aboutsummaryrefslogtreecommitdiff
path: root/files/unit_test/scale_uv_test.cc
blob: dab217c977a8558e68382e750fc24a64863460b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 *  Copyright 2011 The LibYuv Project Authors. All rights reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS. All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <stdlib.h>
#include <time.h>

#include "../unit_test/unit_test.h"
#include "libyuv/cpu_id.h"
#include "libyuv/scale_uv.h"

namespace libyuv {

#define STRINGIZE(line) #line
#define FILELINESTR(file, line) file ":" STRINGIZE(line)

#if !defined(DISABLE_SLOW_TESTS) || defined(__x86_64__) || defined(__i386__)
// SLOW TESTS are those that are unoptimized C code.
// FULL TESTS are optimized but test many variations of the same code.
#define ENABLE_FULL_TESTS
#endif

// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int UVTestFilter(int src_width,
                        int src_height,
                        int dst_width,
                        int dst_height,
                        FilterMode f,
                        int benchmark_iterations,
                        int disable_cpu_flags,
                        int benchmark_cpu_info) {
  if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
    return 0;
  }

  int i;
  int64_t src_uv_plane_size = Abs(src_width) * Abs(src_height) * 2LL;
  int src_stride_uv = Abs(src_width) * 2;
  int64_t dst_uv_plane_size = dst_width * dst_height * 2LL;
  int dst_stride_uv = dst_width * 2;

  align_buffer_page_end(src_uv, src_uv_plane_size);
  align_buffer_page_end(dst_uv_c, dst_uv_plane_size);
  align_buffer_page_end(dst_uv_opt, dst_uv_plane_size);

  if (!src_uv || !dst_uv_c || !dst_uv_opt) {
    printf("Skipped.  Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
    return 0;
  }
  MemRandomize(src_uv, src_uv_plane_size);
  memset(dst_uv_c, 2, dst_uv_plane_size);
  memset(dst_uv_opt, 123, dst_uv_plane_size);

  MaskCpuFlags(disable_cpu_flags);  // Disable all CPU optimization.
  double c_time = get_time();
  UVScale(src_uv, src_stride_uv, src_width, src_height, dst_uv_c, dst_stride_uv,
          dst_width, dst_height, f);
  c_time = (get_time() - c_time);

  MaskCpuFlags(benchmark_cpu_info);  // Enable all CPU optimization.
  double opt_time = get_time();
  for (i = 0; i < benchmark_iterations; ++i) {
    UVScale(src_uv, src_stride_uv, src_width, src_height, dst_uv_opt,
            dst_stride_uv, dst_width, dst_height, f);
  }
  opt_time = (get_time() - opt_time) / benchmark_iterations;

  // Report performance of C vs OPT
  printf("filter %d - %8d us C - %8d us OPT\n", f,
         static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));

  int max_diff = 0;
  for (i = 0; i < dst_uv_plane_size; ++i) {
    int abs_diff = Abs(dst_uv_c[i] - dst_uv_opt[i]);
    if (abs_diff > max_diff) {
      max_diff = abs_diff;
    }
  }

  free_aligned_buffer_page_end(dst_uv_c);
  free_aligned_buffer_page_end(dst_uv_opt);
  free_aligned_buffer_page_end(src_uv);
  return max_diff;
}

// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
#define DX(x, nom, denom) static_cast<int>((Abs(x) / nom) * nom)
#define SX(x, nom, denom) static_cast<int>((x / nom) * denom)

#define TEST_FACTOR1(name, filter, nom, denom)                               \
  TEST_F(LibYUVScaleTest, UVScaleDownBy##name##_##filter) {                  \
    int diff = UVTestFilter(                                                 \
        SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
        DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
        kFilter##filter, benchmark_iterations_, disable_cpu_flags_,          \
        benchmark_cpu_info_);                                                \
    EXPECT_EQ(0, diff);                                                      \
  }

#if defined(ENABLE_FULL_TESTS)
// Test a scale factor with all 4 filters.  Expect exact for SIMD vs C.
#define TEST_FACTOR(name, nom, denom)      \
  TEST_FACTOR1(name, None, nom, denom)     \
  TEST_FACTOR1(name, Linear, nom, denom)   \
  TEST_FACTOR1(name, Bilinear, nom, denom) \
  TEST_FACTOR1(name, Box, nom, denom)
#else
// Test a scale factor with Bilinear.
#define TEST_FACTOR(name, nom, denom) TEST_FACTOR1(name, Bilinear, nom, denom)
#endif

TEST_FACTOR(2, 1, 2)
TEST_FACTOR(4, 1, 4)
// TEST_FACTOR(8, 1, 8)  Disable for benchmark performance.
TEST_FACTOR(3by4, 3, 4)
TEST_FACTOR(3by8, 3, 8)
TEST_FACTOR(3, 1, 3)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX

#define TEST_SCALETO1(name, width, height, filter, max_diff)                \
  TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) {          \
    int diff = UVTestFilter(benchmark_width_, benchmark_height_, width,     \
                            height, kFilter##filter, benchmark_iterations_, \
                            disable_cpu_flags_, benchmark_cpu_info_);       \
    EXPECT_LE(diff, max_diff);                                              \
  }                                                                         \
  TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) {        \
    int diff = UVTestFilter(width, height, Abs(benchmark_width_),           \
                            Abs(benchmark_height_), kFilter##filter,        \
                            benchmark_iterations_, disable_cpu_flags_,      \
                            benchmark_cpu_info_);                           \
    EXPECT_LE(diff, max_diff);                                              \
  }

#if defined(ENABLE_FULL_TESTS)
/// Test scale to a specified size with all 4 filters.
#define TEST_SCALETO(name, width, height)       \
  TEST_SCALETO1(name, width, height, None, 0)   \
  TEST_SCALETO1(name, width, height, Linear, 3) \
  TEST_SCALETO1(name, width, height, Bilinear, 3)
#else
#define TEST_SCALETO(name, width, height) \
  TEST_SCALETO1(name, width, height, Bilinear, 3)
#endif

TEST_SCALETO(UVScale, 1, 1)
TEST_SCALETO(UVScale, 569, 480)
TEST_SCALETO(UVScale, 640, 360)
#ifndef DISABLE_SLOW_TESTS
TEST_SCALETO(UVScale, 256, 144) /* 128x72 * 2 */
TEST_SCALETO(UVScale, 320, 240)
TEST_SCALETO(UVScale, 1280, 720)
TEST_SCALETO(UVScale, 1920, 1080)
#endif  // DISABLE_SLOW_TESTS
#undef TEST_SCALETO1
#undef TEST_SCALETO

#define TEST_SCALESWAPXY1(name, filter, max_diff)                              \
  TEST_F(LibYUVScaleTest, name##SwapXY_##filter) {                             \
    int diff =                                                                 \
        UVTestFilter(benchmark_width_, benchmark_height_, benchmark_height_,   \
                     benchmark_width_, kFilter##filter, benchmark_iterations_, \
                     disable_cpu_flags_, benchmark_cpu_info_);                 \
    EXPECT_LE(diff, max_diff);                                                 \
  }

#if defined(ENABLE_FULL_TESTS)
// Test scale with swapped width and height with all 3 filters.
TEST_SCALESWAPXY1(UVScale, None, 0)
TEST_SCALESWAPXY1(UVScale, Linear, 0)
TEST_SCALESWAPXY1(UVScale, Bilinear, 0)
#else
TEST_SCALESWAPXY1(UVScale, Bilinear, 0)
#endif
#undef TEST_SCALESWAPXY1

TEST_F(LibYUVScaleTest, UVTest3x) {
  const int kSrcStride = 480 * 2;
  const int kDstStride = 160 * 2;
  const int kSize = kSrcStride * 3;
  align_buffer_page_end(orig_pixels, kSize);
  for (int i = 0; i < 480 * 3; ++i) {
    orig_pixels[i * 2 + 0] = i;
    orig_pixels[i * 2 + 1] = 255 - i;
  }
  align_buffer_page_end(dest_pixels, kDstStride);

  int iterations160 = (benchmark_width_ * benchmark_height_ + (160 - 1)) / 160 *
                      benchmark_iterations_;
  for (int i = 0; i < iterations160; ++i) {
    UVScale(orig_pixels, kSrcStride, 480, 3, dest_pixels, kDstStride, 160, 1,
            kFilterBilinear);
  }

  EXPECT_EQ(225, dest_pixels[0]);
  EXPECT_EQ(255 - 225, dest_pixels[1]);

  UVScale(orig_pixels, kSrcStride, 480, 3, dest_pixels, kDstStride, 160, 1,
          kFilterNone);

  EXPECT_EQ(225, dest_pixels[0]);
  EXPECT_EQ(255 - 225, dest_pixels[1]);

  free_aligned_buffer_page_end(dest_pixels);
  free_aligned_buffer_page_end(orig_pixels);
}

TEST_F(LibYUVScaleTest, UVTest4x) {
  const int kSrcStride = 640 * 2;
  const int kDstStride = 160 * 2;
  const int kSize = kSrcStride * 4;
  align_buffer_page_end(orig_pixels, kSize);
  for (int i = 0; i < 640 * 4; ++i) {
    orig_pixels[i * 2 + 0] = i;
    orig_pixels[i * 2 + 1] = 255 - i;
  }
  align_buffer_page_end(dest_pixels, kDstStride);

  int iterations160 = (benchmark_width_ * benchmark_height_ + (160 - 1)) / 160 *
                      benchmark_iterations_;
  for (int i = 0; i < iterations160; ++i) {
    UVScale(orig_pixels, kSrcStride, 640, 4, dest_pixels, kDstStride, 160, 1,
            kFilterBilinear);
  }

  EXPECT_EQ(66, dest_pixels[0]);
  EXPECT_EQ(190, dest_pixels[1]);

  UVScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1,
          kFilterNone);

  EXPECT_EQ(2, dest_pixels[0]);  // expect the 3rd pixel of the 3rd row
  EXPECT_EQ(255 - 2, dest_pixels[1]);

  free_aligned_buffer_page_end(dest_pixels);
  free_aligned_buffer_page_end(orig_pixels);
}

}  // namespace libyuv