) */
-#undef BB
-#undef BG
-#undef BR
-#undef YGB
+// Y contribution to R,G,B. Scale and bias.
+#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
+#define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
+
+MAKEYUVCONSTANTS(H709, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
-#undef YG
-// BT.709 YUV to RGB reference
-// R = (Y - 16) * 1.164 - V * -1.793
-// G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533
-// B = (Y - 16) * 1.164 - U * -2.112
-// See also http://www.equasys.de/colorconversion.html
+// BT.709 full range YUV to RGB reference
+// R = Y + V * 1.5748
+// G = Y - U * 0.18732 - V * 0.46812
+// B = Y + U * 1.8556
+// KR = 0.2126, KB = 0.0722
-// Y contribution to R,G,B. Scale and bias.
-#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
-#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
+// U and V contributions to R,G,B.
+#define UB 119 /* round(1.8556 * 64) */
+#define UG 12 /* round(0.18732 * 64) */
+#define VG 30 /* round(0.46812 * 64) */
+#define VR 101 /* round(1.5748 * 64) */
+
+// Y contribution to R,G,B. Scale and bias. (same as jpeg)
+#define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */
+#define YB 32 /* 64 / 2 */
+
+MAKEYUVCONSTANTS(F709, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.2020 limited range YUV to RGB reference
+// R = (Y - 16) * 1.164384 + V * 1.67867
+// G = (Y - 16) * 1.164384 - U * 0.187326 - V * 0.65042
+// B = (Y - 16) * 1.164384 + U * 2.14177
+// KR = 0.2627; KB = 0.0593
-// TODO(fbarchard): Find way to express 2.112 instead of 2.0.
// U and V contributions to R,G,B.
-#define UB -128 /* max(-128, round(-2.112 * 64)) */
-#define UG 14 /* round(0.213 * 64) */
-#define VG 34 /* round(0.533 * 64) */
-#define VR -115 /* round(-1.793 * 64) */
-
-// Bias values to round, and subtract 128 from U and V.
-#define BB (UB * 128 + YGB)
-#define BG (UG * 128 + VG * 128 + YGB)
-#define BR (VR * 128 + YGB)
-
-#if defined(__aarch64__)
-const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
- {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
- {-UB, -VR, -UB, -VR, -UB, -VR, -UB, -VR},
- {UG, VG, UG, VG, UG, VG, UG, VG},
- {UG, VG, UG, VG, UG, VG, UG, VG},
- {BB, BG, BR, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
- {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
- {-VR, -UB, -VR, -UB, -VR, -UB, -VR, -UB},
- {VG, UG, VG, UG, VG, UG, VG, UG},
- {VG, UG, VG, UG, VG, UG, VG, UG},
- {BR, BG, BB, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-#elif defined(__arm__)
-const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
- {-UB, -UB, -UB, -UB, -VR, -VR, -VR, -VR, 0, 0, 0, 0, 0, 0, 0, 0},
- {UG, UG, UG, UG, VG, VG, VG, VG, 0, 0, 0, 0, 0, 0, 0, 0},
- {BB, BG, BR, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
-const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
- {-VR, -VR, -VR, -VR, -UB, -UB, -UB, -UB, 0, 0, 0, 0, 0, 0, 0, 0},
- {VG, VG, VG, VG, UG, UG, UG, UG, 0, 0, 0, 0, 0, 0, 0, 0},
- {BR, BG, BB, 0, 0, 0, 0, 0},
- {0x0101 * YG, 0, 0, 0}};
+#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT2020)
+#define UB 137 /* round(2.142 * 64) */
#else
-const struct YuvConstants SIMD_ALIGNED(kYuvH709Constants) = {
- {UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0,
- UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0},
- {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG,
- UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG},
- {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR,
- 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR},
- {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
- {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
- {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
- {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
-const struct YuvConstants SIMD_ALIGNED(kYvuH709Constants) = {
- {VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0,
- VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0},
- {VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG,
- VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG},
- {0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB,
- 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB},
- {BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR, BR},
- {BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG, BG},
- {BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB, BB},
- {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}};
+#define UB 128 /* max(128, round(2.142 * 64)) */
#endif
+#define UG 12 /* round(0.187326 * 64) */
+#define VG 42 /* round(0.65042 * 64) */
+#define VR 107 /* round(1.67867 * 64) */
-#undef BB
-#undef BG
-#undef BR
-#undef YGB
+// Y contribution to R,G,B. Scale and bias.
+#define YG 19003 /* round(1.164384 * 64 * 256 * 256 / 257) */
+#define YB -1160 /* 1.164384 * 64 * -16 + 64 / 2 */
+
+MAKEYUVCONSTANTS(2020, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
#undef UB
#undef UG
#undef VG
#undef VR
+
+// BT.2020 full range YUV to RGB reference
+// R = Y + V * 1.474600
+// G = Y - U * 0.164553 - V * 0.571353
+// B = Y + U * 1.881400
+// KR = 0.2627; KB = 0.0593
+
+#define UB 120 /* round(1.881400 * 64) */
+#define UG 11 /* round(0.164553 * 64) */
+#define VG 37 /* round(0.571353 * 64) */
+#define VR 94 /* round(1.474600 * 64) */
+
+// Y contribution to R,G,B. Scale and bias. (same as jpeg)
+#define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */
+#define YB 32 /* 64 / 2 */
+
+MAKEYUVCONSTANTS(V2020, YG, YB, UB, UG, VG, VR)
+
#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+#undef BB
+#undef BG
+#undef BR
+
+#undef MAKEYUVCONSTANTS
+
+#if defined(__aarch64__) || defined(__arm__)
+#define LOAD_YUV_CONSTANTS \
+ int ub = yuvconstants->kUVCoeff[0]; \
+ int vr = yuvconstants->kUVCoeff[1]; \
+ int ug = yuvconstants->kUVCoeff[2]; \
+ int vg = yuvconstants->kUVCoeff[3]; \
+ int yg = yuvconstants->kRGBCoeffBias[0]; \
+ int bb = yuvconstants->kRGBCoeffBias[1]; \
+ int bg = yuvconstants->kRGBCoeffBias[2]; \
+ int br = yuvconstants->kRGBCoeffBias[3]
+
+#define CALC_RGB16 \
+ int32_t y1 = (uint32_t)(y32 * yg) >> 16; \
+ int b16 = y1 + (u * ub) - bb; \
+ int g16 = y1 + bg - (u * ug + v * vg); \
+ int r16 = y1 + (v * vr) - br
+#else
+#define LOAD_YUV_CONSTANTS \
+ int ub = yuvconstants->kUVToB[0]; \
+ int ug = yuvconstants->kUVToG[0]; \
+ int vg = yuvconstants->kUVToG[1]; \
+ int vr = yuvconstants->kUVToR[1]; \
+ int yg = yuvconstants->kYToRgb[0]; \
+ int yb = yuvconstants->kYBiasToRgb[0]
+
+#define CALC_RGB16 \
+ int32_t y1 = ((uint32_t)(y32 * yg) >> 16) + yb; \
+ int8_t ui = (int8_t)u; \
+ int8_t vi = (int8_t)v; \
+ ui -= 0x80; \
+ vi -= 0x80; \
+ int b16 = y1 + (ui * ub); \
+ int g16 = y1 - (ui * ug + vi * vg); \
+ int r16 = y1 + (vi * vr)
+#endif
// C reference code that mimics the YUV assembly.
// Reads 8 bit YUV and leaves result as 16 bit.
-
static __inline void YuvPixel(uint8_t y,
uint8_t u,
uint8_t v,
@@ -1316,39 +1672,12 @@ static __inline void YuvPixel(uint8_t y,
uint8_t* g,
uint8_t* r,
const struct YuvConstants* yuvconstants) {
-#if defined(__aarch64__)
- int ub = -yuvconstants->kUVToRB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[1];
- int vr = -yuvconstants->kUVToRB[1];
- int bb = yuvconstants->kUVBiasBGR[0];
- int bg = yuvconstants->kUVBiasBGR[1];
- int br = yuvconstants->kUVBiasBGR[2];
- int yg = yuvconstants->kYToRgb[0] / 0x0101;
-#elif defined(__arm__)
- int ub = -yuvconstants->kUVToRB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[4];
- int vr = -yuvconstants->kUVToRB[4];
- int bb = yuvconstants->kUVBiasBGR[0];
- int bg = yuvconstants->kUVBiasBGR[1];
- int br = yuvconstants->kUVBiasBGR[2];
- int yg = yuvconstants->kYToRgb[0] / 0x0101;
-#else
- int ub = yuvconstants->kUVToB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[1];
- int vr = yuvconstants->kUVToR[1];
- int bb = yuvconstants->kUVBiasB[0];
- int bg = yuvconstants->kUVBiasG[0];
- int br = yuvconstants->kUVBiasR[0];
- int yg = yuvconstants->kYToRgb[0];
-#endif
-
- uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
- *b = Clamp((int32_t)(-(u * ub) + y1 + bb) >> 6);
- *g = Clamp((int32_t)(-(u * ug + v * vg) + y1 + bg) >> 6);
- *r = Clamp((int32_t)(-(v * vr) + y1 + br) >> 6);
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y * 0x0101;
+ CALC_RGB16;
+ *b = Clamp((int32_t)(b16) >> 6);
+ *g = Clamp((int32_t)(g16) >> 6);
+ *r = Clamp((int32_t)(r16) >> 6);
}
// Reads 8 bit YUV and leaves result as 16 bit.
@@ -1359,85 +1688,50 @@ static __inline void YuvPixel8_16(uint8_t y,
int* g,
int* r,
const struct YuvConstants* yuvconstants) {
-#if defined(__aarch64__)
- int ub = -yuvconstants->kUVToRB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[1];
- int vr = -yuvconstants->kUVToRB[1];
- int bb = yuvconstants->kUVBiasBGR[0];
- int bg = yuvconstants->kUVBiasBGR[1];
- int br = yuvconstants->kUVBiasBGR[2];
- int yg = yuvconstants->kYToRgb[0] / 0x0101;
-#elif defined(__arm__)
- int ub = -yuvconstants->kUVToRB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[4];
- int vr = -yuvconstants->kUVToRB[4];
- int bb = yuvconstants->kUVBiasBGR[0];
- int bg = yuvconstants->kUVBiasBGR[1];
- int br = yuvconstants->kUVBiasBGR[2];
- int yg = yuvconstants->kYToRgb[0] / 0x0101;
-#else
- int ub = yuvconstants->kUVToB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[1];
- int vr = yuvconstants->kUVToR[1];
- int bb = yuvconstants->kUVBiasB[0];
- int bg = yuvconstants->kUVBiasG[0];
- int br = yuvconstants->kUVBiasR[0];
- int yg = yuvconstants->kYToRgb[0];
-#endif
-
- uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
- *b = (int)(-(u * ub) + y1 + bb);
- *g = (int)(-(u * ug + v * vg) + y1 + bg);
- *r = (int)(-(v * vr) + y1 + br);
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y * 0x0101;
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
}
// C reference code that mimics the YUV 16 bit assembly.
// Reads 10 bit YUV and leaves result as 16 bit.
-static __inline void YuvPixel16(int16_t y,
- int16_t u,
- int16_t v,
- int* b,
- int* g,
- int* r,
- const struct YuvConstants* yuvconstants) {
-#if defined(__aarch64__)
- int ub = -yuvconstants->kUVToRB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[1];
- int vr = -yuvconstants->kUVToRB[1];
- int bb = yuvconstants->kUVBiasBGR[0];
- int bg = yuvconstants->kUVBiasBGR[1];
- int br = yuvconstants->kUVBiasBGR[2];
- int yg = yuvconstants->kYToRgb[0] / 0x0101;
-#elif defined(__arm__)
- int ub = -yuvconstants->kUVToRB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[4];
- int vr = -yuvconstants->kUVToRB[4];
- int bb = yuvconstants->kUVBiasBGR[0];
- int bg = yuvconstants->kUVBiasBGR[1];
- int br = yuvconstants->kUVBiasBGR[2];
- int yg = yuvconstants->kYToRgb[0] / 0x0101;
-#else
- int ub = yuvconstants->kUVToB[0];
- int ug = yuvconstants->kUVToG[0];
- int vg = yuvconstants->kUVToG[1];
- int vr = yuvconstants->kUVToR[1];
- int bb = yuvconstants->kUVBiasB[0];
- int bg = yuvconstants->kUVBiasG[0];
- int br = yuvconstants->kUVBiasR[0];
- int yg = yuvconstants->kYToRgb[0];
-#endif
-
- uint32_t y1 = (uint32_t)((y << 6) * yg) >> 16;
+static __inline void YuvPixel10_16(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y << 6;
u = clamp255(u >> 2);
v = clamp255(v >> 2);
- *b = (int)(-(u * ub) + y1 + bb);
- *g = (int)(-(u * ug + v * vg) + y1 + bg);
- *r = (int)(-(v * vr) + y1 + br);
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
+}
+
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 12 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel12_16(int16_t y,
+ int16_t u,
+ int16_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y << 4;
+ u = clamp255(u >> 4);
+ v = clamp255(v >> 4);
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
}
// C reference code that mimics the YUV 10 bit assembly.
@@ -1452,59 +1746,88 @@ static __inline void YuvPixel10(uint16_t y,
int b16;
int g16;
int r16;
- YuvPixel16(y, u, v, &b16, &g16, &r16, yuvconstants);
+ YuvPixel10_16(y, u, v, &b16, &g16, &r16, yuvconstants);
*b = Clamp(b16 >> 6);
*g = Clamp(g16 >> 6);
*r = Clamp(r16 >> 6);
}
-// Y contribution to R,G,B. Scale and bias.
-#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
-#define YGB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
-
-// C reference code that mimics the YUV assembly.
-static __inline void YPixel(uint8_t y, uint8_t* b, uint8_t* g, uint8_t* r) {
- uint32_t y1 = (uint32_t)(y * 0x0101 * YG) >> 16;
- *b = Clamp((int32_t)(y1 + YGB) >> 6);
- *g = Clamp((int32_t)(y1 + YGB) >> 6);
- *r = Clamp((int32_t)(y1 + YGB) >> 6);
+// C reference code that mimics the YUV 12 bit assembly.
+// Reads 12 bit YUV and clamps down to 8 bit RGB.
+static __inline void YuvPixel12(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+ int b16;
+ int g16;
+ int r16;
+ YuvPixel12_16(y, u, v, &b16, &g16, &r16, yuvconstants);
+ *b = Clamp(b16 >> 6);
+ *g = Clamp(g16 >> 6);
+ *r = Clamp(r16 >> 6);
}
-#undef YG
-#undef YGB
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 16 bit YUV and leaves result as 8 bit.
+static __inline void YuvPixel16_8(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y;
+ u = clamp255(u >> 8);
+ v = clamp255(v >> 8);
+ CALC_RGB16;
+ *b = Clamp((int32_t)(b16) >> 6);
+ *g = Clamp((int32_t)(g16) >> 6);
+ *r = Clamp((int32_t)(r16) >> 6);
+}
-#if !defined(LIBYUV_DISABLE_NEON) && \
- (defined(__ARM_NEON__) || defined(__aarch64__) || defined(LIBYUV_NEON))
-// C mimic assembly.
-// TODO(fbarchard): Remove subsampling from Neon.
-void I444ToARGBRow_C(const uint8_t* src_y,
- const uint8_t* src_u,
- const uint8_t* src_v,
- uint8_t* rgb_buf,
- const struct YuvConstants* yuvconstants,
- int width) {
- int x;
- for (x = 0; x < width - 1; x += 2) {
- uint8_t u = (src_u[0] + src_u[1] + 1) >> 1;
- uint8_t v = (src_v[0] + src_v[1] + 1) >> 1;
- YuvPixel(src_y[0], u, v, rgb_buf + 0, rgb_buf + 1, rgb_buf + 2,
- yuvconstants);
- rgb_buf[3] = 255;
- YuvPixel(src_y[1], u, v, rgb_buf + 4, rgb_buf + 5, rgb_buf + 6,
- yuvconstants);
- rgb_buf[7] = 255;
- src_y += 2;
- src_u += 2;
- src_v += 2;
- rgb_buf += 8; // Advance 2 pixels.
- }
- if (width & 1) {
- YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
- rgb_buf + 2, yuvconstants);
- rgb_buf[3] = 255;
- }
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 16 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel16_16(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y;
+ u = clamp255(u >> 8);
+ v = clamp255(v >> 8);
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
}
+
+// C reference code that mimics the YUV assembly.
+// Reads 8 bit YUV and leaves result as 8 bit.
+static __inline void YPixel(uint8_t y,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+#if defined(__aarch64__) || defined(__arm__)
+ int yg = yuvconstants->kRGBCoeffBias[0];
+ int ygb = yuvconstants->kRGBCoeffBias[4];
#else
+ int ygb = yuvconstants->kYBiasToRgb[0];
+ int yg = yuvconstants->kYToRgb[0];
+#endif
+ uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
+ *b = Clamp(((int32_t)(y1) + ygb) >> 6);
+ *g = Clamp(((int32_t)(y1) + ygb) >> 6);
+ *r = Clamp(((int32_t)(y1) + ygb) >> 6);
+}
+
void I444ToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
@@ -1522,7 +1845,6 @@ void I444ToARGBRow_C(const uint8_t* src_y,
rgb_buf += 4; // Advance 1 pixel.
}
}
-#endif
// Also used for 420
void I422ToARGBRow_C(const uint8_t* src_y,
@@ -1578,9 +1900,102 @@ void I210ToARGBRow_C(const uint16_t* src_y,
}
}
+void I410ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 4; // Advance 1 pixels.
+ }
+}
+
+void I210AlphaToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ const uint16_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = clamp255(src_a[0] >> 2);
+ YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = clamp255(src_a[1] >> 2);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ src_a += 2;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = clamp255(src_a[0] >> 2);
+ }
+}
+
+void I410AlphaToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ const uint16_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = clamp255(src_a[0] >> 2);
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ src_a += 1;
+ rgb_buf += 4; // Advance 1 pixels.
+ }
+}
+
+// 12 bit YUV to ARGB
+void I212ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel12(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) {
uint32_t ar30;
- b = b >> 4; // convert 10.6 to 10 bit.
+ b = b >> 4; // convert 8 bit 10.6 to 10 bit.
g = g >> 4;
r = r >> 4;
b = Clamp10(b);
@@ -1602,9 +2017,9 @@ void I210ToAR30Row_C(const uint16_t* src_y,
int g;
int r;
for (x = 0; x < width - 1; x += 2) {
- YuvPixel16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
- YuvPixel16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ YuvPixel10_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf + 4, b, g, r);
src_y += 2;
src_u += 1;
@@ -1612,11 +2027,141 @@ void I210ToAR30Row_C(const uint16_t* src_y,
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
- YuvPixel16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
StoreAR30(rgb_buf, b, g, r);
}
}
+// 12 bit YUV to 10 bit AR30
+void I212ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ YuvPixel12_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf + 4, b, g, r);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ }
+}
+
+void I410ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width; ++x) {
+ YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 4; // Advance 1 pixel.
+ }
+}
+
+// P210 has 10 bits in msb of 16 bit NV12 style layout.
+void P210ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_argb,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
+ dst_argb + 2, yuvconstants);
+ dst_argb[3] = 255;
+ YuvPixel16_8(src_y[1], src_uv[0], src_uv[1], dst_argb + 4, dst_argb + 5,
+ dst_argb + 6, yuvconstants);
+ dst_argb[7] = 255;
+ src_y += 2;
+ src_uv += 2;
+ dst_argb += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
+ dst_argb + 2, yuvconstants);
+ dst_argb[3] = 255;
+ }
+}
+
+void P410ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_argb,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
+ dst_argb + 2, yuvconstants);
+ dst_argb[3] = 255;
+ src_y += 1;
+ src_uv += 2;
+ dst_argb += 4; // Advance 1 pixels.
+ }
+}
+
+void P210ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_ar30,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30, b, g, r);
+ YuvPixel16_16(src_y[1], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30 + 4, b, g, r);
+ src_y += 2;
+ src_uv += 2;
+ dst_ar30 += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30, b, g, r);
+ }
+}
+
+void P410ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_ar30,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width; ++x) {
+ YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30, b, g, r);
+ src_y += 1;
+ src_uv += 2;
+ dst_ar30 += 4; // Advance 1 pixel.
+ }
+}
+
// 8 bit YUV to 10 bit AR30
// Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits.
void I422ToAR30Row_C(const uint8_t* src_y,
@@ -1645,6 +2190,26 @@ void I422ToAR30Row_C(const uint8_t* src_y,
}
}
+void I444AlphaToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ const uint8_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = src_a[0];
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ src_a += 1;
+ rgb_buf += 4; // Advance 1 pixel.
+ }
+}
+
void I422AlphaToARGBRow_C(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
@@ -1718,8 +2283,8 @@ void I422ToARGB4444Row_C(const uint8_t* src_y,
b1 = b1 >> 4;
g1 = g1 >> 4;
r1 = r1 >> 4;
- *(uint32_t*)(dst_argb4444) = b0 | (g0 << 4) | (r0 << 8) | (b1 << 16) |
- (g1 << 20) | (r1 << 24) | 0xf000f000;
+ *(uint16_t*)(dst_argb4444 + 0) = b0 | (g0 << 4) | (r0 << 8) | 0xf000;
+ *(uint16_t*)(dst_argb4444 + 2) = b1 | (g1 << 4) | (r1 << 8) | 0xf000;
src_y += 2;
src_u += 1;
src_v += 1;
@@ -1756,8 +2321,8 @@ void I422ToARGB1555Row_C(const uint8_t* src_y,
b1 = b1 >> 3;
g1 = g1 >> 3;
r1 = r1 >> 3;
- *(uint32_t*)(dst_argb1555) = b0 | (g0 << 5) | (r0 << 10) | (b1 << 16) |
- (g1 << 21) | (r1 << 26) | 0x80008000;
+ *(uint16_t*)(dst_argb1555 + 0) = b0 | (g0 << 5) | (r0 << 10) | 0x8000;
+ *(uint16_t*)(dst_argb1555 + 2) = b1 | (g1 << 5) | (r1 << 10) | 0x8000;
src_y += 2;
src_u += 1;
src_v += 1;
@@ -1794,8 +2359,8 @@ void I422ToRGB565Row_C(const uint8_t* src_y,
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
- *(uint32_t*)(dst_rgb565) =
- b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27);
+ *(uint16_t*)(dst_rgb565 + 0) = b0 | (g0 << 5) | (r0 << 11); // for ubsan
+ *(uint16_t*)(dst_rgb565 + 2) = b1 | (g1 << 5) | (r1 << 11);
src_y += 2;
src_u += 1;
src_v += 1;
@@ -1921,8 +2486,8 @@ void NV12ToRGB565Row_C(const uint8_t* src_y,
b1 = b1 >> 3;
g1 = g1 >> 2;
r1 = r1 >> 3;
- *(uint32_t*)(dst_rgb565) =
- b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) | (r1 << 27);
+ *(uint16_t*)(dst_rgb565 + 0) = b0 | (g0 << 5) | (r0 << 11);
+ *(uint16_t*)(dst_rgb565 + 2) = b1 | (g1 << 5) | (r1 << 11);
src_y += 2;
src_uv += 2;
dst_rgb565 += 4; // Advance 2 pixels.
@@ -2006,18 +2571,21 @@ void I422ToRGBARow_C(const uint8_t* src_y,
}
}
-void I400ToARGBRow_C(const uint8_t* src_y, uint8_t* rgb_buf, int width) {
+void I400ToARGBRow_C(const uint8_t* src_y,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
- YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2);
+ YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
- YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6);
+ YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
rgb_buf[7] = 255;
src_y += 2;
rgb_buf += 8; // Advance 2 pixels.
}
if (width & 1) {
- YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2);
+ YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
rgb_buf[3] = 255;
}
}
@@ -2035,10 +2603,21 @@ void MirrorRow_C(const uint8_t* src, uint8_t* dst, int width) {
}
}
-void MirrorUVRow_C(const uint8_t* src_uv,
- uint8_t* dst_u,
- uint8_t* dst_v,
- int width) {
+void MirrorUVRow_C(const uint8_t* src_uv, uint8_t* dst_uv, int width) {
+ int x;
+ src_uv += (width - 1) << 1;
+ for (x = 0; x < width; ++x) {
+ dst_uv[0] = src_uv[0];
+ dst_uv[1] = src_uv[1];
+ src_uv -= 2;
+ dst_uv += 2;
+ }
+}
+
+void MirrorSplitUVRow_C(const uint8_t* src_uv,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
int x;
src_uv += (width - 1) << 1;
for (x = 0; x < width - 1; x += 2) {
@@ -2069,6 +2648,21 @@ void ARGBMirrorRow_C(const uint8_t* src, uint8_t* dst, int width) {
}
}
+void RGB24MirrorRow_C(const uint8_t* src_rgb24, uint8_t* dst_rgb24, int width) {
+ int x;
+ src_rgb24 += width * 3 - 3;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_rgb24[0];
+ uint8_t g = src_rgb24[1];
+ uint8_t r = src_rgb24[2];
+ dst_rgb24[0] = b;
+ dst_rgb24[1] = g;
+ dst_rgb24[2] = r;
+ src_rgb24 -= 3;
+ dst_rgb24 += 3;
+ }
+}
+
void SplitUVRow_C(const uint8_t* src_uv,
uint8_t* dst_u,
uint8_t* dst_v,
@@ -2105,6 +2699,38 @@ void MergeUVRow_C(const uint8_t* src_u,
}
}
+void DetileRow_C(const uint8_t* src,
+ ptrdiff_t src_tile_stride,
+ uint8_t* dst,
+ int width) {
+ int x;
+ for (x = 0; x < width - 15; x += 16) {
+ memcpy(dst, src, 16);
+ dst += 16;
+ src += src_tile_stride;
+ }
+ if (width & 15) {
+ memcpy(dst, src, width & 15);
+ }
+}
+
+void DetileSplitUVRow_C(const uint8_t* src_uv,
+ ptrdiff_t src_tile_stride,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ int x;
+ for (x = 0; x < width - 15; x += 16) {
+ SplitUVRow_C(src_uv, dst_u, dst_v, 8);
+ dst_u += 8;
+ dst_v += 8;
+ src_uv += src_tile_stride;
+ }
+ if (width & 15) {
+ SplitUVRow_C(src_uv, dst_u, dst_v, ((width & 15) + 1) / 2);
+ }
+}
+
void SplitRGBRow_C(const uint8_t* src_rgb,
uint8_t* dst_r,
uint8_t* dst_g,
@@ -2133,27 +2759,197 @@ void MergeRGBRow_C(const uint8_t* src_r,
}
}
-// Use scale to convert lsb formats to msb, depending how many bits there are:
-// 128 = 9 bits
-// 64 = 10 bits
-// 16 = 12 bits
-// 1 = 16 bits
+void SplitARGBRow_C(const uint8_t* src_argb,
+ uint8_t* dst_r,
+ uint8_t* dst_g,
+ uint8_t* dst_b,
+ uint8_t* dst_a,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_b[x] = src_argb[0];
+ dst_g[x] = src_argb[1];
+ dst_r[x] = src_argb[2];
+ dst_a[x] = src_argb[3];
+ src_argb += 4;
+ }
+}
+
+void MergeARGBRow_C(const uint8_t* src_r,
+ const uint8_t* src_g,
+ const uint8_t* src_b,
+ const uint8_t* src_a,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = src_b[x];
+ dst_argb[1] = src_g[x];
+ dst_argb[2] = src_r[x];
+ dst_argb[3] = src_a[x];
+ dst_argb += 4;
+ }
+}
+
+void MergeXR30Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ uint8_t* dst_ar30,
+ int depth,
+ int width) {
+ assert(depth >= 10);
+ assert(depth <= 16);
+ int x;
+ int shift = depth - 10;
+ uint32_t* dst_ar30_32 = (uint32_t*)dst_ar30;
+ for (x = 0; x < width; ++x) {
+ uint32_t r = clamp1023(src_r[x] >> shift);
+ uint32_t g = clamp1023(src_g[x] >> shift);
+ uint32_t b = clamp1023(src_b[x] >> shift);
+ dst_ar30_32[x] = b | (g << 10) | (r << 20) | 0xc0000000;
+ }
+}
+
+void MergeAR64Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ const uint16_t* src_a,
+ uint16_t* dst_ar64,
+ int depth,
+ int width) {
+ assert(depth >= 1);
+ assert(depth <= 16);
+ int x;
+ int shift = 16 - depth;
+ int max = (1 << depth) - 1;
+ for (x = 0; x < width; ++x) {
+ dst_ar64[0] = ClampMax(src_b[x], max) << shift;
+ dst_ar64[1] = ClampMax(src_g[x], max) << shift;
+ dst_ar64[2] = ClampMax(src_r[x], max) << shift;
+ dst_ar64[3] = ClampMax(src_a[x], max) << shift;
+ dst_ar64 += 4;
+ }
+}
+
+void MergeARGB16To8Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ const uint16_t* src_a,
+ uint8_t* dst_argb,
+ int depth,
+ int width) {
+ assert(depth >= 8);
+ assert(depth <= 16);
+ int x;
+ int shift = depth - 8;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = clamp255(src_b[x] >> shift);
+ dst_argb[1] = clamp255(src_g[x] >> shift);
+ dst_argb[2] = clamp255(src_r[x] >> shift);
+ dst_argb[3] = clamp255(src_a[x] >> shift);
+ dst_argb += 4;
+ }
+}
+
+void MergeXR64Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ uint16_t* dst_ar64,
+ int depth,
+ int width) {
+ assert(depth >= 1);
+ assert(depth <= 16);
+ int x;
+ int shift = 16 - depth;
+ int max = (1 << depth) - 1;
+ for (x = 0; x < width; ++x) {
+ dst_ar64[0] = ClampMax(src_b[x], max) << shift;
+ dst_ar64[1] = ClampMax(src_g[x], max) << shift;
+ dst_ar64[2] = ClampMax(src_r[x], max) << shift;
+ dst_ar64[3] = 0xffff;
+ dst_ar64 += 4;
+ }
+}
+
+void MergeXRGB16To8Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ uint8_t* dst_argb,
+ int depth,
+ int width) {
+ assert(depth >= 8);
+ assert(depth <= 16);
+ int x;
+ int shift = depth - 8;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = clamp255(src_b[x] >> shift);
+ dst_argb[1] = clamp255(src_g[x] >> shift);
+ dst_argb[2] = clamp255(src_r[x] >> shift);
+ dst_argb[3] = 0xff;
+ dst_argb += 4;
+ }
+}
+
+void SplitXRGBRow_C(const uint8_t* src_argb,
+ uint8_t* dst_r,
+ uint8_t* dst_g,
+ uint8_t* dst_b,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_b[x] = src_argb[0];
+ dst_g[x] = src_argb[1];
+ dst_r[x] = src_argb[2];
+ src_argb += 4;
+ }
+}
+
+void MergeXRGBRow_C(const uint8_t* src_r,
+ const uint8_t* src_g,
+ const uint8_t* src_b,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = src_b[x];
+ dst_argb[1] = src_g[x];
+ dst_argb[2] = src_r[x];
+ dst_argb[3] = 255;
+ dst_argb += 4;
+ }
+}
+
+// Convert lsb formats to msb, depending on sample depth.
void MergeUVRow_16_C(const uint16_t* src_u,
const uint16_t* src_v,
uint16_t* dst_uv,
- int scale,
+ int depth,
int width) {
+ int shift = 16 - depth;
+ assert(depth >= 8);
+ assert(depth <= 16);
int x;
- for (x = 0; x < width - 1; x += 2) {
- dst_uv[0] = src_u[x] * scale;
- dst_uv[1] = src_v[x] * scale;
- dst_uv[2] = src_u[x + 1] * scale;
- dst_uv[3] = src_v[x + 1] * scale;
- dst_uv += 4;
+ for (x = 0; x < width; ++x) {
+ dst_uv[0] = src_u[x] << shift;
+ dst_uv[1] = src_v[x] << shift;
+ dst_uv += 2;
}
- if (width & 1) {
- dst_uv[0] = src_u[width - 1] * scale;
- dst_uv[1] = src_v[width - 1] * scale;
+}
+
+// Convert msb formats to lsb, depending on sample depth.
+void SplitUVRow_16_C(const uint16_t* src_uv,
+ uint16_t* dst_u,
+ uint16_t* dst_v,
+ int depth,
+ int width) {
+ int shift = 16 - depth;
+ int x;
+ assert(depth >= 8);
+ assert(depth <= 16);
+ for (x = 0; x < width; ++x) {
+ dst_u[x] = src_uv[0] >> shift;
+ dst_v[x] = src_uv[1] >> shift;
+ src_uv += 2;
}
}
@@ -2167,18 +2963,34 @@ void MultiplyRow_16_C(const uint16_t* src_y,
}
}
+void DivideRow_16_C(const uint16_t* src_y,
+ uint16_t* dst_y,
+ int scale,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_y[x] = (src_y[x] * scale) >> 16;
+ }
+}
+
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits
// 16384 = 10 bits
// 4096 = 12 bits
// 256 = 16 bits
+// TODO(fbarchard): change scale to bits
+#define C16TO8(v, scale) clamp255(((v) * (scale)) >> 16)
+
void Convert16To8Row_C(const uint16_t* src_y,
uint8_t* dst_y,
int scale,
int width) {
int x;
+ assert(scale >= 256);
+ assert(scale <= 32768);
+
for (x = 0; x < width; ++x) {
- dst_y[x] = clamp255((src_y[x] * scale) >> 16);
+ dst_y[x] = C16TO8(src_y[x], scale);
}
}
@@ -2208,10 +3020,9 @@ void SetRow_C(uint8_t* dst, uint8_t v8, int width) {
}
void ARGBSetRow_C(uint8_t* dst_argb, uint32_t v32, int width) {
- uint32_t* d = (uint32_t*)(dst_argb);
int x;
for (x = 0; x < width; ++x) {
- d[x] = v32;
+ memcpy(dst_argb + x * sizeof v32, &v32, sizeof v32);
}
}
@@ -2309,21 +3120,21 @@ void UYVYToYRow_C(const uint8_t* src_uyvy, uint8_t* dst_y, int width) {
}
}
-#define BLEND(f, b, a) (((256 - a) * b) >> 8) + f
+#define BLEND(f, b, a) clamp255((((256 - a) * b) >> 8) + f)
-// Blend src_argb0 over src_argb1 and store to dst_argb.
-// dst_argb may be src_argb0 or src_argb1.
+// Blend src_argb over src_argb1 and store to dst_argb.
+// dst_argb may be src_argb or src_argb1.
// This code mimics the SSSE3 version for better testability.
-void ARGBBlendRow_C(const uint8_t* src_argb0,
+void ARGBBlendRow_C(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
int x;
for (x = 0; x < width - 1; x += 2) {
- uint32_t fb = src_argb0[0];
- uint32_t fg = src_argb0[1];
- uint32_t fr = src_argb0[2];
- uint32_t a = src_argb0[3];
+ uint32_t fb = src_argb[0];
+ uint32_t fg = src_argb[1];
+ uint32_t fr = src_argb[2];
+ uint32_t a = src_argb[3];
uint32_t bb = src_argb1[0];
uint32_t bg = src_argb1[1];
uint32_t br = src_argb1[2];
@@ -2332,10 +3143,10 @@ void ARGBBlendRow_C(const uint8_t* src_argb0,
dst_argb[2] = BLEND(fr, br, a);
dst_argb[3] = 255u;
- fb = src_argb0[4 + 0];
- fg = src_argb0[4 + 1];
- fr = src_argb0[4 + 2];
- a = src_argb0[4 + 3];
+ fb = src_argb[4 + 0];
+ fg = src_argb[4 + 1];
+ fr = src_argb[4 + 2];
+ a = src_argb[4 + 3];
bb = src_argb1[4 + 0];
bg = src_argb1[4 + 1];
br = src_argb1[4 + 2];
@@ -2343,16 +3154,16 @@ void ARGBBlendRow_C(const uint8_t* src_argb0,
dst_argb[4 + 1] = BLEND(fg, bg, a);
dst_argb[4 + 2] = BLEND(fr, br, a);
dst_argb[4 + 3] = 255u;
- src_argb0 += 8;
+ src_argb += 8;
src_argb1 += 8;
dst_argb += 8;
}
if (width & 1) {
- uint32_t fb = src_argb0[0];
- uint32_t fg = src_argb0[1];
- uint32_t fr = src_argb0[2];
- uint32_t a = src_argb0[3];
+ uint32_t fb = src_argb[0];
+ uint32_t fg = src_argb[1];
+ uint32_t fr = src_argb[2];
+ uint32_t a = src_argb[3];
uint32_t bb = src_argb1[0];
uint32_t bg = src_argb1[1];
uint32_t br = src_argb1[2];
@@ -2385,10 +3196,14 @@ void BlendPlaneRow_C(const uint8_t* src0,
}
#undef UBLEND
+#if LIBYUV_ATTENUATE_DUP
+// This code mimics the SSSE3 version for better testability.
#define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24
+#else
+#define ATTENUATE(f, a) (f * a + 128) >> 8
+#endif
// Multiply source RGB by alpha and store to destination.
-// This code mimics the SSSE3 version for better testability.
void ARGBAttenuateRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
int i;
for (i = 0; i < width - 1; i += 2) {
@@ -2472,6 +3287,14 @@ const uint32_t fixed_invtbl8[256] = {
T(0xfc), T(0xfd), T(0xfe), 0x01000100};
#undef T
+#if LIBYUV_UNATTENUATE_DUP
+// This code mimics the Intel SIMD version for better testability.
+#define UNATTENUATE(f, ia) clamp255(((f | (f << 8)) * ia) >> 16)
+#else
+#define UNATTENUATE(f, ia) clamp255((f * ia) >> 8)
+#endif
+
+// mimics the Intel SIMD code for exactness.
void ARGBUnattenuateRow_C(const uint8_t* src_argb,
uint8_t* dst_argb,
int width) {
@@ -2482,13 +3305,11 @@ void ARGBUnattenuateRow_C(const uint8_t* src_argb,
uint32_t r = src_argb[2];
const uint32_t a = src_argb[3];
const uint32_t ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point
- b = (b * ia) >> 8;
- g = (g * ia) >> 8;
- r = (r * ia) >> 8;
+
// Clamping should not be necessary but is free in assembly.
- dst_argb[0] = clamp255(b);
- dst_argb[1] = clamp255(g);
- dst_argb[2] = clamp255(r);
+ dst_argb[0] = UNATTENUATE(b, ia);
+ dst_argb[1] = UNATTENUATE(g, ia);
+ dst_argb[2] = UNATTENUATE(r, ia);
dst_argb[3] = a;
src_argb += 4;
dst_argb += 4;
@@ -2519,8 +3340,11 @@ void CumulativeSumToAverageRow_C(const int32_t* tl,
int area,
uint8_t* dst,
int count) {
- float ooa = 1.0f / area;
+ float ooa;
int i;
+ assert(area != 0);
+
+ ooa = 1.0f / area;
for (i = 0; i < count; ++i) {
dst[0] = (uint8_t)((bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) * ooa);
dst[1] = (uint8_t)((bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) * ooa);
@@ -2576,6 +3400,17 @@ static void HalfRow_16_C(const uint16_t* src_uv,
}
}
+static void HalfRow_16To8_C(const uint16_t* src_uv,
+ ptrdiff_t src_uv_stride,
+ uint8_t* dst_uv,
+ int scale,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_uv[x] = C16TO8((src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1, scale);
+ }
+}
+
// C version 2x2 -> 2x1.
void InterpolateRow_C(uint8_t* dst_ptr,
const uint8_t* src_ptr,
@@ -2586,6 +3421,9 @@ void InterpolateRow_C(uint8_t* dst_ptr,
int y0_fraction = 256 - y1_fraction;
const uint8_t* src_ptr1 = src_ptr + src_stride;
int x;
+ assert(source_y_fraction >= 0);
+ assert(source_y_fraction < 256);
+
if (y1_fraction == 0) {
memcpy(dst_ptr, src_ptr, width);
return;
@@ -2594,21 +3432,16 @@ void InterpolateRow_C(uint8_t* dst_ptr,
HalfRow_C(src_ptr, src_stride, dst_ptr, width);
return;
}
- for (x = 0; x < width - 1; x += 2) {
- dst_ptr[0] =
- (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8;
- dst_ptr[1] =
- (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction + 128) >> 8;
- src_ptr += 2;
- src_ptr1 += 2;
- dst_ptr += 2;
- }
- if (width & 1) {
+ for (x = 0; x < width; ++x) {
dst_ptr[0] =
(src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8;
+ ++src_ptr;
+ ++src_ptr1;
+ ++dst_ptr;
}
}
+// C version 2x2 -> 2x1.
void InterpolateRow_16_C(uint16_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
@@ -2618,23 +3451,62 @@ void InterpolateRow_16_C(uint16_t* dst_ptr,
int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
int x;
- if (source_y_fraction == 0) {
+ assert(source_y_fraction >= 0);
+ assert(source_y_fraction < 256);
+
+ if (y1_fraction == 0) {
memcpy(dst_ptr, src_ptr, width * 2);
return;
}
- if (source_y_fraction == 128) {
+ if (y1_fraction == 128) {
HalfRow_16_C(src_ptr, src_stride, dst_ptr, width);
return;
}
- for (x = 0; x < width - 1; x += 2) {
- dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8;
- dst_ptr[1] = (src_ptr[1] * y0_fraction + src_ptr1[1] * y1_fraction) >> 8;
- src_ptr += 2;
- src_ptr1 += 2;
- dst_ptr += 2;
+ for (x = 0; x < width; ++x) {
+ dst_ptr[0] =
+ (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8;
+ ++src_ptr;
+ ++src_ptr1;
+ ++dst_ptr;
}
- if (width & 1) {
- dst_ptr[0] = (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction) >> 8;
+}
+
+// C version 2x2 16 bit-> 2x1 8 bit.
+// Use scale to convert lsb formats to msb, depending how many bits there are:
+// 32768 = 9 bits
+// 16384 = 10 bits
+// 4096 = 12 bits
+// 256 = 16 bits
+// TODO(fbarchard): change scale to bits
+
+void InterpolateRow_16To8_C(uint8_t* dst_ptr,
+ const uint16_t* src_ptr,
+ ptrdiff_t src_stride,
+ int scale,
+ int width,
+ int source_y_fraction) {
+ int y1_fraction = source_y_fraction;
+ int y0_fraction = 256 - y1_fraction;
+ const uint16_t* src_ptr1 = src_ptr + src_stride;
+ int x;
+ assert(source_y_fraction >= 0);
+ assert(source_y_fraction < 256);
+
+ if (source_y_fraction == 0) {
+ Convert16To8Row_C(src_ptr, dst_ptr, scale, width);
+ return;
+ }
+ if (source_y_fraction == 128) {
+ HalfRow_16To8_C(src_ptr, src_stride, dst_ptr, scale, width);
+ return;
+ }
+ for (x = 0; x < width; ++x) {
+ dst_ptr[0] = C16TO8(
+ (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8,
+ scale);
+ src_ptr += 1;
+ src_ptr1 += 1;
+ dst_ptr += 1;
}
}
@@ -2873,7 +3745,7 @@ void ARGBCopyYToAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) {
// Maximum temporary width for wrappers to process at a time, in pixels.
#define MAXTWIDTH 2048
-#if !(defined(_MSC_VER) && defined(_M_IX86)) && \
+#if !(defined(_MSC_VER) && !defined(__clang__) && defined(_M_IX86)) && \
defined(HAS_I422TORGB565ROW_SSSE3)
// row_win.cc has asm version, but GCC uses 2 step wrapper.
void I422ToRGB565Row_SSSE3(const uint8_t* src_y,
@@ -3175,12 +4047,93 @@ void NV12ToRGB565Row_AVX2(const uint8_t* src_y,
}
#endif
+#ifdef HAS_RGB24TOYJROW_AVX2
+// Convert 16 RGB24 pixels (64 bytes) to 16 YJ values.
+void RGB24ToYJRow_AVX2(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth);
+ ARGBToYJRow_AVX2(row, dst_yj, twidth);
+ src_rgb24 += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RGB24TOYJROW_AVX2
+
+#ifdef HAS_RAWTOYJROW_AVX2
+// Convert 16 RAW pixels (64 bytes) to 16 YJ values.
+void RAWToYJRow_AVX2(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RAWToARGBRow_SSSE3(src_raw, row, twidth);
+ ARGBToYJRow_AVX2(row, dst_yj, twidth);
+ src_raw += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RAWTOYJROW_AVX2
+
+#ifdef HAS_RGB24TOYJROW_SSSE3
+// Convert 16 RGB24 pixels (64 bytes) to 16 YJ values.
+void RGB24ToYJRow_SSSE3(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth);
+ ARGBToYJRow_SSSE3(row, dst_yj, twidth);
+ src_rgb24 += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RGB24TOYJROW_SSSE3
+
+#ifdef HAS_RAWTOYJROW_SSSE3
+// Convert 16 RAW pixels (64 bytes) to 16 YJ values.
+void RAWToYJRow_SSSE3(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RAWToARGBRow_SSSE3(src_raw, row, twidth);
+ ARGBToYJRow_SSSE3(row, dst_yj, twidth);
+ src_raw += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RAWTOYJROW_SSSE3
+
+#ifdef HAS_INTERPOLATEROW_16TO8_AVX2
+void InterpolateRow_16To8_AVX2(uint8_t* dst_ptr,
+ const uint16_t* src_ptr,
+ ptrdiff_t src_stride,
+ int scale,
+ int width,
+ int source_y_fraction) {
+ // Row buffer for intermediate 16 bit pixels.
+ SIMD_ALIGNED(uint16_t row[MAXTWIDTH]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ InterpolateRow_16_C(row, src_ptr, src_stride, twidth, source_y_fraction);
+ Convert16To8Row_AVX2(row, dst_ptr, scale, twidth);
+ src_ptr += twidth;
+ dst_ptr += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_INTERPOLATEROW_16TO8_AVX2
+
float ScaleSumSamples_C(const float* src, float* dst, float scale, int width) {
float fsum = 0.f;
int i;
-#if defined(__clang__)
-#pragma clang loop vectorize_width(4)
-#endif
for (i = 0; i < width; ++i) {
float v = *src++;
fsum += v * v;
@@ -3231,6 +4184,29 @@ void GaussCol_C(const uint16_t* src0,
}
}
+void GaussRow_F32_C(const float* src, float* dst, int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4]) *
+ (1.0f / 256.0f);
+ ++src;
+ }
+}
+
+// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
+void GaussCol_F32_C(const float* src0,
+ const float* src1,
+ const float* src2,
+ const float* src3,
+ const float* src4,
+ float* dst,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++;
+ }
+}
+
// Convert biplanar NV21 to packed YUV24
void NV21ToYUV24Row_C(const uint8_t* src_y,
const uint8_t* src_vu,
@@ -3256,13 +4232,14 @@ void NV21ToYUV24Row_C(const uint8_t* src_y,
}
// Filter 2 rows of AYUV UV's (444) into UV (420).
+// AYUV is VUYA in memory. UV for NV12 is UV order in memory.
void AYUVToUVRow_C(const uint8_t* src_ayuv,
int src_stride_ayuv,
uint8_t* dst_uv,
int width) {
// Output a row of UV values, filtering 2x2 rows of AYUV.
int x;
- for (x = 0; x < width; x += 2) {
+ for (x = 0; x < width - 1; x += 2) {
dst_uv[0] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] +
src_ayuv[src_stride_ayuv + 5] + 2) >>
2;
@@ -3273,12 +4250,8 @@ void AYUVToUVRow_C(const uint8_t* src_ayuv,
dst_uv += 2;
}
if (width & 1) {
- dst_uv[0] = (src_ayuv[0] + src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] +
- src_ayuv[src_stride_ayuv + 0] + 2) >>
- 2;
- dst_uv[1] = (src_ayuv[1] + src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] +
- src_ayuv[src_stride_ayuv + 1] + 2) >>
- 2;
+ dst_uv[0] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1;
+ dst_uv[1] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1;
}
}
@@ -3289,7 +4262,7 @@ void AYUVToVURow_C(const uint8_t* src_ayuv,
int width) {
// Output a row of VU values, filtering 2x2 rows of AYUV.
int x;
- for (x = 0; x < width; x += 2) {
+ for (x = 0; x < width - 1; x += 2) {
dst_vu[0] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] +
src_ayuv[src_stride_ayuv + 4] + 2) >>
2;
@@ -3300,12 +4273,8 @@ void AYUVToVURow_C(const uint8_t* src_ayuv,
dst_vu += 2;
}
if (width & 1) {
- dst_vu[0] = (src_ayuv[0] + src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] +
- src_ayuv[src_stride_ayuv + 0] + 2) >>
- 2;
- dst_vu[1] = (src_ayuv[1] + src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] +
- src_ayuv[src_stride_ayuv + 1] + 2) >>
- 2;
+ dst_vu[0] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1;
+ dst_vu[1] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1;
}
}
@@ -3319,7 +4288,8 @@ void AYUVToYRow_C(const uint8_t* src_ayuv, uint8_t* dst_y, int width) {
}
}
-void UVToVURow_C(const uint8_t* src_uv, uint8_t* dst_vu, int width) {
+// Convert UV plane of NV12 to VU of NV21.
+void SwapUVRow_C(const uint8_t* src_uv, uint8_t* dst_vu, int width) {
int x;
for (x = 0; x < width; ++x) {
uint8_t u = src_uv[0];
@@ -3331,16 +4301,27 @@ void UVToVURow_C(const uint8_t* src_uv, uint8_t* dst_vu, int width) {
}
}
-// divide values by weights and provide mask to indicate weight of 0.
-void FloatDivToByteRow_C(const float* src_weights,
- const float* src_values,
- uint8_t* dst_out,
- uint8_t* dst_mask,
- int width) {
+void HalfMergeUVRow_C(const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_uv,
+ int width) {
int x;
- for (x = 0; x < width; ++x) {
- dst_out[x] = Clamp(src_values[x] / src_weights[x]);
- dst_mask[x] = src_weights[x] > 0 ? 0 : 0xff;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_uv[0] = (src_u[0] + src_u[1] + src_u[src_stride_u] +
+ src_u[src_stride_u + 1] + 2) >>
+ 2;
+ dst_uv[1] = (src_v[0] + src_v[1] + src_v[src_stride_v] +
+ src_v[src_stride_v + 1] + 2) >>
+ 2;
+ src_u += 2;
+ src_v += 2;
+ dst_uv += 2;
+ }
+ if (width & 1) {
+ dst_uv[0] = (src_u[0] + src_u[src_stride_u] + 1) >> 1;
+ dst_uv[1] = (src_v[0] + src_v[src_stride_v] + 1) >> 1;
}
}