//===-- DWARFUnit.cpp -------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFUnit.h" #include "lldb/Core/Module.h" #include "lldb/Host/StringConvert.h" #include "lldb/Symbol/CompileUnit.h" #include "lldb/Symbol/LineTable.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/Timer.h" #include "DWARFDIECollection.h" #include "DWARFDebugAranges.h" #include "DWARFDebugInfo.h" #include "LogChannelDWARF.h" #include "SymbolFileDWARFDebugMap.h" #include "SymbolFileDWARFDwo.h" using namespace lldb; using namespace lldb_private; using namespace std; extern int g_verbose; DWARFUnit::DWARFUnit(SymbolFileDWARF *dwarf) : m_dwarf(dwarf), m_cancel_scopes(false) {} DWARFUnit::~DWARFUnit() {} //---------------------------------------------------------------------- // Parses first DIE of a compile unit. //---------------------------------------------------------------------- void DWARFUnit::ExtractUnitDIEIfNeeded() { { llvm::sys::ScopedReader lock(m_first_die_mutex); if (m_first_die) return; // Already parsed } llvm::sys::ScopedWriter lock(m_first_die_mutex); if (m_first_die) return; // Already parsed static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); Timer scoped_timer( func_cat, "%8.8x: DWARFUnit::ExtractUnitDIEIfNeeded()", m_offset); // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. lldb::offset_t offset = GetFirstDIEOffset(); // We are in our compile unit, parse starting at the offset we were told to // parse const DWARFDataExtractor &data = GetData(); DWARFFormValue::FixedFormSizes fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize(GetAddressByteSize(), IsDWARF64()); if (offset < GetNextCompileUnitOffset() && m_first_die.FastExtract(data, this, fixed_form_sizes, &offset)) { AddUnitDIE(m_first_die); return; } ExtractDIEsEndCheck(offset); } //---------------------------------------------------------------------- // Parses a compile unit and indexes its DIEs if it hasn't already been done. // It will leave this compile unit extracted forever. //---------------------------------------------------------------------- void DWARFUnit::ExtractDIEsIfNeeded() { m_cancel_scopes = true; { llvm::sys::ScopedReader lock(m_die_array_mutex); if (!m_die_array.empty()) return; // Already parsed } llvm::sys::ScopedWriter lock(m_die_array_mutex); if (!m_die_array.empty()) return; // Already parsed ExtractDIEsRWLocked(); } //---------------------------------------------------------------------- // Parses a compile unit and indexes its DIEs if it hasn't already been done. // It will clear this compile unit after returned instance gets out of scope, // no other ScopedExtractDIEs instance is running for this compile unit // and no ExtractDIEsIfNeeded() has been executed during this ScopedExtractDIEs // lifetime. //---------------------------------------------------------------------- DWARFUnit::ScopedExtractDIEs DWARFUnit::ExtractDIEsScoped() { ScopedExtractDIEs scoped(this); { llvm::sys::ScopedReader lock(m_die_array_mutex); if (!m_die_array.empty()) return scoped; // Already parsed } llvm::sys::ScopedWriter lock(m_die_array_mutex); if (!m_die_array.empty()) return scoped; // Already parsed // Otherwise m_die_array would be already populated. lldbassert(!m_cancel_scopes); ExtractDIEsRWLocked(); scoped.m_clear_dies = true; return scoped; } DWARFUnit::ScopedExtractDIEs::ScopedExtractDIEs(DWARFUnit *cu) : m_cu(cu) { lldbassert(m_cu); m_cu->m_die_array_scoped_mutex.lock_shared(); } DWARFUnit::ScopedExtractDIEs::~ScopedExtractDIEs() { if (!m_cu) return; m_cu->m_die_array_scoped_mutex.unlock_shared(); if (!m_clear_dies || m_cu->m_cancel_scopes) return; // Be sure no other ScopedExtractDIEs is running anymore. llvm::sys::ScopedWriter lock_scoped(m_cu->m_die_array_scoped_mutex); llvm::sys::ScopedWriter lock(m_cu->m_die_array_mutex); if (m_cu->m_cancel_scopes) return; m_cu->ClearDIEsRWLocked(); } DWARFUnit::ScopedExtractDIEs::ScopedExtractDIEs(ScopedExtractDIEs &&rhs) : m_cu(rhs.m_cu), m_clear_dies(rhs.m_clear_dies) { rhs.m_cu = nullptr; } DWARFUnit::ScopedExtractDIEs &DWARFUnit::ScopedExtractDIEs::operator=( DWARFUnit::ScopedExtractDIEs &&rhs) { m_cu = rhs.m_cu; rhs.m_cu = nullptr; m_clear_dies = rhs.m_clear_dies; return *this; } //---------------------------------------------------------------------- // Parses a compile unit and indexes its DIEs, m_die_array_mutex must be // held R/W and m_die_array must be empty. //---------------------------------------------------------------------- void DWARFUnit::ExtractDIEsRWLocked() { llvm::sys::ScopedWriter first_die_lock(m_first_die_mutex); static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); Timer scoped_timer( func_cat, "%8.8x: DWARFUnit::ExtractDIEsIfNeeded()", m_offset); // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. lldb::offset_t offset = GetFirstDIEOffset(); lldb::offset_t next_cu_offset = GetNextCompileUnitOffset(); DWARFDebugInfoEntry die; // Keep a flat array of the DIE for binary lookup by DIE offset Log *log( LogChannelDWARF::GetLogIfAny(DWARF_LOG_DEBUG_INFO | DWARF_LOG_LOOKUPS)); if (log) { m_dwarf->GetObjectFile()->GetModule()->LogMessageVerboseBacktrace( log, "DWARFUnit::ExtractDIEsIfNeeded () for compile unit at " ".debug_info[0x%8.8x]", GetOffset()); } uint32_t depth = 0; // We are in our compile unit, parse starting at the offset we were told to // parse const DWARFDataExtractor &data = GetData(); std::vector die_index_stack; die_index_stack.reserve(32); die_index_stack.push_back(0); bool prev_die_had_children = false; DWARFFormValue::FixedFormSizes fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize(GetAddressByteSize(), IsDWARF64()); while (offset < next_cu_offset && die.FastExtract(data, this, fixed_form_sizes, &offset)) { // if (log) // log->Printf("0x%8.8x: %*.*s%s%s", // die.GetOffset(), // depth * 2, depth * 2, "", // DW_TAG_value_to_name (die.Tag()), // die.HasChildren() ? " *" : ""); const bool null_die = die.IsNULL(); if (depth == 0) { assert(m_die_array.empty() && "Compile unit DIE already added"); // The average bytes per DIE entry has been seen to be around 14-20 so // lets pre-reserve half of that since we are now stripping the NULL // tags. // Only reserve the memory if we are adding children of the main // compile unit DIE. The compile unit DIE is always the first entry, so // if our size is 1, then we are adding the first compile unit child // DIE and should reserve the memory. m_die_array.reserve(GetDebugInfoSize() / 24); m_die_array.push_back(die); if (!m_first_die) AddUnitDIE(m_die_array.front()); } else { if (null_die) { if (prev_die_had_children) { // This will only happen if a DIE says is has children but all it // contains is a NULL tag. Since we are removing the NULL DIEs from // the list (saves up to 25% in C++ code), we need a way to let the // DIE know that it actually doesn't have children. if (!m_die_array.empty()) m_die_array.back().SetHasChildren(false); } } else { die.SetParentIndex(m_die_array.size() - die_index_stack[depth - 1]); if (die_index_stack.back()) m_die_array[die_index_stack.back()].SetSiblingIndex( m_die_array.size() - die_index_stack.back()); // Only push the DIE if it isn't a NULL DIE m_die_array.push_back(die); } } if (null_die) { // NULL DIE. if (!die_index_stack.empty()) die_index_stack.pop_back(); if (depth > 0) --depth; prev_die_had_children = false; } else { die_index_stack.back() = m_die_array.size() - 1; // Normal DIE const bool die_has_children = die.HasChildren(); if (die_has_children) { die_index_stack.push_back(0); ++depth; } prev_die_had_children = die_has_children; } if (depth == 0) break; // We are done with this compile unit! } if (!m_die_array.empty()) { if (m_first_die) { // Only needed for the assertion. m_first_die.SetHasChildren(m_die_array.front().HasChildren()); lldbassert(m_first_die == m_die_array.front()); } m_first_die = m_die_array.front(); } m_die_array.shrink_to_fit(); ExtractDIEsEndCheck(offset); if (m_dwo_symbol_file) { DWARFUnit *dwo_cu = m_dwo_symbol_file->GetCompileUnit(); dwo_cu->ExtractDIEsIfNeeded(); } } //-------------------------------------------------------------------------- // Final checks for both ExtractUnitDIEIfNeeded() and ExtractDIEsIfNeeded(). //-------------------------------------------------------------------------- void DWARFUnit::ExtractDIEsEndCheck(lldb::offset_t offset) const { // Give a little bit of info if we encounter corrupt DWARF (our offset should // always terminate at or before the start of the next compilation unit // header). if (offset > GetNextCompileUnitOffset()) { m_dwarf->GetObjectFile()->GetModule()->ReportWarning( "DWARF compile unit extends beyond its bounds cu 0x%8.8x at " "0x%8.8" PRIx64 "\n", GetOffset(), offset); } Log *log(LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_INFO)); if (log && log->GetVerbose()) { StreamString strm; Dump(&strm); if (m_die_array.empty()) strm.Printf("error: no DIE for compile unit"); else m_die_array[0].Dump(m_dwarf, this, strm, UINT32_MAX); log->PutString(strm.GetString()); } } // m_die_array_mutex must be already held as read/write. void DWARFUnit::AddUnitDIE(const DWARFDebugInfoEntry &cu_die) { SetAddrBase( cu_die.GetAttributeValueAsUnsigned(m_dwarf, this, DW_AT_addr_base, 0)); SetRangesBase(cu_die.GetAttributeValueAsUnsigned(m_dwarf, this, DW_AT_rnglists_base, 0)); uint64_t base_addr = cu_die.GetAttributeValueAsAddress( m_dwarf, this, DW_AT_low_pc, LLDB_INVALID_ADDRESS); if (base_addr == LLDB_INVALID_ADDRESS) base_addr = cu_die.GetAttributeValueAsAddress( m_dwarf, this, DW_AT_entry_pc, 0); SetBaseAddress(base_addr); std::unique_ptr dwo_symbol_file = m_dwarf->GetDwoSymbolFileForCompileUnit(*this, cu_die); if (!dwo_symbol_file) return; DWARFUnit *dwo_cu = dwo_symbol_file->GetCompileUnit(); if (!dwo_cu) return; // Can't fetch the compile unit from the dwo file. DWARFBaseDIE dwo_cu_die = dwo_cu->GetUnitDIEOnly(); if (!dwo_cu_die.IsValid()) return; // Can't fetch the compile unit DIE from the dwo file. uint64_t main_dwo_id = cu_die.GetAttributeValueAsUnsigned(m_dwarf, this, DW_AT_GNU_dwo_id, 0); uint64_t sub_dwo_id = dwo_cu_die.GetAttributeValueAsUnsigned(DW_AT_GNU_dwo_id, 0); if (main_dwo_id != sub_dwo_id) return; // The 2 dwo ID isn't match. Don't use the dwo file as it belongs to // a differectn compilation. m_dwo_symbol_file = std::move(dwo_symbol_file); dw_addr_t addr_base = cu_die.GetAttributeValueAsUnsigned(m_dwarf, this, DW_AT_GNU_addr_base, 0); dwo_cu->SetAddrBase(addr_base); dw_addr_t ranges_base = cu_die.GetAttributeValueAsUnsigned( m_dwarf, this, DW_AT_GNU_ranges_base, 0); dwo_cu->SetRangesBase(ranges_base); dwo_cu->SetBaseObjOffset(m_offset); } DWARFDIE DWARFUnit::LookupAddress(const dw_addr_t address) { if (DIE()) { const DWARFDebugAranges &func_aranges = GetFunctionAranges(); // Re-check the aranges auto pointer contents in case it was created above if (!func_aranges.IsEmpty()) return GetDIE(func_aranges.FindAddress(address)); } return DWARFDIE(); } size_t DWARFUnit::AppendDIEsWithTag(const dw_tag_t tag, DWARFDIECollection &dies, uint32_t depth) const { size_t old_size = dies.Size(); { llvm::sys::ScopedReader lock(m_die_array_mutex); DWARFDebugInfoEntry::const_iterator pos; DWARFDebugInfoEntry::const_iterator end = m_die_array.end(); for (pos = m_die_array.begin(); pos != end; ++pos) { if (pos->Tag() == tag) dies.Append(DWARFDIE(this, &(*pos))); } } // Return the number of DIEs added to the collection return dies.Size() - old_size; } lldb::user_id_t DWARFUnit::GetID() const { dw_offset_t local_id = m_base_obj_offset != DW_INVALID_OFFSET ? m_base_obj_offset : m_offset; if (m_dwarf) return DIERef(local_id, local_id).GetUID(m_dwarf); else return local_id; } dw_offset_t DWARFUnit::GetNextCompileUnitOffset() const { return m_offset + GetLengthByteSize() + GetLength(); } size_t DWARFUnit::GetDebugInfoSize() const { return GetLengthByteSize() + GetLength() - GetHeaderByteSize(); } const DWARFAbbreviationDeclarationSet *DWARFUnit::GetAbbreviations() const { return m_abbrevs; } dw_offset_t DWARFUnit::GetAbbrevOffset() const { return m_abbrevs ? m_abbrevs->GetOffset() : DW_INVALID_OFFSET; } void DWARFUnit::SetAddrBase(dw_addr_t addr_base) { m_addr_base = addr_base; } void DWARFUnit::SetRangesBase(dw_addr_t ranges_base) { m_ranges_base = ranges_base; } void DWARFUnit::SetBaseObjOffset(dw_offset_t base_obj_offset) { m_base_obj_offset = base_obj_offset; } // It may be called only with m_die_array_mutex held R/W. void DWARFUnit::ClearDIEsRWLocked() { m_die_array.clear(); m_die_array.shrink_to_fit(); if (m_dwo_symbol_file) m_dwo_symbol_file->GetCompileUnit()->ClearDIEsRWLocked(); } void DWARFUnit::BuildAddressRangeTable(SymbolFileDWARF *dwarf, DWARFDebugAranges *debug_aranges) { // This function is usually called if there in no .debug_aranges section in // order to produce a compile unit level set of address ranges that is // accurate. size_t num_debug_aranges = debug_aranges->GetNumRanges(); // First get the compile unit DIE only and check if it has a DW_AT_ranges const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly(); const dw_offset_t cu_offset = GetOffset(); if (die) { DWARFRangeList ranges; const size_t num_ranges = die->GetAttributeAddressRanges(dwarf, this, ranges, false); if (num_ranges > 0) { // This compile unit has DW_AT_ranges, assume this is correct if it is // present since clang no longer makes .debug_aranges by default and it // emits DW_AT_ranges for DW_TAG_compile_units. GCC also does this with // recent GCC builds. for (size_t i = 0; i < num_ranges; ++i) { const DWARFRangeList::Entry &range = ranges.GetEntryRef(i); debug_aranges->AppendRange(cu_offset, range.GetRangeBase(), range.GetRangeEnd()); } return; // We got all of our ranges from the DW_AT_ranges attribute } } // We don't have a DW_AT_ranges attribute, so we need to parse the DWARF // If the DIEs weren't parsed, then we don't want all dies for all compile // units to stay loaded when they weren't needed. So we can end up parsing // the DWARF and then throwing them all away to keep memory usage down. ScopedExtractDIEs clear_dies(ExtractDIEsScoped()); die = DIEPtr(); if (die) die->BuildAddressRangeTable(dwarf, this, debug_aranges); if (debug_aranges->GetNumRanges() == num_debug_aranges) { // We got nothing from the functions, maybe we have a line tables only // situation. Check the line tables and build the arange table from this. SymbolContext sc; sc.comp_unit = dwarf->GetCompUnitForDWARFCompUnit(this); if (sc.comp_unit) { SymbolFileDWARFDebugMap *debug_map_sym_file = m_dwarf->GetDebugMapSymfile(); if (debug_map_sym_file == NULL) { LineTable *line_table = sc.comp_unit->GetLineTable(); if (line_table) { LineTable::FileAddressRanges file_ranges; const bool append = true; const size_t num_ranges = line_table->GetContiguousFileAddressRanges(file_ranges, append); for (uint32_t idx = 0; idx < num_ranges; ++idx) { const LineTable::FileAddressRanges::Entry &range = file_ranges.GetEntryRef(idx); debug_aranges->AppendRange(cu_offset, range.GetRangeBase(), range.GetRangeEnd()); } } } else debug_map_sym_file->AddOSOARanges(dwarf, debug_aranges); } } if (debug_aranges->GetNumRanges() == num_debug_aranges) { // We got nothing from the functions, maybe we have a line tables only // situation. Check the line tables and build the arange table from this. SymbolContext sc; sc.comp_unit = dwarf->GetCompUnitForDWARFCompUnit(this); if (sc.comp_unit) { LineTable *line_table = sc.comp_unit->GetLineTable(); if (line_table) { LineTable::FileAddressRanges file_ranges; const bool append = true; const size_t num_ranges = line_table->GetContiguousFileAddressRanges(file_ranges, append); for (uint32_t idx = 0; idx < num_ranges; ++idx) { const LineTable::FileAddressRanges::Entry &range = file_ranges.GetEntryRef(idx); debug_aranges->AppendRange(GetOffset(), range.GetRangeBase(), range.GetRangeEnd()); } } } } } lldb::ByteOrder DWARFUnit::GetByteOrder() const { return m_dwarf->GetObjectFile()->GetByteOrder(); } TypeSystem *DWARFUnit::GetTypeSystem() { if (m_dwarf) return m_dwarf->GetTypeSystemForLanguage(GetLanguageType()); else return nullptr; } DWARFFormValue::FixedFormSizes DWARFUnit::GetFixedFormSizes() { return DWARFFormValue::GetFixedFormSizesForAddressSize(GetAddressByteSize(), IsDWARF64()); } void DWARFUnit::SetBaseAddress(dw_addr_t base_addr) { m_base_addr = base_addr; } //---------------------------------------------------------------------- // Compare function DWARFDebugAranges::Range structures //---------------------------------------------------------------------- static bool CompareDIEOffset(const DWARFDebugInfoEntry &die, const dw_offset_t die_offset) { return die.GetOffset() < die_offset; } //---------------------------------------------------------------------- // GetDIE() // // Get the DIE (Debug Information Entry) with the specified offset by first // checking if the DIE is contained within this compile unit and grabbing the // DIE from this compile unit. Otherwise we grab the DIE from the DWARF file. //---------------------------------------------------------------------- DWARFDIE DWARFUnit::GetDIE(dw_offset_t die_offset) { if (die_offset != DW_INVALID_OFFSET) { if (GetDwoSymbolFile()) return GetDwoSymbolFile()->GetCompileUnit()->GetDIE(die_offset); if (ContainsDIEOffset(die_offset)) { ExtractDIEsIfNeeded(); DWARFDebugInfoEntry::const_iterator end = m_die_array.cend(); DWARFDebugInfoEntry::const_iterator pos = lower_bound(m_die_array.cbegin(), end, die_offset, CompareDIEOffset); if (pos != end) { if (die_offset == (*pos).GetOffset()) return DWARFDIE(this, &(*pos)); } } else { // Don't specify the compile unit offset as we don't know it because the // DIE belongs to // a different compile unit in the same symbol file. return m_dwarf->DebugInfo()->GetDIEForDIEOffset(die_offset); } } return DWARFDIE(); // Not found } uint8_t DWARFUnit::GetAddressByteSize(const DWARFUnit *cu) { if (cu) return cu->GetAddressByteSize(); return DWARFUnit::GetDefaultAddressSize(); } bool DWARFUnit::IsDWARF64(const DWARFUnit *cu) { if (cu) return cu->IsDWARF64(); return false; } uint8_t DWARFUnit::GetDefaultAddressSize() { return 4; } void *DWARFUnit::GetUserData() const { return m_user_data; } void DWARFUnit::SetUserData(void *d) { m_user_data = d; if (m_dwo_symbol_file) m_dwo_symbol_file->GetCompileUnit()->SetUserData(d); } bool DWARFUnit::Supports_DW_AT_APPLE_objc_complete_type() { if (GetProducer() == eProducerLLVMGCC) return false; return true; } bool DWARFUnit::DW_AT_decl_file_attributes_are_invalid() { // llvm-gcc makes completely invalid decl file attributes and won't ever be // fixed, so we need to know to ignore these. return GetProducer() == eProducerLLVMGCC; } bool DWARFUnit::Supports_unnamed_objc_bitfields() { if (GetProducer() == eProducerClang) { const uint32_t major_version = GetProducerVersionMajor(); if (major_version > 425 || (major_version == 425 && GetProducerVersionUpdate() >= 13)) return true; else return false; } return true; // Assume all other compilers didn't have incorrect ObjC bitfield // info } SymbolFileDWARF *DWARFUnit::GetSymbolFileDWARF() const { return m_dwarf; } void DWARFUnit::ParseProducerInfo() { m_producer_version_major = UINT32_MAX; m_producer_version_minor = UINT32_MAX; m_producer_version_update = UINT32_MAX; const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly(); if (die) { const char *producer_cstr = die->GetAttributeValueAsString(m_dwarf, this, DW_AT_producer, NULL); if (producer_cstr) { RegularExpression llvm_gcc_regex( llvm::StringRef("^4\\.[012]\\.[01] \\(Based on Apple " "Inc\\. build [0-9]+\\) \\(LLVM build " "[\\.0-9]+\\)$")); if (llvm_gcc_regex.Execute(llvm::StringRef(producer_cstr))) { m_producer = eProducerLLVMGCC; } else if (strstr(producer_cstr, "clang")) { static RegularExpression g_clang_version_regex( llvm::StringRef("clang-([0-9]+)\\.([0-9]+)\\.([0-9]+)")); RegularExpression::Match regex_match(3); if (g_clang_version_regex.Execute(llvm::StringRef(producer_cstr), ®ex_match)) { std::string str; if (regex_match.GetMatchAtIndex(producer_cstr, 1, str)) m_producer_version_major = StringConvert::ToUInt32(str.c_str(), UINT32_MAX, 10); if (regex_match.GetMatchAtIndex(producer_cstr, 2, str)) m_producer_version_minor = StringConvert::ToUInt32(str.c_str(), UINT32_MAX, 10); if (regex_match.GetMatchAtIndex(producer_cstr, 3, str)) m_producer_version_update = StringConvert::ToUInt32(str.c_str(), UINT32_MAX, 10); } m_producer = eProducerClang; } else if (strstr(producer_cstr, "GNU")) m_producer = eProducerGCC; } } if (m_producer == eProducerInvalid) m_producer = eProcucerOther; } DWARFProducer DWARFUnit::GetProducer() { if (m_producer == eProducerInvalid) ParseProducerInfo(); return m_producer; } uint32_t DWARFUnit::GetProducerVersionMajor() { if (m_producer_version_major == 0) ParseProducerInfo(); return m_producer_version_major; } uint32_t DWARFUnit::GetProducerVersionMinor() { if (m_producer_version_minor == 0) ParseProducerInfo(); return m_producer_version_minor; } uint32_t DWARFUnit::GetProducerVersionUpdate() { if (m_producer_version_update == 0) ParseProducerInfo(); return m_producer_version_update; } LanguageType DWARFUnit::LanguageTypeFromDWARF(uint64_t val) { // Note: user languages between lo_user and hi_user must be handled // explicitly here. switch (val) { case DW_LANG_Mips_Assembler: return eLanguageTypeMipsAssembler; case DW_LANG_GOOGLE_RenderScript: return eLanguageTypeExtRenderScript; default: return static_cast(val); } } LanguageType DWARFUnit::GetLanguageType() { if (m_language_type != eLanguageTypeUnknown) return m_language_type; const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly(); if (die) m_language_type = LanguageTypeFromDWARF( die->GetAttributeValueAsUnsigned(m_dwarf, this, DW_AT_language, 0)); return m_language_type; } bool DWARFUnit::GetIsOptimized() { if (m_is_optimized == eLazyBoolCalculate) { const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly(); if (die) { m_is_optimized = eLazyBoolNo; if (die->GetAttributeValueAsUnsigned(m_dwarf, this, DW_AT_APPLE_optimized, 0) == 1) { m_is_optimized = eLazyBoolYes; } } } return m_is_optimized == eLazyBoolYes; } SymbolFileDWARFDwo *DWARFUnit::GetDwoSymbolFile() const { return m_dwo_symbol_file.get(); } dw_offset_t DWARFUnit::GetBaseObjOffset() const { return m_base_obj_offset; } const DWARFDebugAranges &DWARFUnit::GetFunctionAranges() { if (m_func_aranges_ap.get() == NULL) { m_func_aranges_ap.reset(new DWARFDebugAranges()); Log *log(LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_ARANGES)); if (log) { m_dwarf->GetObjectFile()->GetModule()->LogMessage( log, "DWARFUnit::GetFunctionAranges() for compile unit at " ".debug_info[0x%8.8x]", GetOffset()); } const DWARFDebugInfoEntry *die = DIEPtr(); if (die) die->BuildFunctionAddressRangeTable(m_dwarf, this, m_func_aranges_ap.get()); if (m_dwo_symbol_file) { DWARFUnit *dwo_cu = m_dwo_symbol_file->GetCompileUnit(); const DWARFDebugInfoEntry *dwo_die = dwo_cu->DIEPtr(); if (dwo_die) dwo_die->BuildFunctionAddressRangeTable(m_dwo_symbol_file.get(), dwo_cu, m_func_aranges_ap.get()); } const bool minimize = false; m_func_aranges_ap->Sort(minimize); } return *m_func_aranges_ap.get(); }