/* * This file is part of ltrace. * Copyright (C) 2006,2010,2011,2012 Petr Machata, Red Hat Inc. * Copyright (C) 2010 Zachary T Welch, CodeSourcery * Copyright (C) 2010 Joe Damato * Copyright (C) 1997,1998,2001,2004,2007,2008,2009 Juan Cespedes * Copyright (C) 2006 Olaf Hering, SUSE Linux GmbH * Copyright (C) 2006 Eric Vaitl, Cisco Systems, Inc. * Copyright (C) 2006 Paul Gilliam, IBM Corporation * Copyright (C) 2006 Ian Wienand * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include "config.h" #include #ifdef __linux__ #include #endif #include #include #include #include #include #include #include #include #include #include #include "backend.h" #include "filter.h" #include "library.h" #include "ltrace-elf.h" #include "proc.h" #include "debug.h" #include "options.h" #ifndef ARCH_HAVE_LTELF_DATA int arch_elf_init(struct ltelf *lte, struct library *lib) { return 0; } void arch_elf_destroy(struct ltelf *lte) { } #endif static int default_elf_add_plt_entry(struct Process *proc, struct ltelf *lte, const char *a_name, GElf_Rela *rela, size_t ndx, struct library_symbol **ret) { char *name = strdup(a_name); if (name == NULL) { fail: free(name); return -1; } GElf_Addr addr = arch_plt_sym_val(lte, ndx, rela); struct library_symbol *libsym = malloc(sizeof(*libsym)); if (libsym == NULL) goto fail; /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ arch_addr_t taddr = (arch_addr_t) (uintptr_t)(addr + lte->bias); if (library_symbol_init(libsym, taddr, name, 1, LS_TOPLT_EXEC) < 0) { free(libsym); goto fail; } libsym->next = *ret; *ret = libsym; return 0; } #ifndef ARCH_HAVE_ADD_PLT_ENTRY enum plt_status arch_elf_add_plt_entry(struct Process *proc, struct ltelf *lte, const char *a_name, GElf_Rela *rela, size_t ndx, struct library_symbol **ret) { return plt_default; } #endif Elf_Data * elf_loaddata(Elf_Scn *scn, GElf_Shdr *shdr) { Elf_Data *data = elf_getdata(scn, NULL); if (data == NULL || elf_getdata(scn, data) != NULL || data->d_off || data->d_size != shdr->sh_size) return NULL; return data; } static int elf_get_section_if(struct ltelf *lte, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr, int (*predicate)(Elf_Scn *, GElf_Shdr *, void *data), void *data) { int i; for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn; GElf_Shdr shdr; scn = elf_getscn(lte->elf, i); if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { debug(1, "Couldn't read section or header."); return -1; } if (predicate(scn, &shdr, data)) { *tgt_sec = scn; *tgt_shdr = shdr; return 0; } } return -1; } static int inside_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) { GElf_Addr addr = *(GElf_Addr *)data; return addr >= shdr->sh_addr && addr < shdr->sh_addr + shdr->sh_size; } int elf_get_section_covering(struct ltelf *lte, GElf_Addr addr, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) { return elf_get_section_if(lte, tgt_sec, tgt_shdr, &inside_p, &addr); } static int type_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) { GElf_Word type = *(GElf_Word *)data; return shdr->sh_type == type; } int elf_get_section_type(struct ltelf *lte, GElf_Word type, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) { return elf_get_section_if(lte, tgt_sec, tgt_shdr, &type_p, &type); } struct section_named_data { struct ltelf *lte; const char *name; }; static int name_p(Elf_Scn *scn, GElf_Shdr *shdr, void *d) { struct section_named_data *data = d; const char *name = elf_strptr(data->lte->elf, data->lte->ehdr.e_shstrndx, shdr->sh_name); return strcmp(name, data->name) == 0; } int elf_get_section_named(struct ltelf *lte, const char *name, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) { struct section_named_data data = { .lte = lte, .name = name, }; return elf_get_section_if(lte, tgt_sec, tgt_shdr, &name_p, &data); } static int need_data(Elf_Data *data, GElf_Xword offset, GElf_Xword size) { assert(data != NULL); if (data->d_size < size || offset > data->d_size - size) { debug(1, "Not enough data to read %"PRId64"-byte value" " at offset %"PRId64".", size, offset); return -1; } return 0; } #define DEF_READER(NAME, SIZE) \ int \ NAME(Elf_Data *data, GElf_Xword offset, uint##SIZE##_t *retp) \ { \ if (!need_data(data, offset, SIZE / 8) < 0) \ return -1; \ \ if (data->d_buf == NULL) /* NODATA section */ { \ *retp = 0; \ return 0; \ } \ \ union { \ uint##SIZE##_t dst; \ char buf[0]; \ } u; \ memcpy(u.buf, data->d_buf + offset, sizeof(u.dst)); \ *retp = u.dst; \ return 0; \ } DEF_READER(elf_read_u16, 16) DEF_READER(elf_read_u32, 32) DEF_READER(elf_read_u64, 64) #undef DEF_READER int open_elf(struct ltelf *lte, const char *filename) { lte->fd = open(filename, O_RDONLY); if (lte->fd == -1) return 1; elf_version(EV_CURRENT); #ifdef HAVE_ELF_C_READ_MMAP lte->elf = elf_begin(lte->fd, ELF_C_READ_MMAP, NULL); #else lte->elf = elf_begin(lte->fd, ELF_C_READ, NULL); #endif if (lte->elf == NULL || elf_kind(lte->elf) != ELF_K_ELF) { fprintf(stderr, "\"%s\" is not an ELF file\n", filename); exit(EXIT_FAILURE); } if (gelf_getehdr(lte->elf, <e->ehdr) == NULL) { fprintf(stderr, "can't read ELF header of \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } if (lte->ehdr.e_type != ET_EXEC && lte->ehdr.e_type != ET_DYN) { fprintf(stderr, "\"%s\" is neither an ELF executable" " nor a shared library\n", filename); exit(EXIT_FAILURE); } if (1 #ifdef LT_ELF_MACHINE && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS || lte->ehdr.e_machine != LT_ELF_MACHINE) #endif #ifdef LT_ELF_MACHINE2 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS2 || lte->ehdr.e_machine != LT_ELF_MACHINE2) #endif #ifdef LT_ELF_MACHINE3 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS3 || lte->ehdr.e_machine != LT_ELF_MACHINE3) #endif ) { fprintf(stderr, "\"%s\" is ELF from incompatible architecture\n", filename); exit(EXIT_FAILURE); } return 0; } static void read_symbol_table(struct ltelf *lte, const char *filename, Elf_Scn *scn, GElf_Shdr *shdr, const char *name, Elf_Data **datap, size_t *countp, const char **strsp) { *datap = elf_getdata(scn, NULL); *countp = shdr->sh_size / shdr->sh_entsize; if ((*datap == NULL || elf_getdata(scn, *datap) != NULL) && options.static_filter != NULL) { fprintf(stderr, "Couldn't get data of section" " %s from \"%s\": %s\n", name, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } scn = elf_getscn(lte->elf, shdr->sh_link); GElf_Shdr shdr2; if (scn == NULL || gelf_getshdr(scn, &shdr2) == NULL) { fprintf(stderr, "Couldn't get header of section" " #%d from \"%s\": %s\n", shdr2.sh_link, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } Elf_Data *data = elf_getdata(scn, NULL); if (data == NULL || elf_getdata(scn, data) != NULL || shdr2.sh_size != data->d_size || data->d_off) { fprintf(stderr, "Couldn't get data of section" " #%d from \"%s\": %s\n", shdr2.sh_link, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } *strsp = data->d_buf; } static int do_init_elf(struct ltelf *lte, const char *filename) { int i; GElf_Addr relplt_addr = 0; GElf_Addr soname_offset = 0; debug(DEBUG_FUNCTION, "do_init_elf(filename=%s)", filename); debug(1, "Reading ELF from %s...", filename); for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn; GElf_Shdr shdr; const char *name; scn = elf_getscn(lte->elf, i); if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { fprintf(stderr, "Couldn't get section #%d from" " \"%s\": %s\n", i, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } name = elf_strptr(lte->elf, lte->ehdr.e_shstrndx, shdr.sh_name); if (name == NULL) { fprintf(stderr, "Couldn't get name of section #%d from" " \"%s\": %s\n", i, filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } if (shdr.sh_type == SHT_SYMTAB) { read_symbol_table(lte, filename, scn, &shdr, name, <e->symtab, <e->symtab_count, <e->strtab); } else if (shdr.sh_type == SHT_DYNSYM) { read_symbol_table(lte, filename, scn, &shdr, name, <e->dynsym, <e->dynsym_count, <e->dynstr); } else if (shdr.sh_type == SHT_DYNAMIC) { Elf_Data *data; size_t j; lte->dyn_addr = shdr.sh_addr + lte->bias; lte->dyn_sz = shdr.sh_size; data = elf_getdata(scn, NULL); if (data == NULL || elf_getdata(scn, data) != NULL) { fprintf(stderr, "Couldn't get .dynamic data" " from \"%s\": %s\n", filename, strerror(errno)); exit(EXIT_FAILURE); } for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { GElf_Dyn dyn; if (gelf_getdyn(data, j, &dyn) == NULL) { fprintf(stderr, "Couldn't get .dynamic" " data from \"%s\": %s\n", filename, strerror(errno)); exit(EXIT_FAILURE); } if (dyn.d_tag == DT_JMPREL) relplt_addr = dyn.d_un.d_ptr; else if (dyn.d_tag == DT_PLTRELSZ) lte->relplt_size = dyn.d_un.d_val; else if (dyn.d_tag == DT_SONAME) soname_offset = dyn.d_un.d_val; } } else if (shdr.sh_type == SHT_PROGBITS || shdr.sh_type == SHT_NOBITS) { if (strcmp(name, ".plt") == 0) { lte->plt_addr = shdr.sh_addr; lte->plt_size = shdr.sh_size; lte->plt_data = elf_loaddata(scn, &shdr); if (lte->plt_data == NULL) fprintf(stderr, "Can't load .plt data\n"); lte->plt_flags = shdr.sh_flags; } #ifdef ARCH_SUPPORTS_OPD else if (strcmp(name, ".opd") == 0) { lte->opd_addr = (GElf_Addr *) (long) shdr.sh_addr; lte->opd_size = shdr.sh_size; lte->opd = elf_rawdata(scn, NULL); } #endif } } if (lte->dynsym == NULL || lte->dynstr == NULL) { fprintf(stderr, "Couldn't find .dynsym or .dynstr in \"%s\"\n", filename); exit(EXIT_FAILURE); } if (!relplt_addr || !lte->plt_addr) { debug(1, "%s has no PLT relocations", filename); lte->relplt = NULL; lte->relplt_count = 0; } else if (lte->relplt_size == 0) { debug(1, "%s has unknown PLT size", filename); lte->relplt = NULL; lte->relplt_count = 0; } else { for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn; GElf_Shdr shdr; scn = elf_getscn(lte->elf, i); if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { fprintf(stderr, "Couldn't get section header" " from \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } if (shdr.sh_addr == relplt_addr && shdr.sh_size == lte->relplt_size) { lte->relplt = elf_getdata(scn, NULL); lte->relplt_count = shdr.sh_size / shdr.sh_entsize; if (lte->relplt == NULL || elf_getdata(scn, lte->relplt) != NULL) { fprintf(stderr, "Couldn't get .rel*.plt" " data from \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } break; } } if (i == lte->ehdr.e_shnum) { fprintf(stderr, "Couldn't find .rel*.plt section in \"%s\"\n", filename); exit(EXIT_FAILURE); } debug(1, "%s %zd PLT relocations", filename, lte->relplt_count); } if (soname_offset != 0) lte->soname = lte->dynstr + soname_offset; return 0; } void do_close_elf(struct ltelf *lte) { debug(DEBUG_FUNCTION, "do_close_elf()"); arch_elf_destroy(lte); elf_end(lte->elf); close(lte->fd); } int elf_get_sym_info(struct ltelf *lte, const char *filename, size_t sym_index, GElf_Rela *rela, GElf_Sym *sym) { int i = sym_index; GElf_Rel rel; void *ret; if (lte->relplt->d_type == ELF_T_REL) { ret = gelf_getrel(lte->relplt, i, &rel); rela->r_offset = rel.r_offset; rela->r_info = rel.r_info; rela->r_addend = 0; } else { ret = gelf_getrela(lte->relplt, i, rela); } if (ret == NULL || ELF64_R_SYM(rela->r_info) >= lte->dynsym_count || gelf_getsym(lte->dynsym, ELF64_R_SYM(rela->r_info), sym) == NULL) { fprintf(stderr, "Couldn't get relocation from \"%s\": %s\n", filename, elf_errmsg(-1)); exit(EXIT_FAILURE); } return 0; } #ifndef ARCH_HAVE_GET_SYMINFO int arch_get_sym_info(struct ltelf *lte, const char *filename, size_t sym_index, GElf_Rela *rela, GElf_Sym *sym) { return elf_get_sym_info(lte, filename, sym_index, rela, sym); } #endif static void mark_chain_latent(struct library_symbol *libsym) { for (; libsym != NULL; libsym = libsym->next) { debug(DEBUG_FUNCTION, "marking %s latent", libsym->name); libsym->latent = 1; } } static int populate_plt(struct Process *proc, const char *filename, struct ltelf *lte, struct library *lib, int latent_plts) { size_t i; for (i = 0; i < lte->relplt_count; ++i) { GElf_Rela rela; GElf_Sym sym; if (arch_get_sym_info(lte, filename, i, &rela, &sym) < 0) continue; /* Skip this entry. */ char const *name = lte->dynstr + sym.st_name; /* If the symbol wasn't matched, reject it, unless we * need to keep latent PLT breakpoints for tracing * exports. */ int matched = filter_matches_symbol(options.plt_filter, name, lib); if (!matched && !latent_plts) continue; struct library_symbol *libsym = NULL; switch (arch_elf_add_plt_entry(proc, lte, name, &rela, i, &libsym)) { case plt_default: if (default_elf_add_plt_entry(proc, lte, name, &rela, i, &libsym) < 0) /* fall-through */ case plt_fail: return -1; /* fall-through */ case plt_ok: if (libsym != NULL) { /* If we are adding those symbols just * for tracing exports, mark them all * latent. */ if (!matched) mark_chain_latent(libsym); library_add_symbol(lib, libsym); } } } return 0; } /* When -x rules result in request to trace several aliases, we only * want to add such symbol once. The only way that those symbols * differ in is their name, e.g. in glibc you have __GI___libc_free, * __cfree, __free, __libc_free, cfree and free all defined on the * same address. So instead we keep this unique symbol struct for * each address, and replace name in libsym with a shorter variant if * we find it. */ struct unique_symbol { arch_addr_t addr; struct library_symbol *libsym; }; static int unique_symbol_cmp(const void *key, const void *val) { const struct unique_symbol *sym_key = key; const struct unique_symbol *sym_val = val; return sym_key->addr != sym_val->addr; } static enum callback_status symbol_with_address(struct library_symbol *sym, void *addrptr) { return sym->enter_addr == *(arch_addr_t *)addrptr ? CBS_STOP : CBS_CONT; } static int populate_this_symtab(struct Process *proc, const char *filename, struct ltelf *lte, struct library *lib, Elf_Data *symtab, const char *strtab, size_t size, struct library_exported_name **names) { /* If a valid NAMES is passed, we pass in *NAMES a list of * symbol names that this library exports. */ if (names != NULL) *names = NULL; /* Using sorted array would be arguably better, but this * should be well enough for the number of symbols that we * typically deal with. */ size_t num_symbols = 0; struct unique_symbol *symbols = malloc(sizeof(*symbols) * size); if (symbols == NULL) { fprintf(stderr, "couldn't insert symbols for -x: %s\n", strerror(errno)); return -1; } GElf_Word secflags[lte->ehdr.e_shnum]; size_t i; for (i = 1; i < lte->ehdr.e_shnum; ++i) { Elf_Scn *scn = elf_getscn(lte->elf, i); if (scn == NULL) continue; GElf_Shdr shdr; if (gelf_getshdr(scn, &shdr) == NULL) continue; secflags[i] = shdr.sh_flags; } size_t lib_len = strlen(lib->soname); for (i = 0; i < size; ++i) { GElf_Sym sym; if (gelf_getsym(symtab, i, &sym) == NULL) { fail: fprintf(stderr, "couldn't get symbol #%zd from %s: %s\n", i, filename, elf_errmsg(-1)); continue; } /* XXX support IFUNC as well. */ if (GELF_ST_TYPE(sym.st_info) != STT_FUNC || sym.st_value == 0 || sym.st_shndx == STN_UNDEF) continue; /* Find symbol name and snip version. */ const char *orig_name = strtab + sym.st_name; const char *version = strchr(orig_name, '@'); size_t len = version != NULL ? (assert(version > orig_name), (size_t)(version - orig_name)) : strlen(orig_name); char name[len + 1]; memcpy(name, orig_name, len); name[len] = 0; /* If we are interested in exports, store this name. */ char *name_copy = NULL; if (names != NULL) { struct library_exported_name *export = NULL; name_copy = strdup(name); if (name_copy == NULL || (export = malloc(sizeof(*export))) == NULL) { free(name_copy); fprintf(stderr, "Couldn't store symbol %s. " "Tracing may be incomplete.\n", name); } else { export->name = name_copy; export->own_name = 1; export->next = *names; *names = export; } } /* If the symbol is not matched, skip it. We already * stored it to export list above. */ if (!filter_matches_symbol(options.static_filter, name, lib)) continue; arch_addr_t addr = (arch_addr_t) (uintptr_t)(sym.st_value + lte->bias); arch_addr_t naddr; /* On arches that support OPD, the value of typical * function symbol will be a pointer to .opd, but some * will point directly to .text. We don't want to * translate those. */ if (secflags[sym.st_shndx] & SHF_EXECINSTR) { naddr = addr; } else if (arch_translate_address(lte, addr, &naddr) < 0) { fprintf(stderr, "couldn't translate address of %s@%s: %s\n", name, lib->soname, strerror(errno)); continue; } char *full_name; int own_full_name = 1; if (lib->type != LT_LIBTYPE_MAIN) { full_name = malloc(strlen(name) + 1 + lib_len + 1); if (full_name == NULL) goto fail; sprintf(full_name, "%s@%s", name, lib->soname); } else { if (name_copy == NULL) { full_name = strdup(name); if (full_name == NULL) goto fail; } else { full_name = name_copy; own_full_name = 0; } } /* Look whether we already have a symbol for this * address. If not, add this one. */ struct unique_symbol key = { naddr, NULL }; struct unique_symbol *unique = lsearch(&key, symbols, &num_symbols, sizeof(*symbols), &unique_symbol_cmp); if (unique->libsym == NULL) { struct library_symbol *libsym = malloc(sizeof(*libsym)); if (libsym == NULL || library_symbol_init(libsym, naddr, full_name, own_full_name, LS_TOPLT_NONE) < 0) { --num_symbols; goto fail; } unique->libsym = libsym; unique->addr = naddr; } else if (strlen(full_name) < strlen(unique->libsym->name)) { library_symbol_set_name(unique->libsym, full_name, own_full_name); } else if (own_full_name) { free(full_name); } } /* Now we do the union of this set of unique symbols with * what's already in the library. */ for (i = 0; i < num_symbols; ++i) { struct library_symbol *this_sym = symbols[i].libsym; assert(this_sym != NULL); struct library_symbol *other = library_each_symbol(lib, NULL, symbol_with_address, &this_sym->enter_addr); if (other != NULL) { library_symbol_destroy(this_sym); free(this_sym); symbols[i].libsym = NULL; } } for (i = 0; i < num_symbols; ++i) if (symbols[i].libsym != NULL) library_add_symbol(lib, symbols[i].libsym); free(symbols); return 0; } static int populate_symtab(struct Process *proc, const char *filename, struct ltelf *lte, struct library *lib, int symtabs, int exports) { int status; if (symtabs && lte->symtab != NULL && lte->strtab != NULL && (status = populate_this_symtab(proc, filename, lte, lib, lte->symtab, lte->strtab, lte->symtab_count, NULL)) < 0) return status; /* Check whether we want to trace symbols implemented by this * library (-l). */ struct library_exported_name **names = NULL; if (exports) { debug(DEBUG_FUNCTION, "-l matches %s", lib->soname); names = &lib->exported_names; } return populate_this_symtab(proc, filename, lte, lib, lte->dynsym, lte->dynstr, lte->dynsym_count, names); } static int read_module(struct library *lib, struct Process *proc, const char *filename, GElf_Addr bias, int main) { struct ltelf lte = {}; if (open_elf(<e, filename) < 0) return -1; /* XXX When we abstract ABI into a module, this should instead * become something like * * proc->abi = arch_get_abi(lte.ehdr); * * The code in open_elf needs to be replaced by this logic. * Be warned that libltrace.c calls open_elf as well to * determine whether ABI is supported. This is to get * reasonable error messages when trying to run 64-bit binary * with 32-bit ltrace. It is desirable to preserve this. */ proc->e_machine = lte.ehdr.e_machine; proc->e_class = lte.ehdr.e_ident[EI_CLASS]; get_arch_dep(proc); /* Find out the base address. For PIE main binaries we look * into auxv, otherwise we scan phdrs. */ if (main && lte.ehdr.e_type == ET_DYN) { arch_addr_t entry; if (process_get_entry(proc, &entry, NULL) < 0) { fprintf(stderr, "Couldn't find entry of PIE %s\n", filename); return -1; } /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ lte.entry_addr = (GElf_Addr)(uintptr_t)entry; lte.bias = (GElf_Addr)(uintptr_t)entry - lte.ehdr.e_entry; } else { GElf_Phdr phdr; size_t i; for (i = 0; gelf_getphdr (lte.elf, i, &phdr) != NULL; ++i) { if (phdr.p_type == PT_LOAD) { lte.base_addr = phdr.p_vaddr + bias; break; } } lte.bias = bias; lte.entry_addr = lte.ehdr.e_entry + lte.bias; if (lte.base_addr == 0) { fprintf(stderr, "Couldn't determine base address of %s\n", filename); return -1; } } if (do_init_elf(<e, filename) < 0) return -1; if (arch_elf_init(<e, lib) < 0) { fprintf(stderr, "Backend initialization failed.\n"); return -1; } int status = 0; if (lib == NULL) goto fail; /* Note that we set soname and pathname as soon as they are * allocated, so in case of further errors, this get released * when LIB is release, which should happen in the caller when * we return error. */ if (lib->pathname == NULL) { char *pathname = strdup(filename); if (pathname == NULL) goto fail; library_set_pathname(lib, pathname, 1); } if (lte.soname != NULL) { char *soname = strdup(lte.soname); if (soname == NULL) goto fail; library_set_soname(lib, soname, 1); } else { const char *soname = rindex(lib->pathname, '/') + 1; if (soname == NULL) soname = lib->pathname; library_set_soname(lib, soname, 0); } /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ arch_addr_t entry = (arch_addr_t)(uintptr_t)lte.entry_addr; if (arch_translate_address(<e, entry, &entry) < 0) goto fail; /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ lib->base = (arch_addr_t)(uintptr_t)lte.base_addr; lib->entry = entry; /* XXX The double cast should be removed when * arch_addr_t becomes integral type. */ lib->dyn_addr = (arch_addr_t)(uintptr_t)lte.dyn_addr; /* There are two reasons that we need to inspect symbol tables * or populate PLT entries. Either the user requested * corresponding tracing features (respectively -x and -e), or * they requested tracing exported symbols (-l). * * In the latter case we need to keep even those PLT slots * that are not requested by -e (but we keep them latent). We * also need to inspect .dynsym to find what exports this * library provide, to turn on existing latent PLT * entries. */ int plts = filter_matches_library(options.plt_filter, lib); if ((plts || options.export_filter != NULL) && populate_plt(proc, filename, <e, lib, options.export_filter != NULL) < 0) goto fail; int exports = filter_matches_library(options.export_filter, lib); int symtabs = filter_matches_library(options.static_filter, lib); if ((symtabs || exports) && populate_symtab(proc, filename, <e, lib, symtabs, exports) < 0) goto fail; done: do_close_elf(<e); return status; fail: status = -1; goto done; } int ltelf_read_library(struct library *lib, struct Process *proc, const char *filename, GElf_Addr bias) { return read_module(lib, proc, filename, bias, 0); } struct library * ltelf_read_main_binary(struct Process *proc, const char *path) { struct library *lib = malloc(sizeof(*lib)); if (lib == NULL) return NULL; library_init(lib, LT_LIBTYPE_MAIN); library_set_pathname(lib, path, 0); /* There is a race between running the process and reading its * binary for internal consumption. So open the binary from * the /proc filesystem. XXX Note that there is similar race * for libraries, but there we don't have a nice answer like * that. Presumably we could read the DSOs from the process * memory image, but that's not currently done. */ char *fname = pid2name(proc->pid); if (fname == NULL) return NULL; if (read_module(lib, proc, fname, 0, 1) < 0) { library_destroy(lib); free(lib); return NULL; } free(fname); return lib; }