aboutsummaryrefslogtreecommitdiff
path: root/source/row_common.cc
diff options
context:
space:
mode:
Diffstat (limited to 'source/row_common.cc')
-rw-r--r--source/row_common.cc4547
1 files changed, 4547 insertions, 0 deletions
diff --git a/source/row_common.cc b/source/row_common.cc
new file mode 100644
index 00000000..8be37fb5
--- /dev/null
+++ b/source/row_common.cc
@@ -0,0 +1,4547 @@
+/*
+ * Copyright 2011 The LibYuv Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "libyuv/row.h"
+
+#include <assert.h>
+#include <string.h> // For memcpy and memset.
+
+#include "libyuv/basic_types.h"
+#include "libyuv/convert_argb.h" // For kYuvI601Constants
+
+#ifdef __cplusplus
+namespace libyuv {
+extern "C" {
+#endif
+
+#ifdef __cplusplus
+#define STATIC_CAST(type, expr) static_cast<type>(expr)
+#else
+#define STATIC_CAST(type, expr) (type)(expr)
+#endif
+
+// This macro controls YUV to RGB using unsigned math to extend range of
+// YUV to RGB coefficients to 0 to 4 instead of 0 to 2 for more accuracy on B:
+// LIBYUV_UNLIMITED_DATA
+
+// Macros to enable unlimited data for each colorspace
+// LIBYUV_UNLIMITED_BT601
+// LIBYUV_UNLIMITED_BT709
+// LIBYUV_UNLIMITED_BT2020
+
+// The following macro from row_win makes the C code match the row_win code,
+// which is 7 bit fixed point for ARGBToI420:
+#if !defined(LIBYUV_BIT_EXACT) && !defined(LIBYUV_DISABLE_X86) && \
+ defined(_MSC_VER) && !defined(__clang__) && \
+ (defined(_M_IX86) || defined(_M_X64))
+#define LIBYUV_RGB7 1
+#endif
+
+#if !defined(LIBYUV_BIT_EXACT) && (defined(__x86_64__) || defined(_M_X64) || \
+ defined(__i386__) || defined(_M_IX86))
+#define LIBYUV_ARGBTOUV_PAVGB 1
+#define LIBYUV_RGBTOU_TRUNCATE 1
+#define LIBYUV_ATTENUATE_DUP 1
+#endif
+#if defined(LIBYUV_BIT_EXACT)
+#define LIBYUV_UNATTENUATE_DUP 1
+#endif
+
+// llvm x86 is poor at ternary operator, so use branchless min/max.
+
+#define USE_BRANCHLESS 1
+#if USE_BRANCHLESS
+static __inline int32_t clamp0(int32_t v) {
+ return -(v >= 0) & v;
+}
+// TODO(fbarchard): make clamp255 preserve negative values.
+static __inline int32_t clamp255(int32_t v) {
+ return (-(v >= 255) | v) & 255;
+}
+
+static __inline int32_t clamp1023(int32_t v) {
+ return (-(v >= 1023) | v) & 1023;
+}
+
+// clamp to max
+static __inline int32_t ClampMax(int32_t v, int32_t max) {
+ return (-(v >= max) | v) & max;
+}
+
+static __inline uint32_t Abs(int32_t v) {
+ int m = -(v < 0);
+ return (v + m) ^ m;
+}
+#else // USE_BRANCHLESS
+static __inline int32_t clamp0(int32_t v) {
+ return (v < 0) ? 0 : v;
+}
+
+static __inline int32_t clamp255(int32_t v) {
+ return (v > 255) ? 255 : v;
+}
+
+static __inline int32_t clamp1023(int32_t v) {
+ return (v > 1023) ? 1023 : v;
+}
+
+static __inline int32_t ClampMax(int32_t v, int32_t max) {
+ return (v > max) ? max : v;
+}
+
+static __inline uint32_t Abs(int32_t v) {
+ return (v < 0) ? -v : v;
+}
+#endif // USE_BRANCHLESS
+static __inline uint32_t Clamp(int32_t val) {
+ int v = clamp0(val);
+ return (uint32_t)(clamp255(v));
+}
+
+static __inline uint32_t Clamp10(int32_t val) {
+ int v = clamp0(val);
+ return (uint32_t)(clamp1023(v));
+}
+
+// Little Endian
+#if defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || \
+ defined(_M_IX86) || defined(__arm__) || defined(_M_ARM) || \
+ (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#define WRITEWORD(p, v) *(uint32_t*)(p) = v
+#else
+static inline void WRITEWORD(uint8_t* p, uint32_t v) {
+ p[0] = (uint8_t)(v & 255);
+ p[1] = (uint8_t)((v >> 8) & 255);
+ p[2] = (uint8_t)((v >> 16) & 255);
+ p[3] = (uint8_t)((v >> 24) & 255);
+}
+#endif
+
+void RGB24ToARGBRow_C(const uint8_t* src_rgb24, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_rgb24[0];
+ uint8_t g = src_rgb24[1];
+ uint8_t r = src_rgb24[2];
+ dst_argb[0] = b;
+ dst_argb[1] = g;
+ dst_argb[2] = r;
+ dst_argb[3] = 255u;
+ dst_argb += 4;
+ src_rgb24 += 3;
+ }
+}
+
+void RAWToARGBRow_C(const uint8_t* src_raw, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t r = src_raw[0];
+ uint8_t g = src_raw[1];
+ uint8_t b = src_raw[2];
+ dst_argb[0] = b;
+ dst_argb[1] = g;
+ dst_argb[2] = r;
+ dst_argb[3] = 255u;
+ dst_argb += 4;
+ src_raw += 3;
+ }
+}
+
+void RAWToRGBARow_C(const uint8_t* src_raw, uint8_t* dst_rgba, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t r = src_raw[0];
+ uint8_t g = src_raw[1];
+ uint8_t b = src_raw[2];
+ dst_rgba[0] = 255u;
+ dst_rgba[1] = b;
+ dst_rgba[2] = g;
+ dst_rgba[3] = r;
+ dst_rgba += 4;
+ src_raw += 3;
+ }
+}
+
+void RAWToRGB24Row_C(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t r = src_raw[0];
+ uint8_t g = src_raw[1];
+ uint8_t b = src_raw[2];
+ dst_rgb24[0] = b;
+ dst_rgb24[1] = g;
+ dst_rgb24[2] = r;
+ dst_rgb24 += 3;
+ src_raw += 3;
+ }
+}
+
+void RGB565ToARGBRow_C(const uint8_t* src_rgb565,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f);
+ uint8_t g = STATIC_CAST(
+ uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
+ uint8_t r = STATIC_CAST(uint8_t, src_rgb565[1] >> 3);
+ dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
+ dst_argb[1] = STATIC_CAST(uint8_t, (g << 2) | (g >> 4));
+ dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
+ dst_argb[3] = 255u;
+ dst_argb += 4;
+ src_rgb565 += 2;
+ }
+}
+
+void ARGB1555ToARGBRow_C(const uint8_t* src_argb1555,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f);
+ uint8_t g = STATIC_CAST(
+ uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
+ uint8_t r = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2);
+ uint8_t a = STATIC_CAST(uint8_t, src_argb1555[1] >> 7);
+ dst_argb[0] = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
+ dst_argb[1] = STATIC_CAST(uint8_t, (g << 3) | (g >> 2));
+ dst_argb[2] = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
+ dst_argb[3] = -a;
+ dst_argb += 4;
+ src_argb1555 += 2;
+ }
+}
+
+void ARGB4444ToARGBRow_C(const uint8_t* src_argb4444,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = STATIC_CAST(uint8_t, src_argb4444[0] & 0x0f);
+ uint8_t g = STATIC_CAST(uint8_t, src_argb4444[0] >> 4);
+ uint8_t r = STATIC_CAST(uint8_t, src_argb4444[1] & 0x0f);
+ uint8_t a = STATIC_CAST(uint8_t, src_argb4444[1] >> 4);
+ dst_argb[0] = STATIC_CAST(uint8_t, (b << 4) | b);
+ dst_argb[1] = STATIC_CAST(uint8_t, (g << 4) | g);
+ dst_argb[2] = STATIC_CAST(uint8_t, (r << 4) | r);
+ dst_argb[3] = STATIC_CAST(uint8_t, (a << 4) | a);
+ dst_argb += 4;
+ src_argb4444 += 2;
+ }
+}
+
+void AR30ToARGBRow_C(const uint8_t* src_ar30, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint32_t ar30;
+ memcpy(&ar30, src_ar30, sizeof ar30);
+ uint32_t b = (ar30 >> 2) & 0xff;
+ uint32_t g = (ar30 >> 12) & 0xff;
+ uint32_t r = (ar30 >> 22) & 0xff;
+ uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits.
+ *(uint32_t*)(dst_argb) = b | (g << 8) | (r << 16) | (a << 24);
+ dst_argb += 4;
+ src_ar30 += 4;
+ }
+}
+
+void AR30ToABGRRow_C(const uint8_t* src_ar30, uint8_t* dst_abgr, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint32_t ar30;
+ memcpy(&ar30, src_ar30, sizeof ar30);
+ uint32_t b = (ar30 >> 2) & 0xff;
+ uint32_t g = (ar30 >> 12) & 0xff;
+ uint32_t r = (ar30 >> 22) & 0xff;
+ uint32_t a = (ar30 >> 30) * 0x55; // Replicate 2 bits to 8 bits.
+ *(uint32_t*)(dst_abgr) = r | (g << 8) | (b << 16) | (a << 24);
+ dst_abgr += 4;
+ src_ar30 += 4;
+ }
+}
+
+void AR30ToAB30Row_C(const uint8_t* src_ar30, uint8_t* dst_ab30, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint32_t ar30;
+ memcpy(&ar30, src_ar30, sizeof ar30);
+ uint32_t b = ar30 & 0x3ff;
+ uint32_t ga = ar30 & 0xc00ffc00;
+ uint32_t r = (ar30 >> 20) & 0x3ff;
+ *(uint32_t*)(dst_ab30) = r | ga | (b << 20);
+ dst_ab30 += 4;
+ src_ar30 += 4;
+ }
+}
+
+void ARGBToRGB24Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_argb[0];
+ uint8_t g = src_argb[1];
+ uint8_t r = src_argb[2];
+ dst_rgb[0] = b;
+ dst_rgb[1] = g;
+ dst_rgb[2] = r;
+ dst_rgb += 3;
+ src_argb += 4;
+ }
+}
+
+void ARGBToRAWRow_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_argb[0];
+ uint8_t g = src_argb[1];
+ uint8_t r = src_argb[2];
+ dst_rgb[0] = r;
+ dst_rgb[1] = g;
+ dst_rgb[2] = b;
+ dst_rgb += 3;
+ src_argb += 4;
+ }
+}
+
+void ARGBToRGB565Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint8_t b0 = src_argb[0] >> 3;
+ uint8_t g0 = src_argb[1] >> 2;
+ uint8_t r0 = src_argb[2] >> 3;
+ uint8_t b1 = src_argb[4] >> 3;
+ uint8_t g1 = src_argb[5] >> 2;
+ uint8_t r1 = src_argb[6] >> 3;
+ WRITEWORD(dst_rgb, b0 | (g0 << 5) | (r0 << 11) | (b1 << 16) | (g1 << 21) |
+ (r1 << 27));
+ dst_rgb += 4;
+ src_argb += 8;
+ }
+ if (width & 1) {
+ uint8_t b0 = src_argb[0] >> 3;
+ uint8_t g0 = src_argb[1] >> 2;
+ uint8_t r0 = src_argb[2] >> 3;
+ *(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
+ }
+}
+
+// dither4 is a row of 4 values from 4x4 dither matrix.
+// The 4x4 matrix contains values to increase RGB. When converting to
+// fewer bits (565) this provides an ordered dither.
+// The order in the 4x4 matrix in first byte is upper left.
+// The 4 values are passed as an int, then referenced as an array, so
+// endian will not affect order of the original matrix. But the dither4
+// will containing the first pixel in the lower byte for little endian
+// or the upper byte for big endian.
+void ARGBToRGB565DitherRow_C(const uint8_t* src_argb,
+ uint8_t* dst_rgb,
+ uint32_t dither4,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ int dither0 = ((const unsigned char*)(&dither4))[x & 3];
+ int dither1 = ((const unsigned char*)(&dither4))[(x + 1) & 3];
+ uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3);
+ uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2);
+ uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3);
+ uint8_t b1 = STATIC_CAST(uint8_t, clamp255(src_argb[4] + dither1) >> 3);
+ uint8_t g1 = STATIC_CAST(uint8_t, clamp255(src_argb[5] + dither1) >> 2);
+ uint8_t r1 = STATIC_CAST(uint8_t, clamp255(src_argb[6] + dither1) >> 3);
+ *(uint16_t*)(dst_rgb + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
+ *(uint16_t*)(dst_rgb + 2) =
+ STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11));
+ dst_rgb += 4;
+ src_argb += 8;
+ }
+ if (width & 1) {
+ int dither0 = ((const unsigned char*)(&dither4))[(width - 1) & 3];
+ uint8_t b0 = STATIC_CAST(uint8_t, clamp255(src_argb[0] + dither0) >> 3);
+ uint8_t g0 = STATIC_CAST(uint8_t, clamp255(src_argb[1] + dither0) >> 2);
+ uint8_t r0 = STATIC_CAST(uint8_t, clamp255(src_argb[2] + dither0) >> 3);
+ *(uint16_t*)(dst_rgb) = STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
+ }
+}
+
+void ARGBToARGB1555Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint8_t b0 = src_argb[0] >> 3;
+ uint8_t g0 = src_argb[1] >> 3;
+ uint8_t r0 = src_argb[2] >> 3;
+ uint8_t a0 = src_argb[3] >> 7;
+ uint8_t b1 = src_argb[4] >> 3;
+ uint8_t g1 = src_argb[5] >> 3;
+ uint8_t r1 = src_argb[6] >> 3;
+ uint8_t a1 = src_argb[7] >> 7;
+ *(uint16_t*)(dst_rgb + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15));
+ *(uint16_t*)(dst_rgb + 2) =
+ STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | (a1 << 15));
+ dst_rgb += 4;
+ src_argb += 8;
+ }
+ if (width & 1) {
+ uint8_t b0 = src_argb[0] >> 3;
+ uint8_t g0 = src_argb[1] >> 3;
+ uint8_t r0 = src_argb[2] >> 3;
+ uint8_t a0 = src_argb[3] >> 7;
+ *(uint16_t*)(dst_rgb) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | (a0 << 15));
+ }
+}
+
+void ARGBToARGB4444Row_C(const uint8_t* src_argb, uint8_t* dst_rgb, int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint8_t b0 = src_argb[0] >> 4;
+ uint8_t g0 = src_argb[1] >> 4;
+ uint8_t r0 = src_argb[2] >> 4;
+ uint8_t a0 = src_argb[3] >> 4;
+ uint8_t b1 = src_argb[4] >> 4;
+ uint8_t g1 = src_argb[5] >> 4;
+ uint8_t r1 = src_argb[6] >> 4;
+ uint8_t a1 = src_argb[7] >> 4;
+ *(uint16_t*)(dst_rgb + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12));
+ *(uint16_t*)(dst_rgb + 2) =
+ STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | (a1 << 12));
+ dst_rgb += 4;
+ src_argb += 8;
+ }
+ if (width & 1) {
+ uint8_t b0 = src_argb[0] >> 4;
+ uint8_t g0 = src_argb[1] >> 4;
+ uint8_t r0 = src_argb[2] >> 4;
+ uint8_t a0 = src_argb[3] >> 4;
+ *(uint16_t*)(dst_rgb) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | (a0 << 12));
+ }
+}
+
+void ABGRToAR30Row_C(const uint8_t* src_abgr, uint8_t* dst_ar30, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint32_t r0 = (src_abgr[0] >> 6) | ((uint32_t)(src_abgr[0]) << 2);
+ uint32_t g0 = (src_abgr[1] >> 6) | ((uint32_t)(src_abgr[1]) << 2);
+ uint32_t b0 = (src_abgr[2] >> 6) | ((uint32_t)(src_abgr[2]) << 2);
+ uint32_t a0 = (src_abgr[3] >> 6);
+ *(uint32_t*)(dst_ar30) =
+ STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30));
+ dst_ar30 += 4;
+ src_abgr += 4;
+ }
+}
+
+void ARGBToAR30Row_C(const uint8_t* src_argb, uint8_t* dst_ar30, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint32_t b0 = (src_argb[0] >> 6) | ((uint32_t)(src_argb[0]) << 2);
+ uint32_t g0 = (src_argb[1] >> 6) | ((uint32_t)(src_argb[1]) << 2);
+ uint32_t r0 = (src_argb[2] >> 6) | ((uint32_t)(src_argb[2]) << 2);
+ uint32_t a0 = (src_argb[3] >> 6);
+ *(uint32_t*)(dst_ar30) =
+ STATIC_CAST(uint32_t, b0 | (g0 << 10) | (r0 << 20) | (a0 << 30));
+ dst_ar30 += 4;
+ src_argb += 4;
+ }
+}
+
+void ARGBToAR64Row_C(const uint8_t* src_argb, uint16_t* dst_ar64, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint16_t b = src_argb[0] * 0x0101;
+ uint16_t g = src_argb[1] * 0x0101;
+ uint16_t r = src_argb[2] * 0x0101;
+ uint16_t a = src_argb[3] * 0x0101;
+ dst_ar64[0] = b;
+ dst_ar64[1] = g;
+ dst_ar64[2] = r;
+ dst_ar64[3] = a;
+ dst_ar64 += 4;
+ src_argb += 4;
+ }
+}
+
+void ARGBToAB64Row_C(const uint8_t* src_argb, uint16_t* dst_ab64, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint16_t b = src_argb[0] * 0x0101;
+ uint16_t g = src_argb[1] * 0x0101;
+ uint16_t r = src_argb[2] * 0x0101;
+ uint16_t a = src_argb[3] * 0x0101;
+ dst_ab64[0] = r;
+ dst_ab64[1] = g;
+ dst_ab64[2] = b;
+ dst_ab64[3] = a;
+ dst_ab64 += 4;
+ src_argb += 4;
+ }
+}
+
+void AR64ToARGBRow_C(const uint16_t* src_ar64, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_ar64[0] >> 8;
+ uint8_t g = src_ar64[1] >> 8;
+ uint8_t r = src_ar64[2] >> 8;
+ uint8_t a = src_ar64[3] >> 8;
+ dst_argb[0] = b;
+ dst_argb[1] = g;
+ dst_argb[2] = r;
+ dst_argb[3] = a;
+ dst_argb += 4;
+ src_ar64 += 4;
+ }
+}
+
+void AB64ToARGBRow_C(const uint16_t* src_ab64, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t r = src_ab64[0] >> 8;
+ uint8_t g = src_ab64[1] >> 8;
+ uint8_t b = src_ab64[2] >> 8;
+ uint8_t a = src_ab64[3] >> 8;
+ dst_argb[0] = b;
+ dst_argb[1] = g;
+ dst_argb[2] = r;
+ dst_argb[3] = a;
+ dst_argb += 4;
+ src_ab64 += 4;
+ }
+}
+
+// TODO(fbarchard): Make shuffle compatible with SIMD versions
+void AR64ShuffleRow_C(const uint8_t* src_ar64,
+ uint8_t* dst_ar64,
+ const uint8_t* shuffler,
+ int width) {
+ const uint16_t* src_ar64_16 = (const uint16_t*)src_ar64;
+ uint16_t* dst_ar64_16 = (uint16_t*)dst_ar64;
+ int index0 = shuffler[0] / 2;
+ int index1 = shuffler[2] / 2;
+ int index2 = shuffler[4] / 2;
+ int index3 = shuffler[6] / 2;
+ // Shuffle a row of AR64.
+ int x;
+ for (x = 0; x < width / 2; ++x) {
+ // To support in-place conversion.
+ uint16_t b = src_ar64_16[index0];
+ uint16_t g = src_ar64_16[index1];
+ uint16_t r = src_ar64_16[index2];
+ uint16_t a = src_ar64_16[index3];
+ dst_ar64_16[0] = b;
+ dst_ar64_16[1] = g;
+ dst_ar64_16[2] = r;
+ dst_ar64_16[3] = a;
+ src_ar64_16 += 4;
+ dst_ar64_16 += 4;
+ }
+}
+
+#ifdef LIBYUV_RGB7
+// Old 7 bit math for compatibility on unsupported platforms.
+static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) {
+ return STATIC_CAST(uint8_t, ((33 * r + 65 * g + 13 * b) >> 7) + 16);
+}
+#else
+// 8 bit
+// Intel SSE/AVX uses the following equivalent formula
+// 0x7e80 = (66 + 129 + 25) * -128 + 0x1000 (for +16) and 0x0080 for round.
+// return (66 * ((int)r - 128) + 129 * ((int)g - 128) + 25 * ((int)b - 128) +
+// 0x7e80) >> 8;
+
+static __inline uint8_t RGBToY(uint8_t r, uint8_t g, uint8_t b) {
+ return STATIC_CAST(uint8_t, (66 * r + 129 * g + 25 * b + 0x1080) >> 8);
+}
+#endif
+
+#define AVGB(a, b) (((a) + (b) + 1) >> 1)
+
+// LIBYUV_RGBTOU_TRUNCATE mimics x86 code that does not round.
+#ifdef LIBYUV_RGBTOU_TRUNCATE
+static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) {
+ return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8000) >> 8);
+}
+static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) {
+ return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8000) >> 8);
+}
+#else
+// TODO(fbarchard): Add rounding to x86 SIMD and use this
+static __inline uint8_t RGBToU(uint8_t r, uint8_t g, uint8_t b) {
+ return STATIC_CAST(uint8_t, (112 * b - 74 * g - 38 * r + 0x8080) >> 8);
+}
+static __inline uint8_t RGBToV(uint8_t r, uint8_t g, uint8_t b) {
+ return STATIC_CAST(uint8_t, (112 * r - 94 * g - 18 * b + 0x8080) >> 8);
+}
+#endif
+
+// LIBYUV_ARGBTOUV_PAVGB mimics x86 code that subsamples with 2 pavgb.
+#if !defined(LIBYUV_ARGBTOUV_PAVGB)
+static __inline int RGB2xToU(uint16_t r, uint16_t g, uint16_t b) {
+ return STATIC_CAST(
+ uint8_t, ((112 / 2) * b - (74 / 2) * g - (38 / 2) * r + 0x8080) >> 8);
+}
+static __inline int RGB2xToV(uint16_t r, uint16_t g, uint16_t b) {
+ return STATIC_CAST(
+ uint8_t, ((112 / 2) * r - (94 / 2) * g - (18 / 2) * b + 0x8080) >> 8);
+}
+#endif
+
+// ARGBToY_C and ARGBToUV_C
+// Intel version mimic SSE/AVX which does 2 pavgb
+#if LIBYUV_ARGBTOUV_PAVGB
+#define MAKEROWY(NAME, R, G, B, BPP) \
+ void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \
+ AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \
+ uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \
+ AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \
+ uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \
+ AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \
+ dst_u[0] = RGBToU(ar, ag, ab); \
+ dst_v[0] = RGBToV(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \
+ uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \
+ uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \
+ dst_u[0] = RGBToU(ar, ag, ab); \
+ dst_v[0] = RGBToV(ar, ag, ab); \
+ } \
+ }
+#else
+// ARM version does sum / 2 then multiply by 2x smaller coefficients
+#define MAKEROWY(NAME, R, G, B, BPP) \
+ void NAME##ToYRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToY(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \
+ src_rgb1[B + BPP] + 1) >> \
+ 1; \
+ uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \
+ src_rgb1[G + BPP] + 1) >> \
+ 1; \
+ uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \
+ src_rgb1[R + BPP] + 1) >> \
+ 1; \
+ dst_u[0] = RGB2xToU(ar, ag, ab); \
+ dst_v[0] = RGB2xToV(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint16_t ab = src_rgb[B] + src_rgb1[B]; \
+ uint16_t ag = src_rgb[G] + src_rgb1[G]; \
+ uint16_t ar = src_rgb[R] + src_rgb1[R]; \
+ dst_u[0] = RGB2xToU(ar, ag, ab); \
+ dst_v[0] = RGB2xToV(ar, ag, ab); \
+ } \
+ }
+#endif
+
+MAKEROWY(ARGB, 2, 1, 0, 4)
+MAKEROWY(BGRA, 1, 2, 3, 4)
+MAKEROWY(ABGR, 0, 1, 2, 4)
+MAKEROWY(RGBA, 3, 2, 1, 4)
+MAKEROWY(RGB24, 2, 1, 0, 3)
+MAKEROWY(RAW, 0, 1, 2, 3)
+#undef MAKEROWY
+
+// JPeg uses a variation on BT.601-1 full range
+// y = 0.29900 * r + 0.58700 * g + 0.11400 * b
+// u = -0.16874 * r - 0.33126 * g + 0.50000 * b + center
+// v = 0.50000 * r - 0.41869 * g - 0.08131 * b + center
+// BT.601 Mpeg range uses:
+// b 0.1016 * 255 = 25.908 = 25
+// g 0.5078 * 255 = 129.489 = 129
+// r 0.2578 * 255 = 65.739 = 66
+// JPeg 7 bit Y (deprecated)
+// b 0.11400 * 128 = 14.592 = 15
+// g 0.58700 * 128 = 75.136 = 75
+// r 0.29900 * 128 = 38.272 = 38
+// JPeg 8 bit Y:
+// b 0.11400 * 256 = 29.184 = 29
+// g 0.58700 * 256 = 150.272 = 150
+// r 0.29900 * 256 = 76.544 = 77
+// JPeg 8 bit U:
+// b 0.50000 * 255 = 127.5 = 127
+// g -0.33126 * 255 = -84.4713 = -84
+// r -0.16874 * 255 = -43.0287 = -43
+// JPeg 8 bit V:
+// b -0.08131 * 255 = -20.73405 = -20
+// g -0.41869 * 255 = -106.76595 = -107
+// r 0.50000 * 255 = 127.5 = 127
+
+#ifdef LIBYUV_RGB7
+// Old 7 bit math for compatibility on unsupported platforms.
+static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) {
+ return (38 * r + 75 * g + 15 * b + 64) >> 7;
+}
+#else
+// 8 bit
+static __inline uint8_t RGBToYJ(uint8_t r, uint8_t g, uint8_t b) {
+ return (77 * r + 150 * g + 29 * b + 128) >> 8;
+}
+#endif
+
+#if defined(LIBYUV_ARGBTOUV_PAVGB)
+static __inline uint8_t RGBToUJ(uint8_t r, uint8_t g, uint8_t b) {
+ return (127 * b - 84 * g - 43 * r + 0x8080) >> 8;
+}
+static __inline uint8_t RGBToVJ(uint8_t r, uint8_t g, uint8_t b) {
+ return (127 * r - 107 * g - 20 * b + 0x8080) >> 8;
+}
+#else
+static __inline uint8_t RGB2xToUJ(uint16_t r, uint16_t g, uint16_t b) {
+ return ((127 / 2) * b - (84 / 2) * g - (43 / 2) * r + 0x8080) >> 8;
+}
+static __inline uint8_t RGB2xToVJ(uint16_t r, uint16_t g, uint16_t b) {
+ return ((127 / 2) * r - (107 / 2) * g - (20 / 2) * b + 0x8080) >> 8;
+}
+#endif
+
+// ARGBToYJ_C and ARGBToUVJ_C
+// Intel version mimic SSE/AVX which does 2 pavgb
+#if LIBYUV_ARGBTOUV_PAVGB
+#define MAKEROWYJ(NAME, R, G, B, BPP) \
+ void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint8_t ab = AVGB(AVGB(src_rgb[B], src_rgb1[B]), \
+ AVGB(src_rgb[B + BPP], src_rgb1[B + BPP])); \
+ uint8_t ag = AVGB(AVGB(src_rgb[G], src_rgb1[G]), \
+ AVGB(src_rgb[G + BPP], src_rgb1[G + BPP])); \
+ uint8_t ar = AVGB(AVGB(src_rgb[R], src_rgb1[R]), \
+ AVGB(src_rgb[R + BPP], src_rgb1[R + BPP])); \
+ dst_u[0] = RGBToUJ(ar, ag, ab); \
+ dst_v[0] = RGBToVJ(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint8_t ab = AVGB(src_rgb[B], src_rgb1[B]); \
+ uint8_t ag = AVGB(src_rgb[G], src_rgb1[G]); \
+ uint8_t ar = AVGB(src_rgb[R], src_rgb1[R]); \
+ dst_u[0] = RGBToUJ(ar, ag, ab); \
+ dst_v[0] = RGBToVJ(ar, ag, ab); \
+ } \
+ }
+#else
+// ARM version does sum / 2 then multiply by 2x smaller coefficients
+#define MAKEROWYJ(NAME, R, G, B, BPP) \
+ void NAME##ToYJRow_C(const uint8_t* src_rgb, uint8_t* dst_y, int width) { \
+ int x; \
+ for (x = 0; x < width; ++x) { \
+ dst_y[0] = RGBToYJ(src_rgb[R], src_rgb[G], src_rgb[B]); \
+ src_rgb += BPP; \
+ dst_y += 1; \
+ } \
+ } \
+ void NAME##ToUVJRow_C(const uint8_t* src_rgb, int src_stride_rgb, \
+ uint8_t* dst_u, uint8_t* dst_v, int width) { \
+ const uint8_t* src_rgb1 = src_rgb + src_stride_rgb; \
+ int x; \
+ for (x = 0; x < width - 1; x += 2) { \
+ uint16_t ab = (src_rgb[B] + src_rgb[B + BPP] + src_rgb1[B] + \
+ src_rgb1[B + BPP] + 1) >> \
+ 1; \
+ uint16_t ag = (src_rgb[G] + src_rgb[G + BPP] + src_rgb1[G] + \
+ src_rgb1[G + BPP] + 1) >> \
+ 1; \
+ uint16_t ar = (src_rgb[R] + src_rgb[R + BPP] + src_rgb1[R] + \
+ src_rgb1[R + BPP] + 1) >> \
+ 1; \
+ dst_u[0] = RGB2xToUJ(ar, ag, ab); \
+ dst_v[0] = RGB2xToVJ(ar, ag, ab); \
+ src_rgb += BPP * 2; \
+ src_rgb1 += BPP * 2; \
+ dst_u += 1; \
+ dst_v += 1; \
+ } \
+ if (width & 1) { \
+ uint16_t ab = (src_rgb[B] + src_rgb1[B]); \
+ uint16_t ag = (src_rgb[G] + src_rgb1[G]); \
+ uint16_t ar = (src_rgb[R] + src_rgb1[R]); \
+ dst_u[0] = RGB2xToUJ(ar, ag, ab); \
+ dst_v[0] = RGB2xToVJ(ar, ag, ab); \
+ } \
+ }
+
+#endif
+
+MAKEROWYJ(ARGB, 2, 1, 0, 4)
+MAKEROWYJ(ABGR, 0, 1, 2, 4)
+MAKEROWYJ(RGBA, 3, 2, 1, 4)
+MAKEROWYJ(RGB24, 2, 1, 0, 3)
+MAKEROWYJ(RAW, 0, 1, 2, 3)
+#undef MAKEROWYJ
+
+void RGB565ToYRow_C(const uint8_t* src_rgb565, uint8_t* dst_y, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_rgb565[0] & 0x1f;
+ uint8_t g = STATIC_CAST(
+ uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
+ uint8_t r = src_rgb565[1] >> 3;
+ b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
+ g = STATIC_CAST(uint8_t, (g << 2) | (g >> 4));
+ r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
+ dst_y[0] = RGBToY(r, g, b);
+ src_rgb565 += 2;
+ dst_y += 1;
+ }
+}
+
+void ARGB1555ToYRow_C(const uint8_t* src_argb1555, uint8_t* dst_y, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_argb1555[0] & 0x1f;
+ uint8_t g = STATIC_CAST(
+ uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
+ uint8_t r = (src_argb1555[1] & 0x7c) >> 2;
+ b = STATIC_CAST(uint8_t, (b << 3) | (b >> 2));
+ g = STATIC_CAST(uint8_t, (g << 3) | (g >> 2));
+ r = STATIC_CAST(uint8_t, (r << 3) | (r >> 2));
+ dst_y[0] = RGBToY(r, g, b);
+ src_argb1555 += 2;
+ dst_y += 1;
+ }
+}
+
+void ARGB4444ToYRow_C(const uint8_t* src_argb4444, uint8_t* dst_y, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_argb4444[0] & 0x0f;
+ uint8_t g = src_argb4444[0] >> 4;
+ uint8_t r = src_argb4444[1] & 0x0f;
+ b = STATIC_CAST(uint8_t, (b << 4) | b);
+ g = STATIC_CAST(uint8_t, (g << 4) | g);
+ r = STATIC_CAST(uint8_t, (r << 4) | r);
+ dst_y[0] = RGBToY(r, g, b);
+ src_argb4444 += 2;
+ dst_y += 1;
+ }
+}
+
+void RGB565ToUVRow_C(const uint8_t* src_rgb565,
+ int src_stride_rgb565,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ const uint8_t* next_rgb565 = src_rgb565 + src_stride_rgb565;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f);
+ uint8_t g0 = STATIC_CAST(
+ uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
+ uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3);
+ uint8_t b1 = STATIC_CAST(uint8_t, src_rgb565[2] & 0x1f);
+ uint8_t g1 = STATIC_CAST(
+ uint8_t, (src_rgb565[2] >> 5) | ((src_rgb565[3] & 0x07) << 3));
+ uint8_t r1 = STATIC_CAST(uint8_t, src_rgb565[3] >> 3);
+ uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f);
+ uint8_t g2 = STATIC_CAST(
+ uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3));
+ uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3);
+ uint8_t b3 = STATIC_CAST(uint8_t, next_rgb565[2] & 0x1f);
+ uint8_t g3 = STATIC_CAST(
+ uint8_t, (next_rgb565[2] >> 5) | ((next_rgb565[3] & 0x07) << 3));
+ uint8_t r3 = STATIC_CAST(uint8_t, next_rgb565[3] >> 3);
+
+ b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
+ g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4));
+ r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
+ b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2));
+ g1 = STATIC_CAST(uint8_t, (g1 << 2) | (g1 >> 4));
+ r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2));
+ b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
+ g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4));
+ r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
+ b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2));
+ g3 = STATIC_CAST(uint8_t, (g3 << 2) | (g3 >> 4));
+ r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2));
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3));
+ uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3));
+ uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3));
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1;
+ uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1;
+ uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+
+ src_rgb565 += 4;
+ next_rgb565 += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+ if (width & 1) {
+ uint8_t b0 = STATIC_CAST(uint8_t, src_rgb565[0] & 0x1f);
+ uint8_t g0 = STATIC_CAST(
+ uint8_t, (src_rgb565[0] >> 5) | ((src_rgb565[1] & 0x07) << 3));
+ uint8_t r0 = STATIC_CAST(uint8_t, src_rgb565[1] >> 3);
+ uint8_t b2 = STATIC_CAST(uint8_t, next_rgb565[0] & 0x1f);
+ uint8_t g2 = STATIC_CAST(
+ uint8_t, (next_rgb565[0] >> 5) | ((next_rgb565[1] & 0x07) << 3));
+ uint8_t r2 = STATIC_CAST(uint8_t, next_rgb565[1] >> 3);
+ b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
+ g0 = STATIC_CAST(uint8_t, (g0 << 2) | (g0 >> 4));
+ r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
+ b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
+ g2 = STATIC_CAST(uint8_t, (g2 << 2) | (g2 >> 4));
+ r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(b0, b2);
+ uint8_t ag = AVGB(g0, g2);
+ uint8_t ar = AVGB(r0, r2);
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = b0 + b2;
+ uint16_t g = g0 + g2;
+ uint16_t r = r0 + r2;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+ }
+}
+
+void ARGB1555ToUVRow_C(const uint8_t* src_argb1555,
+ int src_stride_argb1555,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ const uint8_t* next_argb1555 = src_argb1555 + src_stride_argb1555;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f);
+ uint8_t g0 = STATIC_CAST(
+ uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
+ uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2);
+ uint8_t b1 = STATIC_CAST(uint8_t, src_argb1555[2] & 0x1f);
+ uint8_t g1 = STATIC_CAST(
+ uint8_t, (src_argb1555[2] >> 5) | ((src_argb1555[3] & 0x03) << 3));
+ uint8_t r1 = STATIC_CAST(uint8_t, (src_argb1555[3] & 0x7c) >> 2);
+ uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f);
+ uint8_t g2 = STATIC_CAST(
+ uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3));
+ uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2);
+ uint8_t b3 = STATIC_CAST(uint8_t, next_argb1555[2] & 0x1f);
+ uint8_t g3 = STATIC_CAST(
+ uint8_t, (next_argb1555[2] >> 5) | ((next_argb1555[3] & 0x03) << 3));
+ uint8_t r3 = STATIC_CAST(uint8_t, (next_argb1555[3] & 0x7c) >> 2);
+
+ b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
+ g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2));
+ r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
+ b1 = STATIC_CAST(uint8_t, (b1 << 3) | (b1 >> 2));
+ g1 = STATIC_CAST(uint8_t, (g1 << 3) | (g1 >> 2));
+ r1 = STATIC_CAST(uint8_t, (r1 << 3) | (r1 >> 2));
+ b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
+ g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2));
+ r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
+ b3 = STATIC_CAST(uint8_t, (b3 << 3) | (b3 >> 2));
+ g3 = STATIC_CAST(uint8_t, (g3 << 3) | (g3 >> 2));
+ r3 = STATIC_CAST(uint8_t, (r3 << 3) | (r3 >> 2));
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3));
+ uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3));
+ uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3));
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1;
+ uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1;
+ uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+
+ src_argb1555 += 4;
+ next_argb1555 += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+ if (width & 1) {
+ uint8_t b0 = STATIC_CAST(uint8_t, src_argb1555[0] & 0x1f);
+ uint8_t g0 = STATIC_CAST(
+ uint8_t, (src_argb1555[0] >> 5) | ((src_argb1555[1] & 0x03) << 3));
+ uint8_t r0 = STATIC_CAST(uint8_t, (src_argb1555[1] & 0x7c) >> 2);
+ uint8_t b2 = STATIC_CAST(uint8_t, next_argb1555[0] & 0x1f);
+ uint8_t g2 = STATIC_CAST(
+ uint8_t, (next_argb1555[0] >> 5) | ((next_argb1555[1] & 0x03) << 3));
+ uint8_t r2 = STATIC_CAST(uint8_t, (next_argb1555[1] & 0x7c) >> 2);
+
+ b0 = STATIC_CAST(uint8_t, (b0 << 3) | (b0 >> 2));
+ g0 = STATIC_CAST(uint8_t, (g0 << 3) | (g0 >> 2));
+ r0 = STATIC_CAST(uint8_t, (r0 << 3) | (r0 >> 2));
+ b2 = STATIC_CAST(uint8_t, (b2 << 3) | (b2 >> 2));
+ g2 = STATIC_CAST(uint8_t, (g2 << 3) | (g2 >> 2));
+ r2 = STATIC_CAST(uint8_t, (r2 << 3) | (r2 >> 2));
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(b0, b2);
+ uint8_t ag = AVGB(g0, g2);
+ uint8_t ar = AVGB(r0, r2);
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = b0 + b2;
+ uint16_t g = g0 + g2;
+ uint16_t r = r0 + r2;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+ }
+}
+
+void ARGB4444ToUVRow_C(const uint8_t* src_argb4444,
+ int src_stride_argb4444,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ const uint8_t* next_argb4444 = src_argb4444 + src_stride_argb4444;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint8_t b0 = src_argb4444[0] & 0x0f;
+ uint8_t g0 = src_argb4444[0] >> 4;
+ uint8_t r0 = src_argb4444[1] & 0x0f;
+ uint8_t b1 = src_argb4444[2] & 0x0f;
+ uint8_t g1 = src_argb4444[2] >> 4;
+ uint8_t r1 = src_argb4444[3] & 0x0f;
+ uint8_t b2 = next_argb4444[0] & 0x0f;
+ uint8_t g2 = next_argb4444[0] >> 4;
+ uint8_t r2 = next_argb4444[1] & 0x0f;
+ uint8_t b3 = next_argb4444[2] & 0x0f;
+ uint8_t g3 = next_argb4444[2] >> 4;
+ uint8_t r3 = next_argb4444[3] & 0x0f;
+
+ b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0);
+ g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0);
+ r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0);
+ b1 = STATIC_CAST(uint8_t, (b1 << 4) | b1);
+ g1 = STATIC_CAST(uint8_t, (g1 << 4) | g1);
+ r1 = STATIC_CAST(uint8_t, (r1 << 4) | r1);
+ b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2);
+ g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2);
+ r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2);
+ b3 = STATIC_CAST(uint8_t, (b3 << 4) | b3);
+ g3 = STATIC_CAST(uint8_t, (g3 << 4) | g3);
+ r3 = STATIC_CAST(uint8_t, (r3 << 4) | r3);
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(AVGB(b0, b2), AVGB(b1, b3));
+ uint8_t ag = AVGB(AVGB(g0, g2), AVGB(g1, g3));
+ uint8_t ar = AVGB(AVGB(r0, r2), AVGB(r1, r3));
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = (b0 + b1 + b2 + b3 + 1) >> 1;
+ uint16_t g = (g0 + g1 + g2 + g3 + 1) >> 1;
+ uint16_t r = (r0 + r1 + r2 + r3 + 1) >> 1;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+
+ src_argb4444 += 4;
+ next_argb4444 += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+ if (width & 1) {
+ uint8_t b0 = src_argb4444[0] & 0x0f;
+ uint8_t g0 = src_argb4444[0] >> 4;
+ uint8_t r0 = src_argb4444[1] & 0x0f;
+ uint8_t b2 = next_argb4444[0] & 0x0f;
+ uint8_t g2 = next_argb4444[0] >> 4;
+ uint8_t r2 = next_argb4444[1] & 0x0f;
+
+ b0 = STATIC_CAST(uint8_t, (b0 << 4) | b0);
+ g0 = STATIC_CAST(uint8_t, (g0 << 4) | g0);
+ r0 = STATIC_CAST(uint8_t, (r0 << 4) | r0);
+ b2 = STATIC_CAST(uint8_t, (b2 << 4) | b2);
+ g2 = STATIC_CAST(uint8_t, (g2 << 4) | g2);
+ r2 = STATIC_CAST(uint8_t, (r2 << 4) | r2);
+
+#if LIBYUV_ARGBTOUV_PAVGB
+ uint8_t ab = AVGB(b0, b2);
+ uint8_t ag = AVGB(g0, g2);
+ uint8_t ar = AVGB(r0, r2);
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+#else
+ uint16_t b = b0 + b2;
+ uint16_t g = g0 + g2;
+ uint16_t r = r0 + r2;
+ dst_u[0] = RGB2xToU(r, g, b);
+ dst_v[0] = RGB2xToV(r, g, b);
+#endif
+ }
+}
+
+void ARGBToUV444Row_C(const uint8_t* src_argb,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t ab = src_argb[0];
+ uint8_t ag = src_argb[1];
+ uint8_t ar = src_argb[2];
+ dst_u[0] = RGBToU(ar, ag, ab);
+ dst_v[0] = RGBToV(ar, ag, ab);
+ src_argb += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+}
+
+void ARGBGrayRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t y = RGBToYJ(src_argb[2], src_argb[1], src_argb[0]);
+ dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
+ dst_argb[3] = src_argb[3];
+ dst_argb += 4;
+ src_argb += 4;
+ }
+}
+
+// Convert a row of image to Sepia tone.
+void ARGBSepiaRow_C(uint8_t* dst_argb, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ int b = dst_argb[0];
+ int g = dst_argb[1];
+ int r = dst_argb[2];
+ int sb = (b * 17 + g * 68 + r * 35) >> 7;
+ int sg = (b * 22 + g * 88 + r * 45) >> 7;
+ int sr = (b * 24 + g * 98 + r * 50) >> 7;
+ // b does not over flow. a is preserved from original.
+ dst_argb[0] = STATIC_CAST(uint8_t, sb);
+ dst_argb[1] = STATIC_CAST(uint8_t, clamp255(sg));
+ dst_argb[2] = STATIC_CAST(uint8_t, clamp255(sr));
+ dst_argb += 4;
+ }
+}
+
+// Apply color matrix to a row of image. Matrix is signed.
+// TODO(fbarchard): Consider adding rounding (+32).
+void ARGBColorMatrixRow_C(const uint8_t* src_argb,
+ uint8_t* dst_argb,
+ const int8_t* matrix_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ int b = src_argb[0];
+ int g = src_argb[1];
+ int r = src_argb[2];
+ int a = src_argb[3];
+ int sb = (b * matrix_argb[0] + g * matrix_argb[1] + r * matrix_argb[2] +
+ a * matrix_argb[3]) >>
+ 6;
+ int sg = (b * matrix_argb[4] + g * matrix_argb[5] + r * matrix_argb[6] +
+ a * matrix_argb[7]) >>
+ 6;
+ int sr = (b * matrix_argb[8] + g * matrix_argb[9] + r * matrix_argb[10] +
+ a * matrix_argb[11]) >>
+ 6;
+ int sa = (b * matrix_argb[12] + g * matrix_argb[13] + r * matrix_argb[14] +
+ a * matrix_argb[15]) >>
+ 6;
+ dst_argb[0] = STATIC_CAST(uint8_t, Clamp(sb));
+ dst_argb[1] = STATIC_CAST(uint8_t, Clamp(sg));
+ dst_argb[2] = STATIC_CAST(uint8_t, Clamp(sr));
+ dst_argb[3] = STATIC_CAST(uint8_t, Clamp(sa));
+ src_argb += 4;
+ dst_argb += 4;
+ }
+}
+
+// Apply color table to a row of image.
+void ARGBColorTableRow_C(uint8_t* dst_argb,
+ const uint8_t* table_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ int b = dst_argb[0];
+ int g = dst_argb[1];
+ int r = dst_argb[2];
+ int a = dst_argb[3];
+ dst_argb[0] = table_argb[b * 4 + 0];
+ dst_argb[1] = table_argb[g * 4 + 1];
+ dst_argb[2] = table_argb[r * 4 + 2];
+ dst_argb[3] = table_argb[a * 4 + 3];
+ dst_argb += 4;
+ }
+}
+
+// Apply color table to a row of image.
+void RGBColorTableRow_C(uint8_t* dst_argb,
+ const uint8_t* table_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ int b = dst_argb[0];
+ int g = dst_argb[1];
+ int r = dst_argb[2];
+ dst_argb[0] = table_argb[b * 4 + 0];
+ dst_argb[1] = table_argb[g * 4 + 1];
+ dst_argb[2] = table_argb[r * 4 + 2];
+ dst_argb += 4;
+ }
+}
+
+void ARGBQuantizeRow_C(uint8_t* dst_argb,
+ int scale,
+ int interval_size,
+ int interval_offset,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ int b = dst_argb[0];
+ int g = dst_argb[1];
+ int r = dst_argb[2];
+ dst_argb[0] = STATIC_CAST(
+ uint8_t, (b * scale >> 16) * interval_size + interval_offset);
+ dst_argb[1] = STATIC_CAST(
+ uint8_t, (g * scale >> 16) * interval_size + interval_offset);
+ dst_argb[2] = STATIC_CAST(
+ uint8_t, (r * scale >> 16) * interval_size + interval_offset);
+ dst_argb += 4;
+ }
+}
+
+#define REPEAT8(v) (v) | ((v) << 8)
+#define SHADE(f, v) v* f >> 24
+
+void ARGBShadeRow_C(const uint8_t* src_argb,
+ uint8_t* dst_argb,
+ int width,
+ uint32_t value) {
+ const uint32_t b_scale = REPEAT8(value & 0xff);
+ const uint32_t g_scale = REPEAT8((value >> 8) & 0xff);
+ const uint32_t r_scale = REPEAT8((value >> 16) & 0xff);
+ const uint32_t a_scale = REPEAT8(value >> 24);
+
+ int i;
+ for (i = 0; i < width; ++i) {
+ const uint32_t b = REPEAT8(src_argb[0]);
+ const uint32_t g = REPEAT8(src_argb[1]);
+ const uint32_t r = REPEAT8(src_argb[2]);
+ const uint32_t a = REPEAT8(src_argb[3]);
+ dst_argb[0] = SHADE(b, b_scale);
+ dst_argb[1] = SHADE(g, g_scale);
+ dst_argb[2] = SHADE(r, r_scale);
+ dst_argb[3] = SHADE(a, a_scale);
+ src_argb += 4;
+ dst_argb += 4;
+ }
+}
+#undef REPEAT8
+#undef SHADE
+
+#define REPEAT8(v) (v) | ((v) << 8)
+#define SHADE(f, v) v* f >> 16
+
+void ARGBMultiplyRow_C(const uint8_t* src_argb,
+ const uint8_t* src_argb1,
+ uint8_t* dst_argb,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ const uint32_t b = REPEAT8(src_argb[0]);
+ const uint32_t g = REPEAT8(src_argb[1]);
+ const uint32_t r = REPEAT8(src_argb[2]);
+ const uint32_t a = REPEAT8(src_argb[3]);
+ const uint32_t b_scale = src_argb1[0];
+ const uint32_t g_scale = src_argb1[1];
+ const uint32_t r_scale = src_argb1[2];
+ const uint32_t a_scale = src_argb1[3];
+ dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_scale));
+ dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_scale));
+ dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_scale));
+ dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_scale));
+ src_argb += 4;
+ src_argb1 += 4;
+ dst_argb += 4;
+ }
+}
+#undef REPEAT8
+#undef SHADE
+
+#define SHADE(f, v) clamp255(v + f)
+
+void ARGBAddRow_C(const uint8_t* src_argb,
+ const uint8_t* src_argb1,
+ uint8_t* dst_argb,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ const int b = src_argb[0];
+ const int g = src_argb[1];
+ const int r = src_argb[2];
+ const int a = src_argb[3];
+ const int b_add = src_argb1[0];
+ const int g_add = src_argb1[1];
+ const int r_add = src_argb1[2];
+ const int a_add = src_argb1[3];
+ dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_add));
+ dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_add));
+ dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_add));
+ dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_add));
+ src_argb += 4;
+ src_argb1 += 4;
+ dst_argb += 4;
+ }
+}
+#undef SHADE
+
+#define SHADE(f, v) clamp0(f - v)
+
+void ARGBSubtractRow_C(const uint8_t* src_argb,
+ const uint8_t* src_argb1,
+ uint8_t* dst_argb,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ const int b = src_argb[0];
+ const int g = src_argb[1];
+ const int r = src_argb[2];
+ const int a = src_argb[3];
+ const int b_sub = src_argb1[0];
+ const int g_sub = src_argb1[1];
+ const int r_sub = src_argb1[2];
+ const int a_sub = src_argb1[3];
+ dst_argb[0] = STATIC_CAST(uint8_t, SHADE(b, b_sub));
+ dst_argb[1] = STATIC_CAST(uint8_t, SHADE(g, g_sub));
+ dst_argb[2] = STATIC_CAST(uint8_t, SHADE(r, r_sub));
+ dst_argb[3] = STATIC_CAST(uint8_t, SHADE(a, a_sub));
+ src_argb += 4;
+ src_argb1 += 4;
+ dst_argb += 4;
+ }
+}
+#undef SHADE
+
+// Sobel functions which mimics SSSE3.
+void SobelXRow_C(const uint8_t* src_y0,
+ const uint8_t* src_y1,
+ const uint8_t* src_y2,
+ uint8_t* dst_sobelx,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ int a = src_y0[i];
+ int b = src_y1[i];
+ int c = src_y2[i];
+ int a_sub = src_y0[i + 2];
+ int b_sub = src_y1[i + 2];
+ int c_sub = src_y2[i + 2];
+ int a_diff = a - a_sub;
+ int b_diff = b - b_sub;
+ int c_diff = c - c_sub;
+ int sobel = Abs(a_diff + b_diff * 2 + c_diff);
+ dst_sobelx[i] = (uint8_t)(clamp255(sobel));
+ }
+}
+
+void SobelYRow_C(const uint8_t* src_y0,
+ const uint8_t* src_y1,
+ uint8_t* dst_sobely,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ int a = src_y0[i + 0];
+ int b = src_y0[i + 1];
+ int c = src_y0[i + 2];
+ int a_sub = src_y1[i + 0];
+ int b_sub = src_y1[i + 1];
+ int c_sub = src_y1[i + 2];
+ int a_diff = a - a_sub;
+ int b_diff = b - b_sub;
+ int c_diff = c - c_sub;
+ int sobel = Abs(a_diff + b_diff * 2 + c_diff);
+ dst_sobely[i] = (uint8_t)(clamp255(sobel));
+ }
+}
+
+void SobelRow_C(const uint8_t* src_sobelx,
+ const uint8_t* src_sobely,
+ uint8_t* dst_argb,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ int r = src_sobelx[i];
+ int b = src_sobely[i];
+ int s = clamp255(r + b);
+ dst_argb[0] = (uint8_t)(s);
+ dst_argb[1] = (uint8_t)(s);
+ dst_argb[2] = (uint8_t)(s);
+ dst_argb[3] = (uint8_t)(255u);
+ dst_argb += 4;
+ }
+}
+
+void SobelToPlaneRow_C(const uint8_t* src_sobelx,
+ const uint8_t* src_sobely,
+ uint8_t* dst_y,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ int r = src_sobelx[i];
+ int b = src_sobely[i];
+ int s = clamp255(r + b);
+ dst_y[i] = (uint8_t)(s);
+ }
+}
+
+void SobelXYRow_C(const uint8_t* src_sobelx,
+ const uint8_t* src_sobely,
+ uint8_t* dst_argb,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ int r = src_sobelx[i];
+ int b = src_sobely[i];
+ int g = clamp255(r + b);
+ dst_argb[0] = (uint8_t)(b);
+ dst_argb[1] = (uint8_t)(g);
+ dst_argb[2] = (uint8_t)(r);
+ dst_argb[3] = (uint8_t)(255u);
+ dst_argb += 4;
+ }
+}
+
+void J400ToARGBRow_C(const uint8_t* src_y, uint8_t* dst_argb, int width) {
+ // Copy a Y to RGB.
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t y = src_y[0];
+ dst_argb[2] = dst_argb[1] = dst_argb[0] = y;
+ dst_argb[3] = 255u;
+ dst_argb += 4;
+ ++src_y;
+ }
+}
+
+// Macros to create SIMD specific yuv to rgb conversion constants.
+
+// clang-format off
+
+#if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
+// Bias values include subtract 128 from U and V, bias from Y and rounding.
+// For B and R bias is negative. For G bias is positive.
+#define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \
+ {{UB, VR, UG, VG, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, \
+ {YG, (UB * 128 - YB), (UG * 128 + VG * 128 + YB), (VR * 128 - YB), YB, 0, \
+ 0, 0}}
+#else
+#define YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR) \
+ {{UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, \
+ UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0, UB, 0}, \
+ {UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, \
+ UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG, UG, VG}, \
+ {0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, \
+ 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR, 0, VR}, \
+ {YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG, YG}, \
+ {YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB, YB}}
+#endif
+
+// clang-format on
+
+#define MAKEYUVCONSTANTS(name, YG, YB, UB, UG, VG, VR) \
+ const struct YuvConstants SIMD_ALIGNED(kYuv##name##Constants) = \
+ YUVCONSTANTSBODY(YG, YB, UB, UG, VG, VR); \
+ const struct YuvConstants SIMD_ALIGNED(kYvu##name##Constants) = \
+ YUVCONSTANTSBODY(YG, YB, VR, VG, UG, UB);
+
+// TODO(fbarchard): Generate SIMD structures from float matrix.
+
+// BT.601 limited range YUV to RGB reference
+// R = (Y - 16) * 1.164 + V * 1.596
+// G = (Y - 16) * 1.164 - U * 0.391 - V * 0.813
+// B = (Y - 16) * 1.164 + U * 2.018
+// KR = 0.299; KB = 0.114
+
+// U and V contributions to R,G,B.
+#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT601)
+#define UB 129 /* round(2.018 * 64) */
+#else
+#define UB 128 /* max(128, round(2.018 * 64)) */
+#endif
+#define UG 25 /* round(0.391 * 64) */
+#define VG 52 /* round(0.813 * 64) */
+#define VR 102 /* round(1.596 * 64) */
+
+// Y contribution to R,G,B. Scale and bias.
+#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
+#define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
+
+MAKEYUVCONSTANTS(I601, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.601 full range YUV to RGB reference (aka JPEG)
+// * R = Y + V * 1.40200
+// * G = Y - U * 0.34414 - V * 0.71414
+// * B = Y + U * 1.77200
+// KR = 0.299; KB = 0.114
+
+// U and V contributions to R,G,B.
+#define UB 113 /* round(1.77200 * 64) */
+#define UG 22 /* round(0.34414 * 64) */
+#define VG 46 /* round(0.71414 * 64) */
+#define VR 90 /* round(1.40200 * 64) */
+
+// Y contribution to R,G,B. Scale and bias.
+#define YG 16320 /* round(1.000 * 64 * 256 * 256 / 257) */
+#define YB 32 /* 64 / 2 */
+
+MAKEYUVCONSTANTS(JPEG, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.709 limited range YUV to RGB reference
+// R = (Y - 16) * 1.164 + V * 1.793
+// G = (Y - 16) * 1.164 - U * 0.213 - V * 0.533
+// B = (Y - 16) * 1.164 + U * 2.112
+// KR = 0.2126, KB = 0.0722
+
+// U and V contributions to R,G,B.
+#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT709)
+#define UB 135 /* round(2.112 * 64) */
+#else
+#define UB 128 /* max(128, round(2.112 * 64)) */
+#endif
+#define UG 14 /* round(0.213 * 64) */
+#define VG 34 /* round(0.533 * 64) */
+#define VR 115 /* round(1.793 * 64) */
+
+// Y contribution to R,G,B. Scale and bias.
+#define YG 18997 /* round(1.164 * 64 * 256 * 256 / 257) */
+#define YB -1160 /* 1.164 * 64 * -16 + 64 / 2 */
+
+MAKEYUVCONSTANTS(H709, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.709 full range YUV to RGB reference
+// R = Y + V * 1.5748
+// G = Y - U * 0.18732 - V * 0.46812
+// B = Y + U * 1.8556
+// KR = 0.2126, KB = 0.0722
+
+// U and V contributions to R,G,B.
+#define UB 119 /* round(1.8556 * 64) */
+#define UG 12 /* round(0.18732 * 64) */
+#define VG 30 /* round(0.46812 * 64) */
+#define VR 101 /* round(1.5748 * 64) */
+
+// Y contribution to R,G,B. Scale and bias. (same as jpeg)
+#define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */
+#define YB 32 /* 64 / 2 */
+
+MAKEYUVCONSTANTS(F709, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.2020 limited range YUV to RGB reference
+// R = (Y - 16) * 1.164384 + V * 1.67867
+// G = (Y - 16) * 1.164384 - U * 0.187326 - V * 0.65042
+// B = (Y - 16) * 1.164384 + U * 2.14177
+// KR = 0.2627; KB = 0.0593
+
+// U and V contributions to R,G,B.
+#if defined(LIBYUV_UNLIMITED_DATA) || defined(LIBYUV_UNLIMITED_BT2020)
+#define UB 137 /* round(2.142 * 64) */
+#else
+#define UB 128 /* max(128, round(2.142 * 64)) */
+#endif
+#define UG 12 /* round(0.187326 * 64) */
+#define VG 42 /* round(0.65042 * 64) */
+#define VR 107 /* round(1.67867 * 64) */
+
+// Y contribution to R,G,B. Scale and bias.
+#define YG 19003 /* round(1.164384 * 64 * 256 * 256 / 257) */
+#define YB -1160 /* 1.164384 * 64 * -16 + 64 / 2 */
+
+MAKEYUVCONSTANTS(2020, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+// BT.2020 full range YUV to RGB reference
+// R = Y + V * 1.474600
+// G = Y - U * 0.164553 - V * 0.571353
+// B = Y + U * 1.881400
+// KR = 0.2627; KB = 0.0593
+
+#define UB 120 /* round(1.881400 * 64) */
+#define UG 11 /* round(0.164553 * 64) */
+#define VG 37 /* round(0.571353 * 64) */
+#define VR 94 /* round(1.474600 * 64) */
+
+// Y contribution to R,G,B. Scale and bias. (same as jpeg)
+#define YG 16320 /* round(1 * 64 * 256 * 256 / 257) */
+#define YB 32 /* 64 / 2 */
+
+MAKEYUVCONSTANTS(V2020, YG, YB, UB, UG, VG, VR)
+
+#undef YG
+#undef YB
+#undef UB
+#undef UG
+#undef VG
+#undef VR
+
+#undef BB
+#undef BG
+#undef BR
+
+#undef MAKEYUVCONSTANTS
+
+#if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
+#define LOAD_YUV_CONSTANTS \
+ int ub = yuvconstants->kUVCoeff[0]; \
+ int vr = yuvconstants->kUVCoeff[1]; \
+ int ug = yuvconstants->kUVCoeff[2]; \
+ int vg = yuvconstants->kUVCoeff[3]; \
+ int yg = yuvconstants->kRGBCoeffBias[0]; \
+ int bb = yuvconstants->kRGBCoeffBias[1]; \
+ int bg = yuvconstants->kRGBCoeffBias[2]; \
+ int br = yuvconstants->kRGBCoeffBias[3]
+
+#define CALC_RGB16 \
+ int32_t y1 = (uint32_t)(y32 * yg) >> 16; \
+ int b16 = y1 + (u * ub) - bb; \
+ int g16 = y1 + bg - (u * ug + v * vg); \
+ int r16 = y1 + (v * vr) - br
+#else
+#define LOAD_YUV_CONSTANTS \
+ int ub = yuvconstants->kUVToB[0]; \
+ int ug = yuvconstants->kUVToG[0]; \
+ int vg = yuvconstants->kUVToG[1]; \
+ int vr = yuvconstants->kUVToR[1]; \
+ int yg = yuvconstants->kYToRgb[0]; \
+ int yb = yuvconstants->kYBiasToRgb[0]
+
+#define CALC_RGB16 \
+ int32_t y1 = ((uint32_t)(y32 * yg) >> 16) + yb; \
+ int8_t ui = (int8_t)u; \
+ int8_t vi = (int8_t)v; \
+ ui -= 0x80; \
+ vi -= 0x80; \
+ int b16 = y1 + (ui * ub); \
+ int g16 = y1 - (ui * ug + vi * vg); \
+ int r16 = y1 + (vi * vr)
+#endif
+
+// C reference code that mimics the YUV assembly.
+// Reads 8 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel(uint8_t y,
+ uint8_t u,
+ uint8_t v,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y * 0x0101;
+ CALC_RGB16;
+ *b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6));
+ *g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6));
+ *r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6));
+}
+
+// Reads 8 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel8_16(uint8_t y,
+ uint8_t u,
+ uint8_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y * 0x0101;
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
+}
+
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 10 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel10_16(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = (y << 6) | (y >> 4);
+ u = STATIC_CAST(uint8_t, clamp255(u >> 2));
+ v = STATIC_CAST(uint8_t, clamp255(v >> 2));
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
+}
+
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 12 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel12_16(int16_t y,
+ int16_t u,
+ int16_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = (y << 4) | (y >> 8);
+ u = STATIC_CAST(uint8_t, clamp255(u >> 4));
+ v = STATIC_CAST(uint8_t, clamp255(v >> 4));
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
+}
+
+// C reference code that mimics the YUV 10 bit assembly.
+// Reads 10 bit YUV and clamps down to 8 bit RGB.
+static __inline void YuvPixel10(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+ int b16;
+ int g16;
+ int r16;
+ YuvPixel10_16(y, u, v, &b16, &g16, &r16, yuvconstants);
+ *b = STATIC_CAST(uint8_t, Clamp(b16 >> 6));
+ *g = STATIC_CAST(uint8_t, Clamp(g16 >> 6));
+ *r = STATIC_CAST(uint8_t, Clamp(r16 >> 6));
+}
+
+// C reference code that mimics the YUV 12 bit assembly.
+// Reads 12 bit YUV and clamps down to 8 bit RGB.
+static __inline void YuvPixel12(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+ int b16;
+ int g16;
+ int r16;
+ YuvPixel12_16(y, u, v, &b16, &g16, &r16, yuvconstants);
+ *b = STATIC_CAST(uint8_t, Clamp(b16 >> 6));
+ *g = STATIC_CAST(uint8_t, Clamp(g16 >> 6));
+ *r = STATIC_CAST(uint8_t, Clamp(r16 >> 6));
+}
+
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 16 bit YUV and leaves result as 8 bit.
+static __inline void YuvPixel16_8(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y;
+ u = STATIC_CAST(uint16_t, clamp255(u >> 8));
+ v = STATIC_CAST(uint16_t, clamp255(v >> 8));
+ CALC_RGB16;
+ *b = STATIC_CAST(uint8_t, Clamp((int32_t)(b16) >> 6));
+ *g = STATIC_CAST(uint8_t, Clamp((int32_t)(g16) >> 6));
+ *r = STATIC_CAST(uint8_t, Clamp((int32_t)(r16) >> 6));
+}
+
+// C reference code that mimics the YUV 16 bit assembly.
+// Reads 16 bit YUV and leaves result as 16 bit.
+static __inline void YuvPixel16_16(uint16_t y,
+ uint16_t u,
+ uint16_t v,
+ int* b,
+ int* g,
+ int* r,
+ const struct YuvConstants* yuvconstants) {
+ LOAD_YUV_CONSTANTS;
+ uint32_t y32 = y;
+ u = STATIC_CAST(uint16_t, clamp255(u >> 8));
+ v = STATIC_CAST(uint16_t, clamp255(v >> 8));
+ CALC_RGB16;
+ *b = b16;
+ *g = g16;
+ *r = r16;
+}
+
+// C reference code that mimics the YUV assembly.
+// Reads 8 bit YUV and leaves result as 8 bit.
+static __inline void YPixel(uint8_t y,
+ uint8_t* b,
+ uint8_t* g,
+ uint8_t* r,
+ const struct YuvConstants* yuvconstants) {
+#if defined(__aarch64__) || defined(__arm__) || defined(__riscv)
+ int yg = yuvconstants->kRGBCoeffBias[0];
+ int ygb = yuvconstants->kRGBCoeffBias[4];
+#else
+ int ygb = yuvconstants->kYBiasToRgb[0];
+ int yg = yuvconstants->kYToRgb[0];
+#endif
+ uint32_t y1 = (uint32_t)(y * 0x0101 * yg) >> 16;
+ *b = STATIC_CAST(uint8_t, Clamp(((int32_t)(y1) + ygb) >> 6));
+ *g = STATIC_CAST(uint8_t, Clamp(((int32_t)(y1) + ygb) >> 6));
+ *r = STATIC_CAST(uint8_t, Clamp(((int32_t)(y1) + ygb) >> 6));
+}
+
+void I444ToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 4; // Advance 1 pixel.
+ }
+}
+
+void I444ToRGB24Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 3; // Advance 1 pixel.
+ }
+}
+
+// Also used for 420
+void I422ToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+// 10 bit YUV to ARGB
+void I210ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+void I410ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 4; // Advance 1 pixels.
+ }
+}
+
+void I210AlphaToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ const uint16_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2));
+ YuvPixel10(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = STATIC_CAST(uint8_t, clamp255(src_a[1] >> 2));
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ src_a += 2;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2));
+ }
+}
+
+void I410AlphaToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ const uint16_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel10(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = STATIC_CAST(uint8_t, clamp255(src_a[0] >> 2));
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ src_a += 1;
+ rgb_buf += 4; // Advance 1 pixels.
+ }
+}
+
+// 12 bit YUV to ARGB
+void I212ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel12(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel12(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+static void StoreAR30(uint8_t* rgb_buf, int b, int g, int r) {
+ uint32_t ar30;
+ b = b >> 4; // convert 8 bit 10.6 to 10 bit.
+ g = g >> 4;
+ r = r >> 4;
+ b = Clamp10(b);
+ g = Clamp10(g);
+ r = Clamp10(r);
+ ar30 = b | ((uint32_t)g << 10) | ((uint32_t)r << 20) | 0xc0000000;
+ (*(uint32_t*)rgb_buf) = ar30;
+}
+
+// 10 bit YUV to 10 bit AR30
+void I210ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ YuvPixel10_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf + 4, b, g, r);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ }
+}
+
+// 12 bit YUV to 10 bit AR30
+void I212ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ YuvPixel12_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf + 4, b, g, r);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel12_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ }
+}
+
+void I410ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width; ++x) {
+ YuvPixel10_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 4; // Advance 1 pixel.
+ }
+}
+
+// P210 has 10 bits in msb of 16 bit NV12 style layout.
+void P210ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_argb,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
+ dst_argb + 2, yuvconstants);
+ dst_argb[3] = 255;
+ YuvPixel16_8(src_y[1], src_uv[0], src_uv[1], dst_argb + 4, dst_argb + 5,
+ dst_argb + 6, yuvconstants);
+ dst_argb[7] = 255;
+ src_y += 2;
+ src_uv += 2;
+ dst_argb += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
+ dst_argb + 2, yuvconstants);
+ dst_argb[3] = 255;
+ }
+}
+
+void P410ToARGBRow_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_argb,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel16_8(src_y[0], src_uv[0], src_uv[1], dst_argb + 0, dst_argb + 1,
+ dst_argb + 2, yuvconstants);
+ dst_argb[3] = 255;
+ src_y += 1;
+ src_uv += 2;
+ dst_argb += 4; // Advance 1 pixels.
+ }
+}
+
+void P210ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_ar30,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30, b, g, r);
+ YuvPixel16_16(src_y[1], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30 + 4, b, g, r);
+ src_y += 2;
+ src_uv += 2;
+ dst_ar30 += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30, b, g, r);
+ }
+}
+
+void P410ToAR30Row_C(const uint16_t* src_y,
+ const uint16_t* src_uv,
+ uint8_t* dst_ar30,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width; ++x) {
+ YuvPixel16_16(src_y[0], src_uv[0], src_uv[1], &b, &g, &r, yuvconstants);
+ StoreAR30(dst_ar30, b, g, r);
+ src_y += 1;
+ src_uv += 2;
+ dst_ar30 += 4; // Advance 1 pixel.
+ }
+}
+
+// 8 bit YUV to 10 bit AR30
+// Uses same code as 10 bit YUV bit shifts the 8 bit values up to 10 bits.
+void I422ToAR30Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ int b;
+ int g;
+ int r;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ YuvPixel8_16(src_y[1], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf + 4, b, g, r);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel8_16(src_y[0], src_u[0], src_v[0], &b, &g, &r, yuvconstants);
+ StoreAR30(rgb_buf, b, g, r);
+ }
+}
+
+void I444AlphaToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ const uint8_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = src_a[0];
+ src_y += 1;
+ src_u += 1;
+ src_v += 1;
+ src_a += 1;
+ rgb_buf += 4; // Advance 1 pixel.
+ }
+}
+
+void I422AlphaToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ const uint8_t* src_a,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = src_a[0];
+ YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = src_a[1];
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ src_a += 2;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = src_a[0];
+ }
+}
+
+void I422ToRGB24Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 3, rgb_buf + 4,
+ rgb_buf + 5, yuvconstants);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 6; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ }
+}
+
+void I422ToARGB4444Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_argb4444,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ uint8_t b0;
+ uint8_t g0;
+ uint8_t r0;
+ uint8_t b1;
+ uint8_t g1;
+ uint8_t r1;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
+ YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
+ b0 = b0 >> 4;
+ g0 = g0 >> 4;
+ r0 = r0 >> 4;
+ b1 = b1 >> 4;
+ g1 = g1 >> 4;
+ r1 = r1 >> 4;
+ *(uint16_t*)(dst_argb4444 + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | 0xf000);
+ *(uint16_t*)(dst_argb4444 + 2) =
+ STATIC_CAST(uint16_t, b1 | (g1 << 4) | (r1 << 8) | 0xf000);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ dst_argb4444 += 4; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
+ b0 = b0 >> 4;
+ g0 = g0 >> 4;
+ r0 = r0 >> 4;
+ *(uint16_t*)(dst_argb4444) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 4) | (r0 << 8) | 0xf000);
+ }
+}
+
+void I422ToARGB1555Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_argb1555,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ uint8_t b0;
+ uint8_t g0;
+ uint8_t r0;
+ uint8_t b1;
+ uint8_t g1;
+ uint8_t r1;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
+ YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
+ b0 = b0 >> 3;
+ g0 = g0 >> 3;
+ r0 = r0 >> 3;
+ b1 = b1 >> 3;
+ g1 = g1 >> 3;
+ r1 = r1 >> 3;
+ *(uint16_t*)(dst_argb1555 + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | 0x8000);
+ *(uint16_t*)(dst_argb1555 + 2) =
+ STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 10) | 0x8000);
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ dst_argb1555 += 4; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
+ b0 = b0 >> 3;
+ g0 = g0 >> 3;
+ r0 = r0 >> 3;
+ *(uint16_t*)(dst_argb1555) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 10) | 0x8000);
+ }
+}
+
+void I422ToRGB565Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_rgb565,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ uint8_t b0;
+ uint8_t g0;
+ uint8_t r0;
+ uint8_t b1;
+ uint8_t g1;
+ uint8_t r1;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
+ YuvPixel(src_y[1], src_u[0], src_v[0], &b1, &g1, &r1, yuvconstants);
+ b0 = b0 >> 3;
+ g0 = g0 >> 2;
+ r0 = r0 >> 3;
+ b1 = b1 >> 3;
+ g1 = g1 >> 2;
+ r1 = r1 >> 3;
+ *(uint16_t*)(dst_rgb565 + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
+ *(uint16_t*)(dst_rgb565 + 2) =
+ STATIC_CAST(uint16_t, b1 | (g1 << 5) | (r1 << 11));
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ dst_rgb565 += 4; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], &b0, &g0, &r0, yuvconstants);
+ b0 = b0 >> 3;
+ g0 = g0 >> 2;
+ r0 = r0 >> 3;
+ *(uint16_t*)(dst_rgb565 + 0) =
+ STATIC_CAST(uint16_t, b0 | (g0 << 5) | (r0 << 11));
+ }
+}
+
+void NV12ToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ src_uv += 2;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+void NV21ToARGBRow_C(const uint8_t* src_y,
+ const uint8_t* src_vu,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ src_vu += 2;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+void NV12ToRGB24Row_C(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ YuvPixel(src_y[1], src_uv[0], src_uv[1], rgb_buf + 3, rgb_buf + 4,
+ rgb_buf + 5, yuvconstants);
+ src_y += 2;
+ src_uv += 2;
+ rgb_buf += 6; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_uv[0], src_uv[1], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ }
+}
+
+void NV21ToRGB24Row_C(const uint8_t* src_y,
+ const uint8_t* src_vu,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ YuvPixel(src_y[1], src_vu[1], src_vu[0], rgb_buf + 3, rgb_buf + 4,
+ rgb_buf + 5, yuvconstants);
+ src_y += 2;
+ src_vu += 2;
+ rgb_buf += 6; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_vu[1], src_vu[0], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ }
+}
+
+void NV12ToRGB565Row_C(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* dst_rgb565,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ uint8_t b0;
+ uint8_t g0;
+ uint8_t r0;
+ uint8_t b1;
+ uint8_t g1;
+ uint8_t r1;
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
+ YuvPixel(src_y[1], src_uv[0], src_uv[1], &b1, &g1, &r1, yuvconstants);
+ b0 = b0 >> 3;
+ g0 = g0 >> 2;
+ r0 = r0 >> 3;
+ b1 = b1 >> 3;
+ g1 = g1 >> 2;
+ r1 = r1 >> 3;
+ *(uint16_t*)(dst_rgb565 + 0) = STATIC_CAST(uint16_t, b0) |
+ STATIC_CAST(uint16_t, g0 << 5) |
+ STATIC_CAST(uint16_t, r0 << 11);
+ *(uint16_t*)(dst_rgb565 + 2) = STATIC_CAST(uint16_t, b1) |
+ STATIC_CAST(uint16_t, g1 << 5) |
+ STATIC_CAST(uint16_t, r1 << 11);
+ src_y += 2;
+ src_uv += 2;
+ dst_rgb565 += 4; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_uv[0], src_uv[1], &b0, &g0, &r0, yuvconstants);
+ b0 = b0 >> 3;
+ g0 = g0 >> 2;
+ r0 = r0 >> 3;
+ *(uint16_t*)(dst_rgb565) = STATIC_CAST(uint16_t, b0) |
+ STATIC_CAST(uint16_t, g0 << 5) |
+ STATIC_CAST(uint16_t, r0 << 11);
+ }
+}
+
+void YUY2ToARGBRow_C(const uint8_t* src_yuy2,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel(src_yuy2[2], src_yuy2[1], src_yuy2[3], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_yuy2 += 4;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_yuy2[0], src_yuy2[1], src_yuy2[3], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+void UYVYToARGBRow_C(const uint8_t* src_uyvy,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YuvPixel(src_uyvy[3], src_uyvy[0], src_uyvy[2], rgb_buf + 4, rgb_buf + 5,
+ rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_uyvy += 4;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_uyvy[1], src_uyvy[0], src_uyvy[2], rgb_buf + 0, rgb_buf + 1,
+ rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+void I422ToRGBARow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2,
+ rgb_buf + 3, yuvconstants);
+ rgb_buf[0] = 255;
+ YuvPixel(src_y[1], src_u[0], src_v[0], rgb_buf + 5, rgb_buf + 6,
+ rgb_buf + 7, yuvconstants);
+ rgb_buf[4] = 255;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YuvPixel(src_y[0], src_u[0], src_v[0], rgb_buf + 1, rgb_buf + 2,
+ rgb_buf + 3, yuvconstants);
+ rgb_buf[0] = 255;
+ }
+}
+
+void I400ToARGBRow_C(const uint8_t* src_y,
+ uint8_t* rgb_buf,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ YPixel(src_y[1], rgb_buf + 4, rgb_buf + 5, rgb_buf + 6, yuvconstants);
+ rgb_buf[7] = 255;
+ src_y += 2;
+ rgb_buf += 8; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ YPixel(src_y[0], rgb_buf + 0, rgb_buf + 1, rgb_buf + 2, yuvconstants);
+ rgb_buf[3] = 255;
+ }
+}
+
+void MirrorRow_C(const uint8_t* src, uint8_t* dst, int width) {
+ int x;
+ src += width - 1;
+ for (x = 0; x < width - 1; x += 2) {
+ dst[x] = src[0];
+ dst[x + 1] = src[-1];
+ src -= 2;
+ }
+ if (width & 1) {
+ dst[width - 1] = src[0];
+ }
+}
+
+void MirrorRow_16_C(const uint16_t* src, uint16_t* dst, int width) {
+ int x;
+ src += width - 1;
+ for (x = 0; x < width - 1; x += 2) {
+ dst[x] = src[0];
+ dst[x + 1] = src[-1];
+ src -= 2;
+ }
+ if (width & 1) {
+ dst[width - 1] = src[0];
+ }
+}
+
+void MirrorUVRow_C(const uint8_t* src_uv, uint8_t* dst_uv, int width) {
+ int x;
+ src_uv += (width - 1) << 1;
+ for (x = 0; x < width; ++x) {
+ dst_uv[0] = src_uv[0];
+ dst_uv[1] = src_uv[1];
+ src_uv -= 2;
+ dst_uv += 2;
+ }
+}
+
+void MirrorSplitUVRow_C(const uint8_t* src_uv,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ int x;
+ src_uv += (width - 1) << 1;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_u[x] = src_uv[0];
+ dst_u[x + 1] = src_uv[-2];
+ dst_v[x] = src_uv[1];
+ dst_v[x + 1] = src_uv[-2 + 1];
+ src_uv -= 4;
+ }
+ if (width & 1) {
+ dst_u[width - 1] = src_uv[0];
+ dst_v[width - 1] = src_uv[1];
+ }
+}
+
+void ARGBMirrorRow_C(const uint8_t* src, uint8_t* dst, int width) {
+ int x;
+ const uint32_t* src32 = (const uint32_t*)(src);
+ uint32_t* dst32 = (uint32_t*)(dst);
+ src32 += width - 1;
+ for (x = 0; x < width - 1; x += 2) {
+ dst32[x] = src32[0];
+ dst32[x + 1] = src32[-1];
+ src32 -= 2;
+ }
+ if (width & 1) {
+ dst32[width - 1] = src32[0];
+ }
+}
+
+void RGB24MirrorRow_C(const uint8_t* src_rgb24, uint8_t* dst_rgb24, int width) {
+ int x;
+ src_rgb24 += width * 3 - 3;
+ for (x = 0; x < width; ++x) {
+ uint8_t b = src_rgb24[0];
+ uint8_t g = src_rgb24[1];
+ uint8_t r = src_rgb24[2];
+ dst_rgb24[0] = b;
+ dst_rgb24[1] = g;
+ dst_rgb24[2] = r;
+ src_rgb24 -= 3;
+ dst_rgb24 += 3;
+ }
+}
+
+void SplitUVRow_C(const uint8_t* src_uv,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_u[x] = src_uv[0];
+ dst_u[x + 1] = src_uv[2];
+ dst_v[x] = src_uv[1];
+ dst_v[x + 1] = src_uv[3];
+ src_uv += 4;
+ }
+ if (width & 1) {
+ dst_u[width - 1] = src_uv[0];
+ dst_v[width - 1] = src_uv[1];
+ }
+}
+
+void MergeUVRow_C(const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_uv,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_uv[0] = src_u[x];
+ dst_uv[1] = src_v[x];
+ dst_uv[2] = src_u[x + 1];
+ dst_uv[3] = src_v[x + 1];
+ dst_uv += 4;
+ }
+ if (width & 1) {
+ dst_uv[0] = src_u[width - 1];
+ dst_uv[1] = src_v[width - 1];
+ }
+}
+
+void DetileRow_C(const uint8_t* src,
+ ptrdiff_t src_tile_stride,
+ uint8_t* dst,
+ int width) {
+ int x;
+ for (x = 0; x < width - 15; x += 16) {
+ memcpy(dst, src, 16);
+ dst += 16;
+ src += src_tile_stride;
+ }
+ if (width & 15) {
+ memcpy(dst, src, width & 15);
+ }
+}
+
+void DetileRow_16_C(const uint16_t* src,
+ ptrdiff_t src_tile_stride,
+ uint16_t* dst,
+ int width) {
+ int x;
+ for (x = 0; x < width - 15; x += 16) {
+ memcpy(dst, src, 16 * sizeof(uint16_t));
+ dst += 16;
+ src += src_tile_stride;
+ }
+ if (width & 15) {
+ memcpy(dst, src, (width & 15) * sizeof(uint16_t));
+ }
+}
+
+void DetileSplitUVRow_C(const uint8_t* src_uv,
+ ptrdiff_t src_tile_stride,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ int x;
+ for (x = 0; x < width - 15; x += 16) {
+ SplitUVRow_C(src_uv, dst_u, dst_v, 8);
+ dst_u += 8;
+ dst_v += 8;
+ src_uv += src_tile_stride;
+ }
+ if (width & 15) {
+ SplitUVRow_C(src_uv, dst_u, dst_v, ((width & 15) + 1) / 2);
+ }
+}
+
+void DetileToYUY2_C(const uint8_t* src_y,
+ ptrdiff_t src_y_tile_stride,
+ const uint8_t* src_uv,
+ ptrdiff_t src_uv_tile_stride,
+ uint8_t* dst_yuy2,
+ int width) {
+ for (int x = 0; x < width - 15; x += 16) {
+ for (int i = 0; i < 8; i++) {
+ dst_yuy2[0] = src_y[0];
+ dst_yuy2[1] = src_uv[0];
+ dst_yuy2[2] = src_y[1];
+ dst_yuy2[3] = src_uv[1];
+ dst_yuy2 += 4;
+ src_y += 2;
+ src_uv += 2;
+ }
+ src_y += src_y_tile_stride - 16;
+ src_uv += src_uv_tile_stride - 16;
+ }
+}
+
+// Unpack MT2T into tiled P010 64 pixels at a time. MT2T's bitstream is encoded
+// in 80 byte blocks representing 64 pixels each. The first 16 bytes of the
+// block contain all of the lower 2 bits of each pixel packed together, and the
+// next 64 bytes represent all the upper 8 bits of the pixel. The lower bits are
+// packed into 1x4 blocks, whereas the upper bits are packed in normal raster
+// order.
+void UnpackMT2T_C(const uint8_t* src, uint16_t* dst, size_t size) {
+ for (size_t i = 0; i < size; i += 80) {
+ const uint8_t* src_lower_bits = src;
+ const uint8_t* src_upper_bits = src + 16;
+
+ for (int j = 0; j < 4; j++) {
+ for (int k = 0; k < 16; k++) {
+ *dst++ = ((src_lower_bits[k] >> (j * 2)) & 0x3) << 6 |
+ (uint16_t)*src_upper_bits << 8 |
+ (uint16_t)*src_upper_bits >> 2;
+ src_upper_bits++;
+ }
+ }
+
+ src += 80;
+ }
+}
+
+void SplitRGBRow_C(const uint8_t* src_rgb,
+ uint8_t* dst_r,
+ uint8_t* dst_g,
+ uint8_t* dst_b,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_r[x] = src_rgb[0];
+ dst_g[x] = src_rgb[1];
+ dst_b[x] = src_rgb[2];
+ src_rgb += 3;
+ }
+}
+
+void MergeRGBRow_C(const uint8_t* src_r,
+ const uint8_t* src_g,
+ const uint8_t* src_b,
+ uint8_t* dst_rgb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_rgb[0] = src_r[x];
+ dst_rgb[1] = src_g[x];
+ dst_rgb[2] = src_b[x];
+ dst_rgb += 3;
+ }
+}
+
+void SplitARGBRow_C(const uint8_t* src_argb,
+ uint8_t* dst_r,
+ uint8_t* dst_g,
+ uint8_t* dst_b,
+ uint8_t* dst_a,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_b[x] = src_argb[0];
+ dst_g[x] = src_argb[1];
+ dst_r[x] = src_argb[2];
+ dst_a[x] = src_argb[3];
+ src_argb += 4;
+ }
+}
+
+void MergeARGBRow_C(const uint8_t* src_r,
+ const uint8_t* src_g,
+ const uint8_t* src_b,
+ const uint8_t* src_a,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = src_b[x];
+ dst_argb[1] = src_g[x];
+ dst_argb[2] = src_r[x];
+ dst_argb[3] = src_a[x];
+ dst_argb += 4;
+ }
+}
+
+void MergeXR30Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ uint8_t* dst_ar30,
+ int depth,
+ int width) {
+ assert(depth >= 10);
+ assert(depth <= 16);
+ int x;
+ int shift = depth - 10;
+ uint32_t* dst_ar30_32 = (uint32_t*)dst_ar30;
+ for (x = 0; x < width; ++x) {
+ uint32_t r = clamp1023(src_r[x] >> shift);
+ uint32_t g = clamp1023(src_g[x] >> shift);
+ uint32_t b = clamp1023(src_b[x] >> shift);
+ dst_ar30_32[x] = b | (g << 10) | (r << 20) | 0xc0000000;
+ }
+}
+
+void MergeAR64Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ const uint16_t* src_a,
+ uint16_t* dst_ar64,
+ int depth,
+ int width) {
+ assert(depth >= 1);
+ assert(depth <= 16);
+ int x;
+ int shift = 16 - depth;
+ int max = (1 << depth) - 1;
+ for (x = 0; x < width; ++x) {
+ dst_ar64[0] = STATIC_CAST(uint16_t, ClampMax(src_b[x], max) << shift);
+ dst_ar64[1] = STATIC_CAST(uint16_t, ClampMax(src_g[x], max) << shift);
+ dst_ar64[2] = STATIC_CAST(uint16_t, ClampMax(src_r[x], max) << shift);
+ dst_ar64[3] = STATIC_CAST(uint16_t, ClampMax(src_a[x], max) << shift);
+ dst_ar64 += 4;
+ }
+}
+
+void MergeARGB16To8Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ const uint16_t* src_a,
+ uint8_t* dst_argb,
+ int depth,
+ int width) {
+ assert(depth >= 8);
+ assert(depth <= 16);
+ int x;
+ int shift = depth - 8;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = STATIC_CAST(uint8_t, clamp255(src_b[x] >> shift));
+ dst_argb[1] = STATIC_CAST(uint8_t, clamp255(src_g[x] >> shift));
+ dst_argb[2] = STATIC_CAST(uint8_t, clamp255(src_r[x] >> shift));
+ dst_argb[3] = STATIC_CAST(uint8_t, clamp255(src_a[x] >> shift));
+ dst_argb += 4;
+ }
+}
+
+void MergeXR64Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ uint16_t* dst_ar64,
+ int depth,
+ int width) {
+ assert(depth >= 1);
+ assert(depth <= 16);
+ int x;
+ int shift = 16 - depth;
+ int max = (1 << depth) - 1;
+ for (x = 0; x < width; ++x) {
+ dst_ar64[0] = STATIC_CAST(uint16_t, ClampMax(src_b[x], max) << shift);
+ dst_ar64[1] = STATIC_CAST(uint16_t, ClampMax(src_g[x], max) << shift);
+ dst_ar64[2] = STATIC_CAST(uint16_t, ClampMax(src_r[x], max) << shift);
+ dst_ar64[3] = 0xffff;
+ dst_ar64 += 4;
+ }
+}
+
+void MergeXRGB16To8Row_C(const uint16_t* src_r,
+ const uint16_t* src_g,
+ const uint16_t* src_b,
+ uint8_t* dst_argb,
+ int depth,
+ int width) {
+ assert(depth >= 8);
+ assert(depth <= 16);
+ int x;
+ int shift = depth - 8;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = STATIC_CAST(uint8_t, clamp255(src_b[x] >> shift));
+ dst_argb[1] = STATIC_CAST(uint8_t, clamp255(src_g[x] >> shift));
+ dst_argb[2] = STATIC_CAST(uint8_t, clamp255(src_r[x] >> shift));
+ dst_argb[3] = 0xff;
+ dst_argb += 4;
+ }
+}
+
+void SplitXRGBRow_C(const uint8_t* src_argb,
+ uint8_t* dst_r,
+ uint8_t* dst_g,
+ uint8_t* dst_b,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_b[x] = src_argb[0];
+ dst_g[x] = src_argb[1];
+ dst_r[x] = src_argb[2];
+ src_argb += 4;
+ }
+}
+
+void MergeXRGBRow_C(const uint8_t* src_r,
+ const uint8_t* src_g,
+ const uint8_t* src_b,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_argb[0] = src_b[x];
+ dst_argb[1] = src_g[x];
+ dst_argb[2] = src_r[x];
+ dst_argb[3] = 255;
+ dst_argb += 4;
+ }
+}
+
+// Convert lsb formats to msb, depending on sample depth.
+void MergeUVRow_16_C(const uint16_t* src_u,
+ const uint16_t* src_v,
+ uint16_t* dst_uv,
+ int depth,
+ int width) {
+ int shift = 16 - depth;
+ assert(depth >= 8);
+ assert(depth <= 16);
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_uv[0] = STATIC_CAST(uint16_t, src_u[x] << shift);
+ dst_uv[1] = STATIC_CAST(uint16_t, src_v[x] << shift);
+ dst_uv += 2;
+ }
+}
+
+// Convert msb formats to lsb, depending on sample depth.
+void SplitUVRow_16_C(const uint16_t* src_uv,
+ uint16_t* dst_u,
+ uint16_t* dst_v,
+ int depth,
+ int width) {
+ int shift = 16 - depth;
+ int x;
+ assert(depth >= 8);
+ assert(depth <= 16);
+ for (x = 0; x < width; ++x) {
+ dst_u[x] = src_uv[0] >> shift;
+ dst_v[x] = src_uv[1] >> shift;
+ src_uv += 2;
+ }
+}
+
+void MultiplyRow_16_C(const uint16_t* src_y,
+ uint16_t* dst_y,
+ int scale,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_y[x] = STATIC_CAST(uint16_t, src_y[x] * scale);
+ }
+}
+
+void DivideRow_16_C(const uint16_t* src_y,
+ uint16_t* dst_y,
+ int scale,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_y[x] = (src_y[x] * scale) >> 16;
+ }
+}
+
+// Use scale to convert lsb formats to msb, depending how many bits there are:
+// 32768 = 9 bits
+// 16384 = 10 bits
+// 4096 = 12 bits
+// 256 = 16 bits
+// TODO(fbarchard): change scale to bits
+#define C16TO8(v, scale) clamp255(((v) * (scale)) >> 16)
+
+void Convert16To8Row_C(const uint16_t* src_y,
+ uint8_t* dst_y,
+ int scale,
+ int width) {
+ int x;
+ assert(scale >= 256);
+ assert(scale <= 32768);
+
+ for (x = 0; x < width; ++x) {
+ dst_y[x] = STATIC_CAST(uint8_t, C16TO8(src_y[x], scale));
+ }
+}
+
+// Use scale to convert lsb formats to msb, depending how many bits there are:
+// 1024 = 10 bits
+void Convert8To16Row_C(const uint8_t* src_y,
+ uint16_t* dst_y,
+ int scale,
+ int width) {
+ int x;
+ scale *= 0x0101; // replicates the byte.
+ for (x = 0; x < width; ++x) {
+ dst_y[x] = (src_y[x] * scale) >> 16;
+ }
+}
+
+void CopyRow_C(const uint8_t* src, uint8_t* dst, int count) {
+ memcpy(dst, src, count);
+}
+
+void CopyRow_16_C(const uint16_t* src, uint16_t* dst, int count) {
+ memcpy(dst, src, count * 2);
+}
+
+void SetRow_C(uint8_t* dst, uint8_t v8, int width) {
+ memset(dst, v8, width);
+}
+
+void ARGBSetRow_C(uint8_t* dst_argb, uint32_t v32, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ memcpy(dst_argb + x * sizeof v32, &v32, sizeof v32);
+ }
+}
+
+// Filter 2 rows of YUY2 UV's (422) into U and V (420).
+void YUY2ToUVRow_C(const uint8_t* src_yuy2,
+ int src_stride_yuy2,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ // Output a row of UV values, filtering 2 rows of YUY2.
+ int x;
+ for (x = 0; x < width; x += 2) {
+ dst_u[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1;
+ dst_v[0] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1;
+ src_yuy2 += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+}
+
+// Filter 2 rows of YUY2 UV's (422) into UV (NV12).
+void YUY2ToNVUVRow_C(const uint8_t* src_yuy2,
+ int src_stride_yuy2,
+ uint8_t* dst_uv,
+ int width) {
+ // Output a row of UV values, filtering 2 rows of YUY2.
+ int x;
+ for (x = 0; x < width; x += 2) {
+ dst_uv[0] = (src_yuy2[1] + src_yuy2[src_stride_yuy2 + 1] + 1) >> 1;
+ dst_uv[1] = (src_yuy2[3] + src_yuy2[src_stride_yuy2 + 3] + 1) >> 1;
+ src_yuy2 += 4;
+ dst_uv += 2;
+ }
+}
+
+// Copy row of YUY2 UV's (422) into U and V (422).
+void YUY2ToUV422Row_C(const uint8_t* src_yuy2,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ // Output a row of UV values.
+ int x;
+ for (x = 0; x < width; x += 2) {
+ dst_u[0] = src_yuy2[1];
+ dst_v[0] = src_yuy2[3];
+ src_yuy2 += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+}
+
+// Copy row of YUY2 Y's (422) into Y (420/422).
+void YUY2ToYRow_C(const uint8_t* src_yuy2, uint8_t* dst_y, int width) {
+ // Output a row of Y values.
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_y[x] = src_yuy2[0];
+ dst_y[x + 1] = src_yuy2[2];
+ src_yuy2 += 4;
+ }
+ if (width & 1) {
+ dst_y[width - 1] = src_yuy2[0];
+ }
+}
+
+// Filter 2 rows of UYVY UV's (422) into U and V (420).
+void UYVYToUVRow_C(const uint8_t* src_uyvy,
+ int src_stride_uyvy,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ // Output a row of UV values.
+ int x;
+ for (x = 0; x < width; x += 2) {
+ dst_u[0] = (src_uyvy[0] + src_uyvy[src_stride_uyvy + 0] + 1) >> 1;
+ dst_v[0] = (src_uyvy[2] + src_uyvy[src_stride_uyvy + 2] + 1) >> 1;
+ src_uyvy += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+}
+
+// Copy row of UYVY UV's (422) into U and V (422).
+void UYVYToUV422Row_C(const uint8_t* src_uyvy,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int width) {
+ // Output a row of UV values.
+ int x;
+ for (x = 0; x < width; x += 2) {
+ dst_u[0] = src_uyvy[0];
+ dst_v[0] = src_uyvy[2];
+ src_uyvy += 4;
+ dst_u += 1;
+ dst_v += 1;
+ }
+}
+
+// Copy row of UYVY Y's (422) into Y (420/422).
+void UYVYToYRow_C(const uint8_t* src_uyvy, uint8_t* dst_y, int width) {
+ // Output a row of Y values.
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_y[x] = src_uyvy[1];
+ dst_y[x + 1] = src_uyvy[3];
+ src_uyvy += 4;
+ }
+ if (width & 1) {
+ dst_y[width - 1] = src_uyvy[1];
+ }
+}
+
+#define BLEND(f, b, a) clamp255((((256 - a) * b) >> 8) + f)
+
+// Blend src_argb over src_argb1 and store to dst_argb.
+// dst_argb may be src_argb or src_argb1.
+// This code mimics the SSSE3 version for better testability.
+void ARGBBlendRow_C(const uint8_t* src_argb,
+ const uint8_t* src_argb1,
+ uint8_t* dst_argb,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ uint32_t fb = src_argb[0];
+ uint32_t fg = src_argb[1];
+ uint32_t fr = src_argb[2];
+ uint32_t a = src_argb[3];
+ uint32_t bb = src_argb1[0];
+ uint32_t bg = src_argb1[1];
+ uint32_t br = src_argb1[2];
+ dst_argb[0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a));
+ dst_argb[1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a));
+ dst_argb[2] = STATIC_CAST(uint8_t, BLEND(fr, br, a));
+ dst_argb[3] = 255u;
+
+ fb = src_argb[4 + 0];
+ fg = src_argb[4 + 1];
+ fr = src_argb[4 + 2];
+ a = src_argb[4 + 3];
+ bb = src_argb1[4 + 0];
+ bg = src_argb1[4 + 1];
+ br = src_argb1[4 + 2];
+ dst_argb[4 + 0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a));
+ dst_argb[4 + 1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a));
+ dst_argb[4 + 2] = STATIC_CAST(uint8_t, BLEND(fr, br, a));
+ dst_argb[4 + 3] = 255u;
+ src_argb += 8;
+ src_argb1 += 8;
+ dst_argb += 8;
+ }
+
+ if (width & 1) {
+ uint32_t fb = src_argb[0];
+ uint32_t fg = src_argb[1];
+ uint32_t fr = src_argb[2];
+ uint32_t a = src_argb[3];
+ uint32_t bb = src_argb1[0];
+ uint32_t bg = src_argb1[1];
+ uint32_t br = src_argb1[2];
+ dst_argb[0] = STATIC_CAST(uint8_t, BLEND(fb, bb, a));
+ dst_argb[1] = STATIC_CAST(uint8_t, BLEND(fg, bg, a));
+ dst_argb[2] = STATIC_CAST(uint8_t, BLEND(fr, br, a));
+ dst_argb[3] = 255u;
+ }
+}
+#undef BLEND
+
+#define UBLEND(f, b, a) (((a)*f) + ((255 - a) * b) + 255) >> 8
+void BlendPlaneRow_C(const uint8_t* src0,
+ const uint8_t* src1,
+ const uint8_t* alpha,
+ uint8_t* dst,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst[0] = UBLEND(src0[0], src1[0], alpha[0]);
+ dst[1] = UBLEND(src0[1], src1[1], alpha[1]);
+ src0 += 2;
+ src1 += 2;
+ alpha += 2;
+ dst += 2;
+ }
+ if (width & 1) {
+ dst[0] = UBLEND(src0[0], src1[0], alpha[0]);
+ }
+}
+#undef UBLEND
+
+#if LIBYUV_ATTENUATE_DUP
+// This code mimics the SSSE3 version for better testability.
+#define ATTENUATE(f, a) (a | (a << 8)) * (f | (f << 8)) >> 24
+#else
+#define ATTENUATE(f, a) (f * a + 128) >> 8
+#endif
+
+// Multiply source RGB by alpha and store to destination.
+void ARGBAttenuateRow_C(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
+ int i;
+ for (i = 0; i < width - 1; i += 2) {
+ uint32_t b = src_argb[0];
+ uint32_t g = src_argb[1];
+ uint32_t r = src_argb[2];
+ uint32_t a = src_argb[3];
+ dst_argb[0] = ATTENUATE(b, a);
+ dst_argb[1] = ATTENUATE(g, a);
+ dst_argb[2] = ATTENUATE(r, a);
+ dst_argb[3] = STATIC_CAST(uint8_t, a);
+ b = src_argb[4];
+ g = src_argb[5];
+ r = src_argb[6];
+ a = src_argb[7];
+ dst_argb[4] = ATTENUATE(b, a);
+ dst_argb[5] = ATTENUATE(g, a);
+ dst_argb[6] = ATTENUATE(r, a);
+ dst_argb[7] = STATIC_CAST(uint8_t, a);
+ src_argb += 8;
+ dst_argb += 8;
+ }
+
+ if (width & 1) {
+ const uint32_t b = src_argb[0];
+ const uint32_t g = src_argb[1];
+ const uint32_t r = src_argb[2];
+ const uint32_t a = src_argb[3];
+ dst_argb[0] = ATTENUATE(b, a);
+ dst_argb[1] = ATTENUATE(g, a);
+ dst_argb[2] = ATTENUATE(r, a);
+ dst_argb[3] = STATIC_CAST(uint8_t, a);
+ }
+}
+#undef ATTENUATE
+
+// Divide source RGB by alpha and store to destination.
+// b = (b * 255 + (a / 2)) / a;
+// g = (g * 255 + (a / 2)) / a;
+// r = (r * 255 + (a / 2)) / a;
+// Reciprocal method is off by 1 on some values. ie 125
+// 8.8 fixed point inverse table with 1.0 in upper short and 1 / a in lower.
+#define T(a) 0x01000000 + (0x10000 / a)
+const uint32_t fixed_invtbl8[256] = {
+ 0x01000000, 0x0100ffff, T(0x02), T(0x03), T(0x04), T(0x05), T(0x06),
+ T(0x07), T(0x08), T(0x09), T(0x0a), T(0x0b), T(0x0c), T(0x0d),
+ T(0x0e), T(0x0f), T(0x10), T(0x11), T(0x12), T(0x13), T(0x14),
+ T(0x15), T(0x16), T(0x17), T(0x18), T(0x19), T(0x1a), T(0x1b),
+ T(0x1c), T(0x1d), T(0x1e), T(0x1f), T(0x20), T(0x21), T(0x22),
+ T(0x23), T(0x24), T(0x25), T(0x26), T(0x27), T(0x28), T(0x29),
+ T(0x2a), T(0x2b), T(0x2c), T(0x2d), T(0x2e), T(0x2f), T(0x30),
+ T(0x31), T(0x32), T(0x33), T(0x34), T(0x35), T(0x36), T(0x37),
+ T(0x38), T(0x39), T(0x3a), T(0x3b), T(0x3c), T(0x3d), T(0x3e),
+ T(0x3f), T(0x40), T(0x41), T(0x42), T(0x43), T(0x44), T(0x45),
+ T(0x46), T(0x47), T(0x48), T(0x49), T(0x4a), T(0x4b), T(0x4c),
+ T(0x4d), T(0x4e), T(0x4f), T(0x50), T(0x51), T(0x52), T(0x53),
+ T(0x54), T(0x55), T(0x56), T(0x57), T(0x58), T(0x59), T(0x5a),
+ T(0x5b), T(0x5c), T(0x5d), T(0x5e), T(0x5f), T(0x60), T(0x61),
+ T(0x62), T(0x63), T(0x64), T(0x65), T(0x66), T(0x67), T(0x68),
+ T(0x69), T(0x6a), T(0x6b), T(0x6c), T(0x6d), T(0x6e), T(0x6f),
+ T(0x70), T(0x71), T(0x72), T(0x73), T(0x74), T(0x75), T(0x76),
+ T(0x77), T(0x78), T(0x79), T(0x7a), T(0x7b), T(0x7c), T(0x7d),
+ T(0x7e), T(0x7f), T(0x80), T(0x81), T(0x82), T(0x83), T(0x84),
+ T(0x85), T(0x86), T(0x87), T(0x88), T(0x89), T(0x8a), T(0x8b),
+ T(0x8c), T(0x8d), T(0x8e), T(0x8f), T(0x90), T(0x91), T(0x92),
+ T(0x93), T(0x94), T(0x95), T(0x96), T(0x97), T(0x98), T(0x99),
+ T(0x9a), T(0x9b), T(0x9c), T(0x9d), T(0x9e), T(0x9f), T(0xa0),
+ T(0xa1), T(0xa2), T(0xa3), T(0xa4), T(0xa5), T(0xa6), T(0xa7),
+ T(0xa8), T(0xa9), T(0xaa), T(0xab), T(0xac), T(0xad), T(0xae),
+ T(0xaf), T(0xb0), T(0xb1), T(0xb2), T(0xb3), T(0xb4), T(0xb5),
+ T(0xb6), T(0xb7), T(0xb8), T(0xb9), T(0xba), T(0xbb), T(0xbc),
+ T(0xbd), T(0xbe), T(0xbf), T(0xc0), T(0xc1), T(0xc2), T(0xc3),
+ T(0xc4), T(0xc5), T(0xc6), T(0xc7), T(0xc8), T(0xc9), T(0xca),
+ T(0xcb), T(0xcc), T(0xcd), T(0xce), T(0xcf), T(0xd0), T(0xd1),
+ T(0xd2), T(0xd3), T(0xd4), T(0xd5), T(0xd6), T(0xd7), T(0xd8),
+ T(0xd9), T(0xda), T(0xdb), T(0xdc), T(0xdd), T(0xde), T(0xdf),
+ T(0xe0), T(0xe1), T(0xe2), T(0xe3), T(0xe4), T(0xe5), T(0xe6),
+ T(0xe7), T(0xe8), T(0xe9), T(0xea), T(0xeb), T(0xec), T(0xed),
+ T(0xee), T(0xef), T(0xf0), T(0xf1), T(0xf2), T(0xf3), T(0xf4),
+ T(0xf5), T(0xf6), T(0xf7), T(0xf8), T(0xf9), T(0xfa), T(0xfb),
+ T(0xfc), T(0xfd), T(0xfe), 0x01000100};
+#undef T
+
+#if LIBYUV_UNATTENUATE_DUP
+// This code mimics the Intel SIMD version for better testability.
+#define UNATTENUATE(f, ia) clamp255(((f | (f << 8)) * ia) >> 16)
+#else
+#define UNATTENUATE(f, ia) clamp255((f * ia) >> 8)
+#endif
+
+// mimics the Intel SIMD code for exactness.
+void ARGBUnattenuateRow_C(const uint8_t* src_argb,
+ uint8_t* dst_argb,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ uint32_t b = src_argb[0];
+ uint32_t g = src_argb[1];
+ uint32_t r = src_argb[2];
+ const uint32_t a = src_argb[3];
+ const uint32_t ia = fixed_invtbl8[a] & 0xffff; // 8.8 fixed point
+
+ // Clamping should not be necessary but is free in assembly.
+ dst_argb[0] = STATIC_CAST(uint8_t, UNATTENUATE(b, ia));
+ dst_argb[1] = STATIC_CAST(uint8_t, UNATTENUATE(g, ia));
+ dst_argb[2] = STATIC_CAST(uint8_t, UNATTENUATE(r, ia));
+ dst_argb[3] = STATIC_CAST(uint8_t, a);
+ src_argb += 4;
+ dst_argb += 4;
+ }
+}
+
+void ComputeCumulativeSumRow_C(const uint8_t* row,
+ int32_t* cumsum,
+ const int32_t* previous_cumsum,
+ int width) {
+ int32_t row_sum[4] = {0, 0, 0, 0};
+ int x;
+ for (x = 0; x < width; ++x) {
+ row_sum[0] += row[x * 4 + 0];
+ row_sum[1] += row[x * 4 + 1];
+ row_sum[2] += row[x * 4 + 2];
+ row_sum[3] += row[x * 4 + 3];
+ cumsum[x * 4 + 0] = row_sum[0] + previous_cumsum[x * 4 + 0];
+ cumsum[x * 4 + 1] = row_sum[1] + previous_cumsum[x * 4 + 1];
+ cumsum[x * 4 + 2] = row_sum[2] + previous_cumsum[x * 4 + 2];
+ cumsum[x * 4 + 3] = row_sum[3] + previous_cumsum[x * 4 + 3];
+ }
+}
+
+void CumulativeSumToAverageRow_C(const int32_t* tl,
+ const int32_t* bl,
+ int w,
+ int area,
+ uint8_t* dst,
+ int count) {
+ float ooa;
+ int i;
+ assert(area != 0);
+
+ ooa = 1.0f / STATIC_CAST(float, area);
+ for (i = 0; i < count; ++i) {
+ dst[0] =
+ (uint8_t)(STATIC_CAST(float, bl[w + 0] + tl[0] - bl[0] - tl[w + 0]) *
+ ooa);
+ dst[1] =
+ (uint8_t)(STATIC_CAST(float, bl[w + 1] + tl[1] - bl[1] - tl[w + 1]) *
+ ooa);
+ dst[2] =
+ (uint8_t)(STATIC_CAST(float, bl[w + 2] + tl[2] - bl[2] - tl[w + 2]) *
+ ooa);
+ dst[3] =
+ (uint8_t)(STATIC_CAST(float, bl[w + 3] + tl[3] - bl[3] - tl[w + 3]) *
+ ooa);
+ dst += 4;
+ tl += 4;
+ bl += 4;
+ }
+}
+
+// Copy pixels from rotated source to destination row with a slope.
+LIBYUV_API
+void ARGBAffineRow_C(const uint8_t* src_argb,
+ int src_argb_stride,
+ uint8_t* dst_argb,
+ const float* uv_dudv,
+ int width) {
+ int i;
+ // Render a row of pixels from source into a buffer.
+ float uv[2];
+ uv[0] = uv_dudv[0];
+ uv[1] = uv_dudv[1];
+ for (i = 0; i < width; ++i) {
+ int x = (int)(uv[0]);
+ int y = (int)(uv[1]);
+ *(uint32_t*)(dst_argb) =
+ *(const uint32_t*)(src_argb + y * src_argb_stride + x * 4);
+ dst_argb += 4;
+ uv[0] += uv_dudv[2];
+ uv[1] += uv_dudv[3];
+ }
+}
+
+// Blend 2 rows into 1.
+static void HalfRow_C(const uint8_t* src_uv,
+ ptrdiff_t src_uv_stride,
+ uint8_t* dst_uv,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
+ }
+}
+
+static void HalfRow_16_C(const uint16_t* src_uv,
+ ptrdiff_t src_uv_stride,
+ uint16_t* dst_uv,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_uv[x] = (src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1;
+ }
+}
+
+static void HalfRow_16To8_C(const uint16_t* src_uv,
+ ptrdiff_t src_uv_stride,
+ uint8_t* dst_uv,
+ int scale,
+ int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_uv[x] = STATIC_CAST(
+ uint8_t,
+ C16TO8((src_uv[x] + src_uv[src_uv_stride + x] + 1) >> 1, scale));
+ }
+}
+
+// C version 2x2 -> 2x1.
+void InterpolateRow_C(uint8_t* dst_ptr,
+ const uint8_t* src_ptr,
+ ptrdiff_t src_stride,
+ int width,
+ int source_y_fraction) {
+ int y1_fraction = source_y_fraction;
+ int y0_fraction = 256 - y1_fraction;
+ const uint8_t* src_ptr1 = src_ptr + src_stride;
+ int x;
+ assert(source_y_fraction >= 0);
+ assert(source_y_fraction < 256);
+
+ if (y1_fraction == 0) {
+ memcpy(dst_ptr, src_ptr, width);
+ return;
+ }
+ if (y1_fraction == 128) {
+ HalfRow_C(src_ptr, src_stride, dst_ptr, width);
+ return;
+ }
+ for (x = 0; x < width; ++x) {
+ dst_ptr[0] = STATIC_CAST(
+ uint8_t,
+ (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8);
+ ++src_ptr;
+ ++src_ptr1;
+ ++dst_ptr;
+ }
+}
+
+// C version 2x2 -> 2x1.
+void InterpolateRow_16_C(uint16_t* dst_ptr,
+ const uint16_t* src_ptr,
+ ptrdiff_t src_stride,
+ int width,
+ int source_y_fraction) {
+ int y1_fraction = source_y_fraction;
+ int y0_fraction = 256 - y1_fraction;
+ const uint16_t* src_ptr1 = src_ptr + src_stride;
+ int x;
+ assert(source_y_fraction >= 0);
+ assert(source_y_fraction < 256);
+
+ if (y1_fraction == 0) {
+ memcpy(dst_ptr, src_ptr, width * 2);
+ return;
+ }
+ if (y1_fraction == 128) {
+ HalfRow_16_C(src_ptr, src_stride, dst_ptr, width);
+ return;
+ }
+ for (x = 0; x < width; ++x) {
+ dst_ptr[0] = STATIC_CAST(
+ uint16_t,
+ (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8);
+ ++src_ptr;
+ ++src_ptr1;
+ ++dst_ptr;
+ }
+}
+
+// C version 2x2 16 bit-> 2x1 8 bit.
+// Use scale to convert lsb formats to msb, depending how many bits there are:
+// 32768 = 9 bits
+// 16384 = 10 bits
+// 4096 = 12 bits
+// 256 = 16 bits
+// TODO(fbarchard): change scale to bits
+
+void InterpolateRow_16To8_C(uint8_t* dst_ptr,
+ const uint16_t* src_ptr,
+ ptrdiff_t src_stride,
+ int scale,
+ int width,
+ int source_y_fraction) {
+ int y1_fraction = source_y_fraction;
+ int y0_fraction = 256 - y1_fraction;
+ const uint16_t* src_ptr1 = src_ptr + src_stride;
+ int x;
+ assert(source_y_fraction >= 0);
+ assert(source_y_fraction < 256);
+
+ if (source_y_fraction == 0) {
+ Convert16To8Row_C(src_ptr, dst_ptr, scale, width);
+ return;
+ }
+ if (source_y_fraction == 128) {
+ HalfRow_16To8_C(src_ptr, src_stride, dst_ptr, scale, width);
+ return;
+ }
+ for (x = 0; x < width; ++x) {
+ dst_ptr[0] = STATIC_CAST(
+ uint8_t,
+ C16TO8(
+ (src_ptr[0] * y0_fraction + src_ptr1[0] * y1_fraction + 128) >> 8,
+ scale));
+ src_ptr += 1;
+ src_ptr1 += 1;
+ dst_ptr += 1;
+ }
+}
+
+// Use first 4 shuffler values to reorder ARGB channels.
+void ARGBShuffleRow_C(const uint8_t* src_argb,
+ uint8_t* dst_argb,
+ const uint8_t* shuffler,
+ int width) {
+ int index0 = shuffler[0];
+ int index1 = shuffler[1];
+ int index2 = shuffler[2];
+ int index3 = shuffler[3];
+ // Shuffle a row of ARGB.
+ int x;
+ for (x = 0; x < width; ++x) {
+ // To support in-place conversion.
+ uint8_t b = src_argb[index0];
+ uint8_t g = src_argb[index1];
+ uint8_t r = src_argb[index2];
+ uint8_t a = src_argb[index3];
+ dst_argb[0] = b;
+ dst_argb[1] = g;
+ dst_argb[2] = r;
+ dst_argb[3] = a;
+ src_argb += 4;
+ dst_argb += 4;
+ }
+}
+
+void I422ToYUY2Row_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_frame,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_frame[0] = src_y[0];
+ dst_frame[1] = src_u[0];
+ dst_frame[2] = src_y[1];
+ dst_frame[3] = src_v[0];
+ dst_frame += 4;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ }
+ if (width & 1) {
+ dst_frame[0] = src_y[0];
+ dst_frame[1] = src_u[0];
+ dst_frame[2] = 0;
+ dst_frame[3] = src_v[0];
+ }
+}
+
+void I422ToUYVYRow_C(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_frame,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_frame[0] = src_u[0];
+ dst_frame[1] = src_y[0];
+ dst_frame[2] = src_v[0];
+ dst_frame[3] = src_y[1];
+ dst_frame += 4;
+ src_y += 2;
+ src_u += 1;
+ src_v += 1;
+ }
+ if (width & 1) {
+ dst_frame[0] = src_u[0];
+ dst_frame[1] = src_y[0];
+ dst_frame[2] = src_v[0];
+ dst_frame[3] = 0;
+ }
+}
+
+void ARGBPolynomialRow_C(const uint8_t* src_argb,
+ uint8_t* dst_argb,
+ const float* poly,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ float b = (float)(src_argb[0]);
+ float g = (float)(src_argb[1]);
+ float r = (float)(src_argb[2]);
+ float a = (float)(src_argb[3]);
+ float b2 = b * b;
+ float g2 = g * g;
+ float r2 = r * r;
+ float a2 = a * a;
+ float db = poly[0] + poly[4] * b;
+ float dg = poly[1] + poly[5] * g;
+ float dr = poly[2] + poly[6] * r;
+ float da = poly[3] + poly[7] * a;
+ float b3 = b2 * b;
+ float g3 = g2 * g;
+ float r3 = r2 * r;
+ float a3 = a2 * a;
+ db += poly[8] * b2;
+ dg += poly[9] * g2;
+ dr += poly[10] * r2;
+ da += poly[11] * a2;
+ db += poly[12] * b3;
+ dg += poly[13] * g3;
+ dr += poly[14] * r3;
+ da += poly[15] * a3;
+
+ dst_argb[0] = STATIC_CAST(uint8_t, Clamp((int32_t)(db)));
+ dst_argb[1] = STATIC_CAST(uint8_t, Clamp((int32_t)(dg)));
+ dst_argb[2] = STATIC_CAST(uint8_t, Clamp((int32_t)(dr)));
+ dst_argb[3] = STATIC_CAST(uint8_t, Clamp((int32_t)(da)));
+ src_argb += 4;
+ dst_argb += 4;
+ }
+}
+
+// Samples assumed to be unsigned in low 9, 10 or 12 bits. Scale factor
+// adjust the source integer range to the half float range desired.
+
+// This magic constant is 2^-112. Multiplying by this
+// is the same as subtracting 112 from the exponent, which
+// is the difference in exponent bias between 32-bit and
+// 16-bit floats. Once we've done this subtraction, we can
+// simply extract the low bits of the exponent and the high
+// bits of the mantissa from our float and we're done.
+
+// Work around GCC 7 punning warning -Wstrict-aliasing
+#if defined(__GNUC__)
+typedef uint32_t __attribute__((__may_alias__)) uint32_alias_t;
+#else
+typedef uint32_t uint32_alias_t;
+#endif
+
+void HalfFloatRow_C(const uint16_t* src,
+ uint16_t* dst,
+ float scale,
+ int width) {
+ int i;
+ float mult = 1.9259299444e-34f * scale;
+ for (i = 0; i < width; ++i) {
+ float value = src[i] * mult;
+ dst[i] = (uint16_t)((*(const uint32_alias_t*)&value) >> 13);
+ }
+}
+
+void ByteToFloatRow_C(const uint8_t* src, float* dst, float scale, int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ float value = src[i] * scale;
+ dst[i] = value;
+ }
+}
+
+void ARGBLumaColorTableRow_C(const uint8_t* src_argb,
+ uint8_t* dst_argb,
+ int width,
+ const uint8_t* luma,
+ uint32_t lumacoeff) {
+ uint32_t bc = lumacoeff & 0xff;
+ uint32_t gc = (lumacoeff >> 8) & 0xff;
+ uint32_t rc = (lumacoeff >> 16) & 0xff;
+
+ int i;
+ for (i = 0; i < width - 1; i += 2) {
+ // Luminance in rows, color values in columns.
+ const uint8_t* luma0 =
+ ((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) +
+ luma;
+ const uint8_t* luma1;
+ dst_argb[0] = luma0[src_argb[0]];
+ dst_argb[1] = luma0[src_argb[1]];
+ dst_argb[2] = luma0[src_argb[2]];
+ dst_argb[3] = src_argb[3];
+ luma1 =
+ ((src_argb[4] * bc + src_argb[5] * gc + src_argb[6] * rc) & 0x7F00u) +
+ luma;
+ dst_argb[4] = luma1[src_argb[4]];
+ dst_argb[5] = luma1[src_argb[5]];
+ dst_argb[6] = luma1[src_argb[6]];
+ dst_argb[7] = src_argb[7];
+ src_argb += 8;
+ dst_argb += 8;
+ }
+ if (width & 1) {
+ // Luminance in rows, color values in columns.
+ const uint8_t* luma0 =
+ ((src_argb[0] * bc + src_argb[1] * gc + src_argb[2] * rc) & 0x7F00u) +
+ luma;
+ dst_argb[0] = luma0[src_argb[0]];
+ dst_argb[1] = luma0[src_argb[1]];
+ dst_argb[2] = luma0[src_argb[2]];
+ dst_argb[3] = src_argb[3];
+ }
+}
+
+void ARGBCopyAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) {
+ int i;
+ for (i = 0; i < width - 1; i += 2) {
+ dst[3] = src[3];
+ dst[7] = src[7];
+ dst += 8;
+ src += 8;
+ }
+ if (width & 1) {
+ dst[3] = src[3];
+ }
+}
+
+void ARGBExtractAlphaRow_C(const uint8_t* src_argb, uint8_t* dst_a, int width) {
+ int i;
+ for (i = 0; i < width - 1; i += 2) {
+ dst_a[0] = src_argb[3];
+ dst_a[1] = src_argb[7];
+ dst_a += 2;
+ src_argb += 8;
+ }
+ if (width & 1) {
+ dst_a[0] = src_argb[3];
+ }
+}
+
+void ARGBCopyYToAlphaRow_C(const uint8_t* src, uint8_t* dst, int width) {
+ int i;
+ for (i = 0; i < width - 1; i += 2) {
+ dst[3] = src[0];
+ dst[7] = src[1];
+ dst += 8;
+ src += 2;
+ }
+ if (width & 1) {
+ dst[3] = src[0];
+ }
+}
+
+// Maximum temporary width for wrappers to process at a time, in pixels.
+#define MAXTWIDTH 2048
+
+#if !(defined(_MSC_VER) && !defined(__clang__) && defined(_M_IX86)) && \
+ defined(HAS_I422TORGB565ROW_SSSE3)
+// row_win.cc has asm version, but GCC uses 2 step wrapper.
+void I422ToRGB565Row_SSSE3(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_rgb565,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
+ ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_rgb565 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I422TOARGB1555ROW_SSSE3)
+void I422ToARGB1555Row_SSSE3(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_argb1555,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
+ ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth);
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_argb1555 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I422TOARGB4444ROW_SSSE3)
+void I422ToARGB4444Row_SSSE3(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_argb4444,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_SSSE3(src_y, src_u, src_v, row, yuvconstants, twidth);
+ ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth);
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_argb4444 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_NV12TORGB565ROW_SSSE3)
+void NV12ToRGB565Row_SSSE3(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* dst_rgb565,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth);
+ ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
+ src_y += twidth;
+ src_uv += twidth;
+ dst_rgb565 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_NV12TORGB24ROW_SSSE3)
+void NV12ToRGB24Row_SSSE3(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* dst_rgb24,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ NV12ToARGBRow_SSSE3(src_y, src_uv, row, yuvconstants, twidth);
+ ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
+ src_y += twidth;
+ src_uv += twidth;
+ dst_rgb24 += twidth * 3;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_NV21TORGB24ROW_SSSE3)
+void NV21ToRGB24Row_SSSE3(const uint8_t* src_y,
+ const uint8_t* src_vu,
+ uint8_t* dst_rgb24,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ NV21ToARGBRow_SSSE3(src_y, src_vu, row, yuvconstants, twidth);
+ ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
+ src_y += twidth;
+ src_vu += twidth;
+ dst_rgb24 += twidth * 3;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_NV12TORGB24ROW_AVX2)
+void NV12ToRGB24Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* dst_rgb24,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTORGB24ROW_AVX2)
+ ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
+#else
+ ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
+#endif
+ src_y += twidth;
+ src_uv += twidth;
+ dst_rgb24 += twidth * 3;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_NV21TORGB24ROW_AVX2)
+void NV21ToRGB24Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_vu,
+ uint8_t* dst_rgb24,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ NV21ToARGBRow_AVX2(src_y, src_vu, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTORGB24ROW_AVX2)
+ ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
+#else
+ ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
+#endif
+ src_y += twidth;
+ src_vu += twidth;
+ dst_rgb24 += twidth * 3;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I422TORGB565ROW_AVX2)
+void I422ToRGB565Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_rgb565,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTORGB565ROW_AVX2)
+ ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth);
+#else
+ ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
+#endif
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_rgb565 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I422TOARGB1555ROW_AVX2)
+void I422ToARGB1555Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_argb1555,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTOARGB1555ROW_AVX2)
+ ARGBToARGB1555Row_AVX2(row, dst_argb1555, twidth);
+#else
+ ARGBToARGB1555Row_SSE2(row, dst_argb1555, twidth);
+#endif
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_argb1555 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I422TOARGB4444ROW_AVX2)
+void I422ToARGB4444Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_argb4444,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTOARGB4444ROW_AVX2)
+ ARGBToARGB4444Row_AVX2(row, dst_argb4444, twidth);
+#else
+ ARGBToARGB4444Row_SSE2(row, dst_argb4444, twidth);
+#endif
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_argb4444 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I422TORGB24ROW_AVX2)
+void I422ToRGB24Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_rgb24,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I422ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTORGB24ROW_AVX2)
+ ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
+#else
+ ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
+#endif
+ src_y += twidth;
+ src_u += twidth / 2;
+ src_v += twidth / 2;
+ dst_rgb24 += twidth * 3;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_I444TORGB24ROW_AVX2)
+void I444ToRGB24Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ uint8_t* dst_rgb24,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ I444ToARGBRow_AVX2(src_y, src_u, src_v, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTORGB24ROW_AVX2)
+ ARGBToRGB24Row_AVX2(row, dst_rgb24, twidth);
+#else
+ ARGBToRGB24Row_SSSE3(row, dst_rgb24, twidth);
+#endif
+ src_y += twidth;
+ src_u += twidth;
+ src_v += twidth;
+ dst_rgb24 += twidth * 3;
+ width -= twidth;
+ }
+}
+#endif
+
+#if defined(HAS_NV12TORGB565ROW_AVX2)
+void NV12ToRGB565Row_AVX2(const uint8_t* src_y,
+ const uint8_t* src_uv,
+ uint8_t* dst_rgb565,
+ const struct YuvConstants* yuvconstants,
+ int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ NV12ToARGBRow_AVX2(src_y, src_uv, row, yuvconstants, twidth);
+#if defined(HAS_ARGBTORGB565ROW_AVX2)
+ ARGBToRGB565Row_AVX2(row, dst_rgb565, twidth);
+#else
+ ARGBToRGB565Row_SSE2(row, dst_rgb565, twidth);
+#endif
+ src_y += twidth;
+ src_uv += twidth;
+ dst_rgb565 += twidth * 2;
+ width -= twidth;
+ }
+}
+#endif
+
+#ifdef HAS_RGB24TOYJROW_AVX2
+// Convert 16 RGB24 pixels (64 bytes) to 16 YJ values.
+void RGB24ToYJRow_AVX2(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth);
+ ARGBToYJRow_AVX2(row, dst_yj, twidth);
+ src_rgb24 += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RGB24TOYJROW_AVX2
+
+#ifdef HAS_RAWTOYJROW_AVX2
+// Convert 16 RAW pixels (64 bytes) to 16 YJ values.
+void RAWToYJRow_AVX2(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RAWToARGBRow_SSSE3(src_raw, row, twidth);
+ ARGBToYJRow_AVX2(row, dst_yj, twidth);
+ src_raw += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RAWTOYJROW_AVX2
+
+#ifdef HAS_RGB24TOYJROW_SSSE3
+// Convert 16 RGB24 pixels (64 bytes) to 16 YJ values.
+void RGB24ToYJRow_SSSE3(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RGB24ToARGBRow_SSSE3(src_rgb24, row, twidth);
+ ARGBToYJRow_SSSE3(row, dst_yj, twidth);
+ src_rgb24 += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RGB24TOYJROW_SSSE3
+
+#ifdef HAS_RAWTOYJROW_SSSE3
+// Convert 16 RAW pixels (64 bytes) to 16 YJ values.
+void RAWToYJRow_SSSE3(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
+ // Row buffer for intermediate ARGB pixels.
+ SIMD_ALIGNED(uint8_t row[MAXTWIDTH * 4]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ RAWToARGBRow_SSSE3(src_raw, row, twidth);
+ ARGBToYJRow_SSSE3(row, dst_yj, twidth);
+ src_raw += twidth * 3;
+ dst_yj += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_RAWTOYJROW_SSSE3
+
+#ifdef HAS_INTERPOLATEROW_16TO8_AVX2
+void InterpolateRow_16To8_AVX2(uint8_t* dst_ptr,
+ const uint16_t* src_ptr,
+ ptrdiff_t src_stride,
+ int scale,
+ int width,
+ int source_y_fraction) {
+ // Row buffer for intermediate 16 bit pixels.
+ SIMD_ALIGNED(uint16_t row[MAXTWIDTH]);
+ while (width > 0) {
+ int twidth = width > MAXTWIDTH ? MAXTWIDTH : width;
+ InterpolateRow_16_C(row, src_ptr, src_stride, twidth, source_y_fraction);
+ Convert16To8Row_AVX2(row, dst_ptr, scale, twidth);
+ src_ptr += twidth;
+ dst_ptr += twidth;
+ width -= twidth;
+ }
+}
+#endif // HAS_INTERPOLATEROW_16TO8_AVX2
+
+float ScaleSumSamples_C(const float* src, float* dst, float scale, int width) {
+ float fsum = 0.f;
+ int i;
+ for (i = 0; i < width; ++i) {
+ float v = *src++;
+ fsum += v * v;
+ *dst++ = v * scale;
+ }
+ return fsum;
+}
+
+float ScaleMaxSamples_C(const float* src, float* dst, float scale, int width) {
+ float fmax = 0.f;
+ int i;
+ for (i = 0; i < width; ++i) {
+ float v = *src++;
+ float vs = v * scale;
+ fmax = (v > fmax) ? v : fmax;
+ *dst++ = vs;
+ }
+ return fmax;
+}
+
+void ScaleSamples_C(const float* src, float* dst, float scale, int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = *src++ * scale;
+ }
+}
+
+void GaussRow_C(const uint32_t* src, uint16_t* dst, int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = STATIC_CAST(
+ uint16_t,
+ (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4] + 128) >> 8);
+ ++src;
+ }
+}
+
+// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
+void GaussCol_C(const uint16_t* src0,
+ const uint16_t* src1,
+ const uint16_t* src2,
+ const uint16_t* src3,
+ const uint16_t* src4,
+ uint32_t* dst,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++;
+ }
+}
+
+void GaussRow_F32_C(const float* src, float* dst, int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = (src[0] + src[1] * 4 + src[2] * 6 + src[3] * 4 + src[4]) *
+ (1.0f / 256.0f);
+ ++src;
+ }
+}
+
+// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
+void GaussCol_F32_C(const float* src0,
+ const float* src1,
+ const float* src2,
+ const float* src3,
+ const float* src4,
+ float* dst,
+ int width) {
+ int i;
+ for (i = 0; i < width; ++i) {
+ *dst++ = *src0++ + *src1++ * 4 + *src2++ * 6 + *src3++ * 4 + *src4++;
+ }
+}
+
+// Convert biplanar NV21 to packed YUV24
+void NV21ToYUV24Row_C(const uint8_t* src_y,
+ const uint8_t* src_vu,
+ uint8_t* dst_yuv24,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_yuv24[0] = src_vu[0]; // V
+ dst_yuv24[1] = src_vu[1]; // U
+ dst_yuv24[2] = src_y[0]; // Y0
+ dst_yuv24[3] = src_vu[0]; // V
+ dst_yuv24[4] = src_vu[1]; // U
+ dst_yuv24[5] = src_y[1]; // Y1
+ src_y += 2;
+ src_vu += 2;
+ dst_yuv24 += 6; // Advance 2 pixels.
+ }
+ if (width & 1) {
+ dst_yuv24[0] = src_vu[0]; // V
+ dst_yuv24[1] = src_vu[1]; // U
+ dst_yuv24[2] = src_y[0]; // Y0
+ }
+}
+
+// Filter 2 rows of AYUV UV's (444) into UV (420).
+// AYUV is VUYA in memory. UV for NV12 is UV order in memory.
+void AYUVToUVRow_C(const uint8_t* src_ayuv,
+ int src_stride_ayuv,
+ uint8_t* dst_uv,
+ int width) {
+ // Output a row of UV values, filtering 2x2 rows of AYUV.
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_uv[0] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] +
+ src_ayuv[src_stride_ayuv + 5] + 2) >>
+ 2;
+ dst_uv[1] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] +
+ src_ayuv[src_stride_ayuv + 4] + 2) >>
+ 2;
+ src_ayuv += 8;
+ dst_uv += 2;
+ }
+ if (width & 1) {
+ dst_uv[0] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1;
+ dst_uv[1] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1;
+ }
+}
+
+// Filter 2 rows of AYUV UV's (444) into VU (420).
+void AYUVToVURow_C(const uint8_t* src_ayuv,
+ int src_stride_ayuv,
+ uint8_t* dst_vu,
+ int width) {
+ // Output a row of VU values, filtering 2x2 rows of AYUV.
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_vu[0] = (src_ayuv[0] + src_ayuv[4] + src_ayuv[src_stride_ayuv + 0] +
+ src_ayuv[src_stride_ayuv + 4] + 2) >>
+ 2;
+ dst_vu[1] = (src_ayuv[1] + src_ayuv[5] + src_ayuv[src_stride_ayuv + 1] +
+ src_ayuv[src_stride_ayuv + 5] + 2) >>
+ 2;
+ src_ayuv += 8;
+ dst_vu += 2;
+ }
+ if (width & 1) {
+ dst_vu[0] = (src_ayuv[0] + src_ayuv[src_stride_ayuv + 0] + 1) >> 1;
+ dst_vu[1] = (src_ayuv[1] + src_ayuv[src_stride_ayuv + 1] + 1) >> 1;
+ }
+}
+
+// Copy row of AYUV Y's into Y
+void AYUVToYRow_C(const uint8_t* src_ayuv, uint8_t* dst_y, int width) {
+ // Output a row of Y values.
+ int x;
+ for (x = 0; x < width; ++x) {
+ dst_y[x] = src_ayuv[2]; // v,u,y,a
+ src_ayuv += 4;
+ }
+}
+
+// Convert UV plane of NV12 to VU of NV21.
+void SwapUVRow_C(const uint8_t* src_uv, uint8_t* dst_vu, int width) {
+ int x;
+ for (x = 0; x < width; ++x) {
+ uint8_t u = src_uv[0];
+ uint8_t v = src_uv[1];
+ dst_vu[0] = v;
+ dst_vu[1] = u;
+ src_uv += 2;
+ dst_vu += 2;
+ }
+}
+
+void HalfMergeUVRow_C(const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_uv,
+ int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ dst_uv[0] = (src_u[0] + src_u[1] + src_u[src_stride_u] +
+ src_u[src_stride_u + 1] + 2) >>
+ 2;
+ dst_uv[1] = (src_v[0] + src_v[1] + src_v[src_stride_v] +
+ src_v[src_stride_v + 1] + 2) >>
+ 2;
+ src_u += 2;
+ src_v += 2;
+ dst_uv += 2;
+ }
+ if (width & 1) {
+ dst_uv[0] = (src_u[0] + src_u[src_stride_u] + 1) >> 1;
+ dst_uv[1] = (src_v[0] + src_v[src_stride_v] + 1) >> 1;
+ }
+}
+
+#undef STATIC_CAST
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace libyuv
+#endif