aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/WebAssembly/WebAssemblyRegStackify.cpp')
-rw-r--r--lib/Target/WebAssembly/WebAssemblyRegStackify.cpp788
1 files changed, 690 insertions, 98 deletions
diff --git a/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp b/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
index 3a58826bd767..0aa3b621da32 100644
--- a/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
+++ b/lib/Target/WebAssembly/WebAssemblyRegStackify.cpp
@@ -23,8 +23,12 @@
#include "WebAssembly.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
#include "WebAssemblyMachineFunctionInfo.h"
+#include "WebAssemblySubtarget.h"
#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
@@ -42,8 +46,13 @@ class WebAssemblyRegStackify final : public MachineFunctionPass {
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<LiveIntervals>();
AU.addPreserved<MachineBlockFrequencyInfo>();
- AU.addPreservedID(MachineDominatorsID);
+ AU.addPreserved<SlotIndexes>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreservedID(LiveVariablesID);
+ AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
@@ -61,63 +70,636 @@ FunctionPass *llvm::createWebAssemblyRegStackify() {
}
// Decorate the given instruction with implicit operands that enforce the
-// expression stack ordering constraints needed for an instruction which is
-// consumed by an instruction using the expression stack.
-static void ImposeStackInputOrdering(MachineInstr *MI) {
+// expression stack ordering constraints for an instruction which is on
+// the expression stack.
+static void ImposeStackOrdering(MachineInstr *MI) {
// Write the opaque EXPR_STACK register.
if (!MI->definesRegister(WebAssembly::EXPR_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
/*isDef=*/true,
/*isImp=*/true));
-}
-
-// Decorate the given instruction with implicit operands that enforce the
-// expression stack ordering constraints for an instruction which is on
-// the expression stack.
-static void ImposeStackOrdering(MachineInstr *MI, MachineRegisterInfo &MRI) {
- ImposeStackInputOrdering(MI);
// Also read the opaque EXPR_STACK register.
if (!MI->readsRegister(WebAssembly::EXPR_STACK))
MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
/*isDef=*/false,
/*isImp=*/true));
+}
- // Also, mark any inputs to this instruction as being consumed by an
- // instruction on the expression stack.
- // TODO: Find a lighter way to describe the appropriate constraints.
- for (MachineOperand &MO : MI->uses()) {
- if (!MO.isReg())
- continue;
- unsigned Reg = MO.getReg();
- if (!TargetRegisterInfo::isVirtualRegister(Reg))
- continue;
- MachineInstr *Def = MRI.getVRegDef(Reg);
- if (Def->getOpcode() == TargetOpcode::PHI)
- continue;
- ImposeStackInputOrdering(Def);
+// Determine whether a call to the callee referenced by
+// MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
+// effects.
+static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
+ bool &Write, bool &Effects, bool &StackPointer) {
+ // All calls can use the stack pointer.
+ StackPointer = true;
+
+ const MachineOperand &MO = MI.getOperand(CalleeOpNo);
+ if (MO.isGlobal()) {
+ const Constant *GV = MO.getGlobal();
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+ if (!GA->isInterposable())
+ GV = GA->getAliasee();
+
+ if (const Function *F = dyn_cast<Function>(GV)) {
+ if (!F->doesNotThrow())
+ Effects = true;
+ if (F->doesNotAccessMemory())
+ return;
+ if (F->onlyReadsMemory()) {
+ Read = true;
+ return;
+ }
+ }
+ }
+
+ // Assume the worst.
+ Write = true;
+ Read = true;
+ Effects = true;
+}
+
+// Determine whether MI reads memory, writes memory, has side effects,
+// and/or uses the __stack_pointer value.
+static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
+ bool &Write, bool &Effects, bool &StackPointer) {
+ assert(!MI.isPosition());
+ assert(!MI.isTerminator());
+
+ if (MI.isDebugValue())
+ return;
+
+ // Check for loads.
+ if (MI.mayLoad() && !MI.isInvariantLoad(&AA))
+ Read = true;
+
+ // Check for stores.
+ if (MI.mayStore()) {
+ Write = true;
+
+ // Check for stores to __stack_pointer.
+ for (auto MMO : MI.memoperands()) {
+ const MachinePointerInfo &MPI = MMO->getPointerInfo();
+ if (MPI.V.is<const PseudoSourceValue *>()) {
+ auto PSV = MPI.V.get<const PseudoSourceValue *>();
+ if (const ExternalSymbolPseudoSourceValue *EPSV =
+ dyn_cast<ExternalSymbolPseudoSourceValue>(PSV))
+ if (StringRef(EPSV->getSymbol()) == "__stack_pointer")
+ StackPointer = true;
+ }
+ }
+ } else if (MI.hasOrderedMemoryRef()) {
+ switch (MI.getOpcode()) {
+ case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
+ case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
+ case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
+ case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
+ case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
+ case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
+ case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
+ case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
+ // These instruction have hasUnmodeledSideEffects() returning true
+ // because they trap on overflow and invalid so they can't be arbitrarily
+ // moved, however hasOrderedMemoryRef() interprets this plus their lack
+ // of memoperands as having a potential unknown memory reference.
+ break;
+ default:
+ // Record volatile accesses, unless it's a call, as calls are handled
+ // specially below.
+ if (!MI.isCall()) {
+ Write = true;
+ Effects = true;
+ }
+ break;
+ }
+ }
+
+ // Check for side effects.
+ if (MI.hasUnmodeledSideEffects()) {
+ switch (MI.getOpcode()) {
+ case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
+ case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
+ case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
+ case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
+ case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
+ case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
+ case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
+ case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
+ // These instructions have hasUnmodeledSideEffects() returning true
+ // because they trap on overflow and invalid so they can't be arbitrarily
+ // moved, however in the specific case of register stackifying, it is safe
+ // to move them because overflow and invalid are Undefined Behavior.
+ break;
+ default:
+ Effects = true;
+ break;
+ }
+ }
+
+ // Analyze calls.
+ if (MI.isCall()) {
+ switch (MI.getOpcode()) {
+ case WebAssembly::CALL_VOID:
+ case WebAssembly::CALL_INDIRECT_VOID:
+ QueryCallee(MI, 0, Read, Write, Effects, StackPointer);
+ break;
+ case WebAssembly::CALL_I32: case WebAssembly::CALL_I64:
+ case WebAssembly::CALL_F32: case WebAssembly::CALL_F64:
+ case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64:
+ case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64:
+ QueryCallee(MI, 1, Read, Write, Effects, StackPointer);
+ break;
+ default:
+ llvm_unreachable("unexpected call opcode");
+ }
}
}
-// Test whether it's safe to move Def to just before Insert. Note that this
-// doesn't account for physical register dependencies, because WebAssembly
-// doesn't have any (other than special ones like EXPR_STACK).
+// Test whether Def is safe and profitable to rematerialize.
+static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
+ const WebAssemblyInstrInfo *TII) {
+ return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
+}
+
+// Identify the definition for this register at this point. This is a
+// generalization of MachineRegisterInfo::getUniqueVRegDef that uses
+// LiveIntervals to handle complex cases.
+static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert,
+ const MachineRegisterInfo &MRI,
+ const LiveIntervals &LIS)
+{
+ // Most registers are in SSA form here so we try a quick MRI query first.
+ if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
+ return Def;
+
+ // MRI doesn't know what the Def is. Try asking LIS.
+ if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
+ LIS.getInstructionIndex(*Insert)))
+ return LIS.getInstructionFromIndex(ValNo->def);
+
+ return nullptr;
+}
+
+// Test whether Reg, as defined at Def, has exactly one use. This is a
+// generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
+// to handle complex cases.
+static bool HasOneUse(unsigned Reg, MachineInstr *Def,
+ MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
+ LiveIntervals &LIS) {
+ // Most registers are in SSA form here so we try a quick MRI query first.
+ if (MRI.hasOneUse(Reg))
+ return true;
+
+ bool HasOne = false;
+ const LiveInterval &LI = LIS.getInterval(Reg);
+ const VNInfo *DefVNI = LI.getVNInfoAt(
+ LIS.getInstructionIndex(*Def).getRegSlot());
+ assert(DefVNI);
+ for (auto I : MRI.use_nodbg_operands(Reg)) {
+ const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
+ if (Result.valueIn() == DefVNI) {
+ if (!Result.isKill())
+ return false;
+ if (HasOne)
+ return false;
+ HasOne = true;
+ }
+ }
+ return HasOne;
+}
+
+// Test whether it's safe to move Def to just before Insert.
// TODO: Compute memory dependencies in a way that doesn't require always
// walking the block.
// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
// more precise.
static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
- AliasAnalysis &AA) {
+ AliasAnalysis &AA, const LiveIntervals &LIS,
+ const MachineRegisterInfo &MRI) {
assert(Def->getParent() == Insert->getParent());
- bool SawStore = false, SawSideEffects = false;
+
+ // Check for register dependencies.
+ for (const MachineOperand &MO : Def->operands()) {
+ if (!MO.isReg() || MO.isUndef())
+ continue;
+ unsigned Reg = MO.getReg();
+
+ // If the register is dead here and at Insert, ignore it.
+ if (MO.isDead() && Insert->definesRegister(Reg) &&
+ !Insert->readsRegister(Reg))
+ continue;
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
+ // from moving down, and we've already checked for that.
+ if (Reg == WebAssembly::ARGUMENTS)
+ continue;
+ // If the physical register is never modified, ignore it.
+ if (!MRI.isPhysRegModified(Reg))
+ continue;
+ // Otherwise, it's a physical register with unknown liveness.
+ return false;
+ }
+
+ // Ask LiveIntervals whether moving this virtual register use or def to
+ // Insert will change which value numbers are seen.
+ //
+ // If the operand is a use of a register that is also defined in the same
+ // instruction, test that the newly defined value reaches the insert point,
+ // since the operand will be moving along with the def.
+ const LiveInterval &LI = LIS.getInterval(Reg);
+ VNInfo *DefVNI =
+ (MO.isDef() || Def->definesRegister(Reg)) ?
+ LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) :
+ LI.getVNInfoBefore(LIS.getInstructionIndex(*Def));
+ assert(DefVNI && "Instruction input missing value number");
+ VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert));
+ if (InsVNI && DefVNI != InsVNI)
+ return false;
+ }
+
+ bool Read = false, Write = false, Effects = false, StackPointer = false;
+ Query(*Def, AA, Read, Write, Effects, StackPointer);
+
+ // If the instruction does not access memory and has no side effects, it has
+ // no additional dependencies.
+ if (!Read && !Write && !Effects && !StackPointer)
+ return true;
+
+ // Scan through the intervening instructions between Def and Insert.
MachineBasicBlock::const_iterator D(Def), I(Insert);
- for (--I; I != D; --I)
- SawSideEffects |= I->isSafeToMove(&AA, SawStore);
+ for (--I; I != D; --I) {
+ bool InterveningRead = false;
+ bool InterveningWrite = false;
+ bool InterveningEffects = false;
+ bool InterveningStackPointer = false;
+ Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
+ InterveningStackPointer);
+ if (Effects && InterveningEffects)
+ return false;
+ if (Read && InterveningWrite)
+ return false;
+ if (Write && (InterveningRead || InterveningWrite))
+ return false;
+ if (StackPointer && InterveningStackPointer)
+ return false;
+ }
+
+ return true;
+}
+
+/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
+static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
+ const MachineBasicBlock &MBB,
+ const MachineRegisterInfo &MRI,
+ const MachineDominatorTree &MDT,
+ LiveIntervals &LIS,
+ WebAssemblyFunctionInfo &MFI) {
+ const LiveInterval &LI = LIS.getInterval(Reg);
+
+ const MachineInstr *OneUseInst = OneUse.getParent();
+ VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
+
+ for (const MachineOperand &Use : MRI.use_operands(Reg)) {
+ if (&Use == &OneUse)
+ continue;
+
+ const MachineInstr *UseInst = Use.getParent();
+ VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
+
+ if (UseVNI != OneUseVNI)
+ continue;
+
+ const MachineInstr *OneUseInst = OneUse.getParent();
+ if (UseInst == OneUseInst) {
+ // Another use in the same instruction. We need to ensure that the one
+ // selected use happens "before" it.
+ if (&OneUse > &Use)
+ return false;
+ } else {
+ // Test that the use is dominated by the one selected use.
+ while (!MDT.dominates(OneUseInst, UseInst)) {
+ // Actually, dominating is over-conservative. Test that the use would
+ // happen after the one selected use in the stack evaluation order.
+ //
+ // This is needed as a consequence of using implicit get_locals for
+ // uses and implicit set_locals for defs.
+ if (UseInst->getDesc().getNumDefs() == 0)
+ return false;
+ const MachineOperand &MO = UseInst->getOperand(0);
+ if (!MO.isReg())
+ return false;
+ unsigned DefReg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(DefReg) ||
+ !MFI.isVRegStackified(DefReg))
+ return false;
+ assert(MRI.hasOneUse(DefReg));
+ const MachineOperand &NewUse = *MRI.use_begin(DefReg);
+ const MachineInstr *NewUseInst = NewUse.getParent();
+ if (NewUseInst == OneUseInst) {
+ if (&OneUse > &NewUse)
+ return false;
+ break;
+ }
+ UseInst = NewUseInst;
+ }
+ }
+ }
+ return true;
+}
+
+/// Get the appropriate tee_local opcode for the given register class.
+static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) {
+ if (RC == &WebAssembly::I32RegClass)
+ return WebAssembly::TEE_LOCAL_I32;
+ if (RC == &WebAssembly::I64RegClass)
+ return WebAssembly::TEE_LOCAL_I64;
+ if (RC == &WebAssembly::F32RegClass)
+ return WebAssembly::TEE_LOCAL_F32;
+ if (RC == &WebAssembly::F64RegClass)
+ return WebAssembly::TEE_LOCAL_F64;
+ llvm_unreachable("Unexpected register class");
+}
+
+// Shrink LI to its uses, cleaning up LI.
+static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
+ if (LIS.shrinkToUses(&LI)) {
+ SmallVector<LiveInterval*, 4> SplitLIs;
+ LIS.splitSeparateComponents(LI, SplitLIs);
+ }
+}
+
+/// A single-use def in the same block with no intervening memory or register
+/// dependencies; move the def down and nest it with the current instruction.
+static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op,
+ MachineInstr *Def,
+ MachineBasicBlock &MBB,
+ MachineInstr *Insert, LiveIntervals &LIS,
+ WebAssemblyFunctionInfo &MFI,
+ MachineRegisterInfo &MRI) {
+ DEBUG(dbgs() << "Move for single use: "; Def->dump());
+
+ MBB.splice(Insert, &MBB, Def);
+ LIS.handleMove(*Def);
+
+ if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
+ // No one else is using this register for anything so we can just stackify
+ // it in place.
+ MFI.stackifyVReg(Reg);
+ } else {
+ // The register may have unrelated uses or defs; create a new register for
+ // just our one def and use so that we can stackify it.
+ unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
+ Def->getOperand(0).setReg(NewReg);
+ Op.setReg(NewReg);
+
+ // Tell LiveIntervals about the new register.
+ LIS.createAndComputeVirtRegInterval(NewReg);
+
+ // Tell LiveIntervals about the changes to the old register.
+ LiveInterval &LI = LIS.getInterval(Reg);
+ LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
+ LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
+ /*RemoveDeadValNo=*/true);
+
+ MFI.stackifyVReg(NewReg);
+
+ DEBUG(dbgs() << " - Replaced register: "; Def->dump());
+ }
+
+ ImposeStackOrdering(Def);
+ return Def;
+}
+
+/// A trivially cloneable instruction; clone it and nest the new copy with the
+/// current instruction.
+static MachineInstr *RematerializeCheapDef(
+ unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
+ MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
+ WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
+ const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
+ DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
+ DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
+
+ unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
+ TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
+ Op.setReg(NewReg);
+ MachineInstr *Clone = &*std::prev(Insert);
+ LIS.InsertMachineInstrInMaps(*Clone);
+ LIS.createAndComputeVirtRegInterval(NewReg);
+ MFI.stackifyVReg(NewReg);
+ ImposeStackOrdering(Clone);
+
+ DEBUG(dbgs() << " - Cloned to "; Clone->dump());
+
+ // Shrink the interval.
+ bool IsDead = MRI.use_empty(Reg);
+ if (!IsDead) {
+ LiveInterval &LI = LIS.getInterval(Reg);
+ ShrinkToUses(LI, LIS);
+ IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
+ }
+
+ // If that was the last use of the original, delete the original.
+ if (IsDead) {
+ DEBUG(dbgs() << " - Deleting original\n");
+ SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
+ LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
+ LIS.removeInterval(Reg);
+ LIS.RemoveMachineInstrFromMaps(Def);
+ Def.eraseFromParent();
+ }
+
+ return Clone;
+}
- return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) &&
- !(SawSideEffects && !Def->isSafeToMove(&AA, SawStore));
+/// A multiple-use def in the same block with no intervening memory or register
+/// dependencies; move the def down, nest it with the current instruction, and
+/// insert a tee_local to satisfy the rest of the uses. As an illustration,
+/// rewrite this:
+///
+/// Reg = INST ... // Def
+/// INST ..., Reg, ... // Insert
+/// INST ..., Reg, ...
+/// INST ..., Reg, ...
+///
+/// to this:
+///
+/// DefReg = INST ... // Def (to become the new Insert)
+/// TeeReg, Reg = TEE_LOCAL_... DefReg
+/// INST ..., TeeReg, ... // Insert
+/// INST ..., Reg, ...
+/// INST ..., Reg, ...
+///
+/// with DefReg and TeeReg stackified. This eliminates a get_local from the
+/// resulting code.
+static MachineInstr *MoveAndTeeForMultiUse(
+ unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
+ MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
+ MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
+ DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
+
+ // Move Def into place.
+ MBB.splice(Insert, &MBB, Def);
+ LIS.handleMove(*Def);
+
+ // Create the Tee and attach the registers.
+ const auto *RegClass = MRI.getRegClass(Reg);
+ unsigned TeeReg = MRI.createVirtualRegister(RegClass);
+ unsigned DefReg = MRI.createVirtualRegister(RegClass);
+ MachineOperand &DefMO = Def->getOperand(0);
+ MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
+ TII->get(GetTeeLocalOpcode(RegClass)), TeeReg)
+ .addReg(Reg, RegState::Define)
+ .addReg(DefReg, getUndefRegState(DefMO.isDead()));
+ Op.setReg(TeeReg);
+ DefMO.setReg(DefReg);
+ SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
+ SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
+
+ // Tell LiveIntervals we moved the original vreg def from Def to Tee.
+ LiveInterval &LI = LIS.getInterval(Reg);
+ LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
+ VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
+ I->start = TeeIdx;
+ ValNo->def = TeeIdx;
+ ShrinkToUses(LI, LIS);
+
+ // Finish stackifying the new regs.
+ LIS.createAndComputeVirtRegInterval(TeeReg);
+ LIS.createAndComputeVirtRegInterval(DefReg);
+ MFI.stackifyVReg(DefReg);
+ MFI.stackifyVReg(TeeReg);
+ ImposeStackOrdering(Def);
+ ImposeStackOrdering(Tee);
+
+ DEBUG(dbgs() << " - Replaced register: "; Def->dump());
+ DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
+ return Def;
}
+namespace {
+/// A stack for walking the tree of instructions being built, visiting the
+/// MachineOperands in DFS order.
+class TreeWalkerState {
+ typedef MachineInstr::mop_iterator mop_iterator;
+ typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
+ typedef iterator_range<mop_reverse_iterator> RangeTy;
+ SmallVector<RangeTy, 4> Worklist;
+
+public:
+ explicit TreeWalkerState(MachineInstr *Insert) {
+ const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
+ if (Range.begin() != Range.end())
+ Worklist.push_back(reverse(Range));
+ }
+
+ bool Done() const { return Worklist.empty(); }
+
+ MachineOperand &Pop() {
+ RangeTy &Range = Worklist.back();
+ MachineOperand &Op = *Range.begin();
+ Range = drop_begin(Range, 1);
+ if (Range.begin() == Range.end())
+ Worklist.pop_back();
+ assert((Worklist.empty() ||
+ Worklist.back().begin() != Worklist.back().end()) &&
+ "Empty ranges shouldn't remain in the worklist");
+ return Op;
+ }
+
+ /// Push Instr's operands onto the stack to be visited.
+ void PushOperands(MachineInstr *Instr) {
+ const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
+ if (Range.begin() != Range.end())
+ Worklist.push_back(reverse(Range));
+ }
+
+ /// Some of Instr's operands are on the top of the stack; remove them and
+ /// re-insert them starting from the beginning (because we've commuted them).
+ void ResetTopOperands(MachineInstr *Instr) {
+ assert(HasRemainingOperands(Instr) &&
+ "Reseting operands should only be done when the instruction has "
+ "an operand still on the stack");
+ Worklist.back() = reverse(Instr->explicit_uses());
+ }
+
+ /// Test whether Instr has operands remaining to be visited at the top of
+ /// the stack.
+ bool HasRemainingOperands(const MachineInstr *Instr) const {
+ if (Worklist.empty())
+ return false;
+ const RangeTy &Range = Worklist.back();
+ return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
+ }
+
+ /// Test whether the given register is present on the stack, indicating an
+ /// operand in the tree that we haven't visited yet. Moving a definition of
+ /// Reg to a point in the tree after that would change its value.
+ ///
+ /// This is needed as a consequence of using implicit get_locals for
+ /// uses and implicit set_locals for defs.
+ bool IsOnStack(unsigned Reg) const {
+ for (const RangeTy &Range : Worklist)
+ for (const MachineOperand &MO : Range)
+ if (MO.isReg() && MO.getReg() == Reg)
+ return true;
+ return false;
+ }
+};
+
+/// State to keep track of whether commuting is in flight or whether it's been
+/// tried for the current instruction and didn't work.
+class CommutingState {
+ /// There are effectively three states: the initial state where we haven't
+ /// started commuting anything and we don't know anything yet, the tenative
+ /// state where we've commuted the operands of the current instruction and are
+ /// revisting it, and the declined state where we've reverted the operands
+ /// back to their original order and will no longer commute it further.
+ bool TentativelyCommuting;
+ bool Declined;
+
+ /// During the tentative state, these hold the operand indices of the commuted
+ /// operands.
+ unsigned Operand0, Operand1;
+
+public:
+ CommutingState() : TentativelyCommuting(false), Declined(false) {}
+
+ /// Stackification for an operand was not successful due to ordering
+ /// constraints. If possible, and if we haven't already tried it and declined
+ /// it, commute Insert's operands and prepare to revisit it.
+ void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
+ const WebAssemblyInstrInfo *TII) {
+ if (TentativelyCommuting) {
+ assert(!Declined &&
+ "Don't decline commuting until you've finished trying it");
+ // Commuting didn't help. Revert it.
+ TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
+ TentativelyCommuting = false;
+ Declined = true;
+ } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
+ Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
+ Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
+ if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
+ // Tentatively commute the operands and try again.
+ TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
+ TreeWalker.ResetTopOperands(Insert);
+ TentativelyCommuting = true;
+ Declined = false;
+ }
+ }
+ }
+
+ /// Stackification for some operand was successful. Reset to the default
+ /// state.
+ void Reset() {
+ TentativelyCommuting = false;
+ Declined = false;
+ }
+};
+} // end anonymous namespace
+
bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********** Register Stackifying **********\n"
"********** Function: "
@@ -126,63 +708,58 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
MachineRegisterInfo &MRI = MF.getRegInfo();
WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
+ const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
+ const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
-
- assert(MRI.isSSA() && "RegStackify depends on SSA form");
+ MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
+ LiveIntervals &LIS = getAnalysis<LiveIntervals>();
// Walk the instructions from the bottom up. Currently we don't look past
// block boundaries, and the blocks aren't ordered so the block visitation
// order isn't significant, but we may want to change this in the future.
for (MachineBasicBlock &MBB : MF) {
- for (MachineInstr &MI : reverse(MBB)) {
- MachineInstr *Insert = &MI;
- // Don't nest anything inside a phi.
- if (Insert->getOpcode() == TargetOpcode::PHI)
- break;
-
+ // Don't use a range-based for loop, because we modify the list as we're
+ // iterating over it and the end iterator may change.
+ for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
+ MachineInstr *Insert = &*MII;
// Don't nest anything inside an inline asm, because we don't have
// constraints for $push inputs.
if (Insert->getOpcode() == TargetOpcode::INLINEASM)
- break;
+ continue;
+
+ // Ignore debugging intrinsics.
+ if (Insert->getOpcode() == TargetOpcode::DBG_VALUE)
+ continue;
// Iterate through the inputs in reverse order, since we'll be pulling
// operands off the stack in LIFO order.
- bool AnyStackified = false;
- for (MachineOperand &Op : reverse(Insert->uses())) {
+ CommutingState Commuting;
+ TreeWalkerState TreeWalker(Insert);
+ while (!TreeWalker.Done()) {
+ MachineOperand &Op = TreeWalker.Pop();
+
// We're only interested in explicit virtual register operands.
- if (!Op.isReg() || Op.isImplicit() || !Op.isUse())
+ if (!Op.isReg())
continue;
unsigned Reg = Op.getReg();
- if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
- // An instruction with a physical register. Conservatively mark it as
- // an expression stack input so that it isn't reordered with anything
- // in an expression stack which might use it (physical registers
- // aren't in SSA form so it's not trivial to determine this).
- // TODO: Be less conservative.
- ImposeStackInputOrdering(Insert);
+ assert(Op.isUse() && "explicit_uses() should only iterate over uses");
+ assert(!Op.isImplicit() &&
+ "explicit_uses() should only iterate over explicit operands");
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
- }
- // Only consider registers with a single definition.
- // TODO: Eventually we may relax this, to stackify phi transfers.
- MachineInstr *Def = MRI.getVRegDef(Reg);
+ // Identify the definition for this register at this point. Most
+ // registers are in SSA form here so we try a quick MRI query first.
+ MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS);
if (!Def)
continue;
- // There's no use in nesting implicit defs inside anything.
- if (Def->getOpcode() == TargetOpcode::IMPLICIT_DEF)
- continue;
-
// Don't nest an INLINE_ASM def into anything, because we don't have
// constraints for $pop outputs.
if (Def->getOpcode() == TargetOpcode::INLINEASM)
continue;
- // Don't nest PHIs inside of anything.
- if (Def->getOpcode() == TargetOpcode::PHI)
- continue;
-
// Argument instructions represent live-in registers and not real
// instructions.
if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 ||
@@ -191,38 +768,53 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
Def->getOpcode() == WebAssembly::ARGUMENT_F64)
continue;
- // Single-use expression trees require defs that have one use.
- // TODO: Eventually we'll relax this, to take advantage of set_local
- // returning its result.
- if (!MRI.hasOneUse(Reg))
- continue;
-
- // For now, be conservative and don't look across block boundaries.
- // TODO: Be more aggressive.
- if (Def->getParent() != &MBB)
+ // Decide which strategy to take. Prefer to move a single-use value
+ // over cloning it, and prefer cloning over introducing a tee_local.
+ // For moving, we require the def to be in the same block as the use;
+ // this makes things simpler (LiveIntervals' handleMove function only
+ // supports intra-block moves) and it's MachineSink's job to catch all
+ // the sinking opportunities anyway.
+ bool SameBlock = Def->getParent() == &MBB;
+ bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) &&
+ !TreeWalker.IsOnStack(Reg);
+ if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) {
+ Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
+ } else if (ShouldRematerialize(*Def, AA, TII)) {
+ Insert =
+ RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
+ LIS, MFI, MRI, TII, TRI);
+ } else if (CanMove &&
+ OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
+ Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
+ MRI, TII);
+ } else {
+ // We failed to stackify the operand. If the problem was ordering
+ // constraints, Commuting may be able to help.
+ if (!CanMove && SameBlock)
+ Commuting.MaybeCommute(Insert, TreeWalker, TII);
+ // Proceed to the next operand.
continue;
+ }
- // Don't move instructions that have side effects or memory dependencies
- // or other complications.
- if (!IsSafeToMove(Def, Insert, AA))
- continue;
+ // We stackified an operand. Add the defining instruction's operands to
+ // the worklist stack now to continue to build an ever deeper tree.
+ Commuting.Reset();
+ TreeWalker.PushOperands(Insert);
+ }
+ // If we stackified any operands, skip over the tree to start looking for
+ // the next instruction we can build a tree on.
+ if (Insert != &*MII) {
+ ImposeStackOrdering(&*MII);
+ MII = std::prev(
+ llvm::make_reverse_iterator(MachineBasicBlock::iterator(Insert)));
Changed = true;
- AnyStackified = true;
- // Move the def down and nest it in the current instruction.
- MBB.insert(MachineBasicBlock::instr_iterator(Insert),
- Def->removeFromParent());
- MFI.stackifyVReg(Reg);
- ImposeStackOrdering(Def, MRI);
- Insert = Def;
}
- if (AnyStackified)
- ImposeStackOrdering(&MI, MRI);
}
}
- // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere
- // so that it never looks like a use-before-def.
+ // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so
+ // that it never looks like a use-before-def.
if (Changed) {
MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
for (MachineBasicBlock &MBB : MF)
@@ -230,30 +822,30 @@ bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
}
#ifndef NDEBUG
- // Verify that pushes and pops are performed in FIFO order.
+ // Verify that pushes and pops are performed in LIFO order.
SmallVector<unsigned, 0> Stack;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
+ if (MI.isDebugValue())
+ continue;
for (MachineOperand &MO : reverse(MI.explicit_operands())) {
if (!MO.isReg())
continue;
- unsigned VReg = MO.getReg();
-
- // Don't stackify physregs like SP or FP.
- if (!TargetRegisterInfo::isVirtualRegister(VReg))
- continue;
+ unsigned Reg = MO.getReg();
- if (MFI.isVRegStackified(VReg)) {
+ if (MFI.isVRegStackified(Reg)) {
if (MO.isDef())
- Stack.push_back(VReg);
+ Stack.push_back(Reg);
else
- assert(Stack.pop_back_val() == VReg);
+ assert(Stack.pop_back_val() == Reg &&
+ "Register stack pop should be paired with a push");
}
}
}
// TODO: Generalize this code to support keeping values on the stack across
// basic block boundaries.
- assert(Stack.empty());
+ assert(Stack.empty() &&
+ "Register stack pushes and pops should be balanced");
}
#endif