aboutsummaryrefslogtreecommitdiff
path: root/TPMCmd/tpm/src/crypt/AlgorithmTests.c
blob: 652cbb61b4127b237bf3dcbc9ec4564b2b974691 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
/* Microsoft Reference Implementation for TPM 2.0
 *
 *  The copyright in this software is being made available under the BSD License,
 *  included below. This software may be subject to other third party and
 *  contributor rights, including patent rights, and no such rights are granted
 *  under this license.
 *
 *  Copyright (c) Microsoft Corporation
 *
 *  All rights reserved.
 *
 *  BSD License
 *
 *  Redistribution and use in source and binary forms, with or without modification,
 *  are permitted provided that the following conditions are met:
 *
 *  Redistributions of source code must retain the above copyright notice, this list
 *  of conditions and the following disclaimer.
 *
 *  Redistributions in binary form must reproduce the above copyright notice, this
 *  list of conditions and the following disclaimer in the documentation and/or
 *  other materials provided with the distribution.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS""
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 *  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 *  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 *  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
//** Introduction
// This file contains the code to perform the various self-test functions.
//
// NOTE: In this implementation, large local variables are made static to minimize
// stack usage, which is critical for stack-constrained platforms.

//** Includes and Defines
#include    "Tpm.h"

#define     SELF_TEST_DATA

#if SELF_TEST

// These includes pull in the data structures. They contain data definitions for the
// various tests.
#include    "SelfTest.h"
#include    "SymmetricTest.h"
#include    "RsaTestData.h"
#include    "EccTestData.h"
#include    "HashTestData.h"
#include    "KdfTestData.h"

#define TEST_DEFAULT_TEST_HASH(vector)                                              \
            if(TEST_BIT(DEFAULT_TEST_HASH, g_toTest))                               \
                TestHash(DEFAULT_TEST_HASH, vector);

// Make sure that the algorithm has been tested
#define CLEAR_BOTH(alg)     {   CLEAR_BIT(alg, *toTest);                            \
                                if(toTest != &g_toTest)                             \
                                    CLEAR_BIT(alg, g_toTest); }

#define SET_BOTH(alg)     {   SET_BIT(alg, *toTest);                                \
                                if(toTest != &g_toTest)                             \
                                    SET_BIT(alg, g_toTest); }

#define TEST_BOTH(alg)       ((toTest != &g_toTest)                                 \
                            ? TEST_BIT(alg, *toTest) || TEST_BIT(alg, g_toTest)     \
                            : TEST_BIT(alg, *toTest))

// Can only cancel if doing a list.
#define CHECK_CANCELED                                                              \
    if(_plat__IsCanceled() && toTest != &g_toTest)                                  \
        return TPM_RC_CANCELED;

//** Hash Tests

//*** Description
// The hash test does a known-value HMAC using the specified hash algorithm.

//*** TestHash()
// The hash test function.
static TPM_RC
TestHash(
    TPM_ALG_ID          hashAlg,
    ALGORITHM_VECTOR    *toTest
    )
{
    static TPM2B_DIGEST      computed;  // value computed
    static HMAC_STATE        state;
    UINT16                   digestSize;
    const TPM2B             *testDigest = NULL;
//    TPM2B_TYPE(HMAC_BLOCK, DEFAULT_TEST_HASH_BLOCK_SIZE);

    pAssert(hashAlg != TPM_ALG_NULL);
#define HASH_CASE_FOR_TEST(HASH, hash)        case ALG_##HASH##_VALUE:          \
                                            testDigest = &c_##HASH##_digest.b;  \
                                            break;
    switch(hashAlg)
    {
        FOR_EACH_HASH(HASH_CASE_FOR_TEST)

        default:
            FAIL(FATAL_ERROR_INTERNAL); 
    }
    // Clear the to-test bits
    CLEAR_BOTH(hashAlg);

    // If there is an algorithm without test vectors, then assume that things are OK.
    if(testDigest == NULL || testDigest->size == 0)
        return TPM_RC_SUCCESS;

    // Set the HMAC key to twice the digest size
    digestSize = CryptHashGetDigestSize(hashAlg);
    CryptHmacStart(&state, hashAlg, digestSize * 2,
                   (BYTE *)c_hashTestKey.t.buffer);
    CryptDigestUpdate(&state.hashState, 2 * CryptHashGetBlockSize(hashAlg),
                      (BYTE *)c_hashTestData.t.buffer);
    computed.t.size = digestSize;
    CryptHmacEnd(&state, digestSize, computed.t.buffer);
    if((testDigest->size != computed.t.size)
       || (memcmp(testDigest->buffer, computed.t.buffer, computed.b.size) != 0))
        SELF_TEST_FAILURE;
    return TPM_RC_SUCCESS;
}

//** Symmetric Test Functions

//*** MakeIv()
// Internal function to make the appropriate IV depending on the mode.
static UINT32
MakeIv(
    TPM_ALG_ID    mode,     // IN: symmetric mode
    UINT32        size,     // IN: block size of the algorithm
    BYTE         *iv        // OUT: IV to fill in
    )
{
    BYTE          i;

    if(mode == TPM_ALG_ECB)
        return 0;
    if(mode == TPM_ALG_CTR)
    {
        // The test uses an IV that has 0xff in the last byte
        for(i = 1; i <= size; i++)
            *iv++ = 0xff - (BYTE)(size - i);
    }
    else
    {
        for(i = 0; i < size; i++)
            *iv++ = i;
    }
    return size;
}

//*** TestSymmetricAlgorithm()
// Function to test a specific algorithm, key size, and mode.
static void
TestSymmetricAlgorithm(
    const SYMMETRIC_TEST_VECTOR     *test,          //
    TPM_ALG_ID                       mode           //
    )
{
    static BYTE                 encrypted[MAX_SYM_BLOCK_SIZE * 2];
    static BYTE                 decrypted[MAX_SYM_BLOCK_SIZE * 2];
    static TPM2B_IV             iv;
//
    // Get the appropriate IV
    iv.t.size = (UINT16)MakeIv(mode, test->ivSize, iv.t.buffer);

    // Encrypt known data
    CryptSymmetricEncrypt(encrypted, test->alg, test->keyBits, test->key, &iv,
                          mode, test->dataInOutSize, test->dataIn);
    // Check that it matches the expected value
    if(!MemoryEqual(encrypted, test->dataOut[mode - TPM_ALG_CTR],
                    test->dataInOutSize))
        SELF_TEST_FAILURE;
    // Reinitialize the iv for decryption
    MakeIv(mode, test->ivSize, iv.t.buffer);
    CryptSymmetricDecrypt(decrypted, test->alg, test->keyBits, test->key, &iv,
                          mode, test->dataInOutSize,
                          test->dataOut[mode - TPM_ALG_CTR]);
    // Make sure that it matches what we started with
    if(!MemoryEqual(decrypted, test->dataIn, test->dataInOutSize))
        SELF_TEST_FAILURE;
}

//*** AllSymsAreDone()
// Checks if both symmetric algorithms have been tested. This is put here
// so that addition of a symmetric algorithm will be relatively easy to handle.
//
//  Return Type: BOOL
//      TRUE(1)         all symmetric algorithms tested
//      FALSE(0)        not all symmetric algorithms tested
static BOOL
AllSymsAreDone(
    ALGORITHM_VECTOR        *toTest
    )
{
    return (!TEST_BOTH(TPM_ALG_AES) && !TEST_BOTH(TPM_ALG_SM4));
}

//*** AllModesAreDone()
// Checks if all the modes have been tested.
//
//  Return Type: BOOL
//      TRUE(1)         all modes tested
//      FALSE(0)        all modes not tested
static BOOL
AllModesAreDone(
    ALGORITHM_VECTOR            *toTest
    )
{
    TPM_ALG_ID                  alg;
    for(alg = SYM_MODE_FIRST; alg <= SYM_MODE_LAST; alg++)
        if(TEST_BOTH(alg))
            return FALSE;
    return TRUE;
}

//*** TestSymmetric()
// If 'alg' is a symmetric block cipher, then all of the modes that are selected are
// tested. If 'alg' is a mode, then all algorithms of that mode are tested.
static TPM_RC
TestSymmetric(
    TPM_ALG_ID                   alg,
    ALGORITHM_VECTOR            *toTest
    )
{
    SYM_INDEX                    index;
    TPM_ALG_ID                   mode;
//
    if(!TEST_BIT(alg, *toTest))
        return TPM_RC_SUCCESS;
    if(alg == TPM_ALG_AES || alg == TPM_ALG_SM4 || alg == TPM_ALG_CAMELLIA)
    {
        // Will test the algorithm for all modes and key sizes
        CLEAR_BOTH(alg);

        // A test this algorithm for all modes
        for(index = 0; index < NUM_SYMS; index++)
        {
            if(c_symTestValues[index].alg == alg)
            {
                for(mode = SYM_MODE_FIRST;
                mode <= SYM_MODE_LAST;
                    mode++)
                {
                    if(TEST_BIT(mode, *toTest))
                        TestSymmetricAlgorithm(&c_symTestValues[index], mode);
                }
            }
        }
        // if all the symmetric tests are done
        if(AllSymsAreDone(toTest))
        {
            // all symmetric algorithms tested so no modes should be set
            for(alg = SYM_MODE_FIRST; alg <= SYM_MODE_LAST; alg++)
                CLEAR_BOTH(alg);
        }
    }
    else if(SYM_MODE_FIRST <= alg && alg <= SYM_MODE_LAST)
    {
        // Test this mode for all key sizes and algorithms
        for(index = 0; index < NUM_SYMS; index++)
        {
            // The mode testing only comes into play when doing self tests
            // by command. When doing self tests by command, the block ciphers are
            // tested first. That means that all of their modes would have been
            // tested for all key sizes. If there is no block cipher left to
            // test, then clear this mode bit.
            if(!TEST_BIT(TPM_ALG_AES, *toTest)
               && !TEST_BIT(TPM_ALG_SM4, *toTest))
            {
                CLEAR_BOTH(alg);
            }
            else
            {
                for(index = 0; index < NUM_SYMS; index++)
                {
                    if(TEST_BIT(c_symTestValues[index].alg, *toTest))
                        TestSymmetricAlgorithm(&c_symTestValues[index], alg);
                }
                // have tested this mode for all algorithms
                CLEAR_BOTH(alg);
            }
        }
        if(AllModesAreDone(toTest))
        {
            CLEAR_BOTH(TPM_ALG_AES);
            CLEAR_BOTH(TPM_ALG_SM4);
        }
    }
    else
        pAssert(alg == 0 && alg != 0);
    return TPM_RC_SUCCESS;
}

//** RSA Tests
#if ALG_RSA

//*** Introduction
// The tests are for public key only operations and for private key operations.
// Signature verification and encryption are public key operations. They are tested
// by using a KVT. For signature verification, this means that a known good
// signature is checked by CryptRsaValidateSignature(). If it fails, then the
// TPM enters failure mode. For encryption, the TPM encrypts known values using
// the selected scheme and checks that the returned value matches the expected
// value.
//
// For private key operations, a full scheme check is used. For a signing key, a
// known key is used to sign a known message. Then that signature is verified.
// since the signature may involve use of random values, the signature will be
// different each time and we can't always check that the signature matches a
// known value. The same technique is used for decryption (RSADP/RSAEP).
//
// When an operation uses the public key and the verification has not been
// tested, the TPM will do a KVT.
//
// The test for the signing algorithm is built into the call for the algorithm

//*** RsaKeyInitialize()
// The test key is defined by a public modulus and a private prime. The TPM's RSA
// code computes the second prime and the private exponent.
static void
RsaKeyInitialize(
    OBJECT          *testObject
    )
{
    MemoryCopy2B(&testObject->publicArea.unique.rsa.b, (P2B)&c_rsaPublicModulus,
                 sizeof(c_rsaPublicModulus));
    MemoryCopy2B(&testObject->sensitive.sensitive.rsa.b, (P2B)&c_rsaPrivatePrime,
                 sizeof(testObject->sensitive.sensitive.rsa.t.buffer));
    testObject->publicArea.parameters.rsaDetail.keyBits = RSA_TEST_KEY_SIZE * 8;
    // Use the default exponent
    testObject->publicArea.parameters.rsaDetail.exponent = 0;
}

//*** TestRsaEncryptDecrypt()
// These tests are for a public key encryption that uses a random value.
static TPM_RC
TestRsaEncryptDecrypt(
    TPM_ALG_ID           scheme,            // IN: the scheme
    ALGORITHM_VECTOR    *toTest             //
    )
{
    static TPM2B_PUBLIC_KEY_RSA      testInput;
    static TPM2B_PUBLIC_KEY_RSA      testOutput;
    static OBJECT                    testObject;
    const TPM2B_RSA_TEST_KEY        *kvtValue = NULL;
    TPM_RC                           result = TPM_RC_SUCCESS;
    const TPM2B                     *testLabel = NULL;
    TPMT_RSA_DECRYPT                 rsaScheme;
//
    // Don't need to initialize much of the test object
    RsaKeyInitialize(&testObject);
    rsaScheme.scheme = scheme;
    rsaScheme.details.anySig.hashAlg = DEFAULT_TEST_HASH;
    CLEAR_BOTH(scheme);
    CLEAR_BOTH(TPM_ALG_NULL);
    if(scheme == TPM_ALG_NULL)
    {
        // This is an encryption scheme using the private key without any encoding.
        memcpy(testInput.t.buffer, c_RsaTestValue, sizeof(c_RsaTestValue));
        testInput.t.size = sizeof(c_RsaTestValue);
        if(TPM_RC_SUCCESS != CryptRsaEncrypt(&testOutput, &testInput.b,
                                             &testObject, &rsaScheme, NULL, NULL))
            SELF_TEST_FAILURE;
        if(!MemoryEqual(testOutput.t.buffer, c_RsaepKvt.buffer, c_RsaepKvt.size))
            SELF_TEST_FAILURE;
        MemoryCopy2B(&testInput.b, &testOutput.b, sizeof(testInput.t.buffer));
        if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,
                                             &testObject, &rsaScheme, NULL))
            SELF_TEST_FAILURE;
        if(!MemoryEqual(testOutput.t.buffer, c_RsaTestValue,
                        sizeof(c_RsaTestValue)))
            SELF_TEST_FAILURE;
    }
    else
    {
        // TPM_ALG_RSAES:
        // This is an decryption scheme using padding according to
        // PKCS#1v2.1, 7.2. This padding uses random bits. To test a public
        // key encryption that uses random data, encrypt a value and then
        // decrypt the value and see that we get the encrypted data back.
        // The hash is not used by this encryption so it can be TMP_ALG_NULL

        // TPM_ALG_OAEP:
        // This is also an decryption scheme and it also uses a
        // pseudo-random
        // value. However, this also uses a hash algorithm. So, we may need
        // to test that algorithm before use.
        if(scheme == TPM_ALG_OAEP)
        {
            TEST_DEFAULT_TEST_HASH(toTest);
            kvtValue = &c_OaepKvt;
            testLabel = OAEP_TEST_STRING;
        }
        else if(scheme == TPM_ALG_RSAES)
        {
            kvtValue = &c_RsaesKvt;
            testLabel = NULL;
        }
        else
            SELF_TEST_FAILURE;
        // Only use a digest-size portion of the test value
        memcpy(testInput.t.buffer, c_RsaTestValue, DEFAULT_TEST_DIGEST_SIZE);
        testInput.t.size = DEFAULT_TEST_DIGEST_SIZE;

        // See if the encryption works
        if(TPM_RC_SUCCESS != CryptRsaEncrypt(&testOutput, &testInput.b,
                                             &testObject, &rsaScheme, testLabel,
                                             NULL))
            SELF_TEST_FAILURE;
        MemoryCopy2B(&testInput.b, &testOutput.b, sizeof(testInput.t.buffer));
        // see if we can decrypt this value and get the original data back
        if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,
                                             &testObject, &rsaScheme, testLabel))
            SELF_TEST_FAILURE;
        // See if the results compare
        if(testOutput.t.size != DEFAULT_TEST_DIGEST_SIZE
           || !MemoryEqual(testOutput.t.buffer, c_RsaTestValue,
                           DEFAULT_TEST_DIGEST_SIZE))
            SELF_TEST_FAILURE;
        // Now check that the decryption works on a known value
        MemoryCopy2B(&testInput.b, (P2B)kvtValue,
                     sizeof(testInput.t.buffer));
        if(TPM_RC_SUCCESS != CryptRsaDecrypt(&testOutput.b, &testInput.b,
                                             &testObject, &rsaScheme, testLabel))
            SELF_TEST_FAILURE;
        if(testOutput.t.size != DEFAULT_TEST_DIGEST_SIZE
           || !MemoryEqual(testOutput.t.buffer, c_RsaTestValue,
                           DEFAULT_TEST_DIGEST_SIZE))
            SELF_TEST_FAILURE;
    }
    return result;
}

//*** TestRsaSignAndVerify()
// This function does the testing of the RSA sign and verification functions. This
// test does a KVT.
static TPM_RC
TestRsaSignAndVerify(
    TPM_ALG_ID               scheme,
    ALGORITHM_VECTOR        *toTest
    )
{
    TPM_RC                      result = TPM_RC_SUCCESS;
    static OBJECT               testObject;
    static TPM2B_DIGEST         testDigest;
    static TPMT_SIGNATURE       testSig;

    // Do a sign and signature verification.
    // RSASSA:
    // This is a signing scheme according to PKCS#1-v2.1 8.2. It does not
    // use random data so there is a KVT for the signing operation. On
    // first use of the scheme for signing, use the TPM's RSA key to
    // sign a portion of c_RsaTestData and compare the results to c_RsassaKvt. Then
    // decrypt the data to see that it matches the starting value. This verifies
    // the signature with a KVT

    // Clear the bits indicating that the function has not been checked. This is to
    // prevent looping
    CLEAR_BOTH(scheme);
    CLEAR_BOTH(TPM_ALG_NULL);
    CLEAR_BOTH(TPM_ALG_RSA);

    RsaKeyInitialize(&testObject);
    memcpy(testDigest.t.buffer, (BYTE *)c_RsaTestValue, DEFAULT_TEST_DIGEST_SIZE);
    testDigest.t.size = DEFAULT_TEST_DIGEST_SIZE;
    testSig.sigAlg = scheme;
    testSig.signature.rsapss.hash = DEFAULT_TEST_HASH;

    // RSAPSS:
    // This is a signing scheme a according to PKCS#1-v2.2 8.1 it uses
    // random data in the signature so there is no KVT for the signing
    // operation. To test signing, the TPM will use the TPM's RSA key
    // to sign a portion of c_RsaTestValue and then it will verify the
    // signature. For verification, c_RsapssKvt is verified before the
    // user signature blob is verified. The worst case for testing of this
    // algorithm is two private and one public key operation.

    // The process is to sign known data. If RSASSA is being done, verify that the
    // signature matches the precomputed value. For both, use the signed value and
    // see that the verification says that it is a good signature. Then
    // if testing RSAPSS, do a verify of a known good signature. This ensures that
    // the validation function works.

    if(TPM_RC_SUCCESS != CryptRsaSign(&testSig, &testObject, &testDigest, NULL))
        SELF_TEST_FAILURE;
    // For RSASSA, make sure the results is what we are looking for
    if(testSig.sigAlg == TPM_ALG_RSASSA)
    {
        if(testSig.signature.rsassa.sig.t.size != RSA_TEST_KEY_SIZE
           || !MemoryEqual(c_RsassaKvt.buffer,
                           testSig.signature.rsassa.sig.t.buffer,
                           RSA_TEST_KEY_SIZE))
            SELF_TEST_FAILURE;
    }
    // See if the TPM will validate its own signatures
    if(TPM_RC_SUCCESS != CryptRsaValidateSignature(&testSig, &testObject,
                                                   &testDigest))
        SELF_TEST_FAILURE;
    // If this is RSAPSS, check the verification with known signature
    // Have to copy because  CrytpRsaValidateSignature() eats the signature
    if(TPM_ALG_RSAPSS == scheme)
    {
        MemoryCopy2B(&testSig.signature.rsapss.sig.b, (P2B)&c_RsapssKvt,
                     sizeof(testSig.signature.rsapss.sig.t.buffer));
        if(TPM_RC_SUCCESS != CryptRsaValidateSignature(&testSig, &testObject,
                                                       &testDigest))
            SELF_TEST_FAILURE;
    }
    return result;
}

//*** TestRSA()
// Function uses the provided vector to indicate which tests to run. It will clear
// the vector after each test is run and also clear g_toTest
static TPM_RC
TestRsa(
    TPM_ALG_ID               alg,
    ALGORITHM_VECTOR        *toTest
    )
{
    TPM_RC                  result = TPM_RC_SUCCESS;
//
    switch(alg)
    {
        case TPM_ALG_NULL:
        // This is the RSAEP/RSADP function. If we are processing a list, don't
        // need to test these now because any other test will validate
        // RSAEP/RSADP. Can tell this is list of test by checking to see if
        // 'toTest' is pointing at g_toTest. If so, this is an isolated test
        // an need to go ahead and do the test;
            if((toTest == &g_toTest)
               || (!TEST_BIT(TPM_ALG_RSASSA, *toTest)
                   && !TEST_BIT(TPM_ALG_RSAES, *toTest)
                   && !TEST_BIT(TPM_ALG_RSAPSS, *toTest)
                   && !TEST_BIT(TPM_ALG_OAEP, *toTest)))
               // Not running a list of tests or no other tests on the list
               // so run the test now
                result = TestRsaEncryptDecrypt(alg, toTest);
            // if not running the test now, leave the bit on, just in case things
            // get interrupted
            break;
        case TPM_ALG_OAEP:
        case TPM_ALG_RSAES:
            result = TestRsaEncryptDecrypt(alg, toTest);
            break;
        case TPM_ALG_RSAPSS:
        case TPM_ALG_RSASSA:
            result = TestRsaSignAndVerify(alg, toTest);
            break;
        default:
            SELF_TEST_FAILURE;
    }
    return result;
}

#endif // ALG_RSA

//** ECC Tests

#if ALG_ECC

//*** LoadEccParameter()
// This function is mostly for readability and type checking
static void
LoadEccParameter(
    TPM2B_ECC_PARAMETER          *to,       // target
    const TPM2B_EC_TEST          *from      // source
    )
{
    MemoryCopy2B(&to->b, &from->b, sizeof(to->t.buffer));
}

//*** LoadEccPoint()
static void
LoadEccPoint(
    TPMS_ECC_POINT               *point,    // target
    const TPM2B_EC_TEST          *x,        // source
    const TPM2B_EC_TEST          *y
    )
{
    MemoryCopy2B(&point->x.b, (TPM2B *)x, sizeof(point->x.t.buffer));
    MemoryCopy2B(&point->y.b, (TPM2B *)y, sizeof(point->y.t.buffer));
}

//*** TestECDH()
// This test does a KVT on a point multiply.
static TPM_RC
TestECDH(
    TPM_ALG_ID          scheme,         // IN: for consistency
    ALGORITHM_VECTOR    *toTest         // IN/OUT: modified after test is run
    )
{
    static TPMS_ECC_POINT       Z;
    static TPMS_ECC_POINT       Qe;
    static TPM2B_ECC_PARAMETER  ds;
    TPM_RC                      result = TPM_RC_SUCCESS;
//
    NOT_REFERENCED(scheme);
    CLEAR_BOTH(TPM_ALG_ECDH);
    LoadEccParameter(&ds, &c_ecTestKey_ds);
    LoadEccPoint(&Qe, &c_ecTestKey_QeX, &c_ecTestKey_QeY);
    if(TPM_RC_SUCCESS != CryptEccPointMultiply(&Z, c_testCurve, &Qe, &ds,
                                               NULL, NULL))
        SELF_TEST_FAILURE;
    if(!MemoryEqual2B(&c_ecTestEcdh_X.b, &Z.x.b)
       || !MemoryEqual2B(&c_ecTestEcdh_Y.b, &Z.y.b))
        SELF_TEST_FAILURE;
    return result;
}

//*** TestEccSignAndVerify()
static TPM_RC
TestEccSignAndVerify(
    TPM_ALG_ID                   scheme,
    ALGORITHM_VECTOR            *toTest
    )
{
    static OBJECT                testObject;
    static TPMT_SIGNATURE        testSig;
    static TPMT_ECC_SCHEME       eccScheme;

    testSig.sigAlg = scheme;
    testSig.signature.ecdsa.hash = DEFAULT_TEST_HASH;

    eccScheme.scheme = scheme;
    eccScheme.details.anySig.hashAlg = DEFAULT_TEST_HASH;

    CLEAR_BOTH(scheme);
    CLEAR_BOTH(TPM_ALG_ECDH);

    // ECC signature verification testing uses a KVT.
    switch(scheme)
    {
        case TPM_ALG_ECDSA:
            LoadEccParameter(&testSig.signature.ecdsa.signatureR, &c_TestEcDsa_r);
            LoadEccParameter(&testSig.signature.ecdsa.signatureS, &c_TestEcDsa_s);
            break;
        case TPM_ALG_ECSCHNORR:
            LoadEccParameter(&testSig.signature.ecschnorr.signatureR,
                             &c_TestEcSchnorr_r);
            LoadEccParameter(&testSig.signature.ecschnorr.signatureS,
                             &c_TestEcSchnorr_s);
            break;
        case TPM_ALG_SM2:
            // don't have a test for SM2
            return TPM_RC_SUCCESS;
        default:
            SELF_TEST_FAILURE;
            break;
    }
    TEST_DEFAULT_TEST_HASH(toTest);

    // Have to copy the key. This is because the size used in the test vectors
    // is the size of the ECC parameter for the test key while the size of a point
    // is TPM dependent
    MemoryCopy2B(&testObject.sensitive.sensitive.ecc.b, &c_ecTestKey_ds.b,
                 sizeof(testObject.sensitive.sensitive.ecc.t.buffer));
    LoadEccPoint(&testObject.publicArea.unique.ecc, &c_ecTestKey_QsX,
                 &c_ecTestKey_QsY);
    testObject.publicArea.parameters.eccDetail.curveID = c_testCurve;

    if(TPM_RC_SUCCESS != CryptEccValidateSignature(&testSig, &testObject,
                                                   (TPM2B_DIGEST *)&c_ecTestValue.b))
    {
        SELF_TEST_FAILURE;
    }
    CHECK_CANCELED;

    // Now sign and verify some data
    if(TPM_RC_SUCCESS != CryptEccSign(&testSig, &testObject,
                                      (TPM2B_DIGEST *)&c_ecTestValue,
                                      &eccScheme, NULL))
        SELF_TEST_FAILURE;

    CHECK_CANCELED;

    if(TPM_RC_SUCCESS != CryptEccValidateSignature(&testSig, &testObject,
                                                   (TPM2B_DIGEST *)&c_ecTestValue))
        SELF_TEST_FAILURE;

    CHECK_CANCELED;

    return TPM_RC_SUCCESS;
}

//*** TestKDFa()
static TPM_RC
TestKDFa(
    ALGORITHM_VECTOR        *toTest
    )
{
    static TPM2B_KDF_TEST_KEY   keyOut;
    UINT32                      counter = 0;
//
    CLEAR_BOTH(TPM_ALG_KDF1_SP800_108);

    keyOut.t.size = CryptKDFa(KDF_TEST_ALG, &c_kdfTestKeyIn.b, &c_kdfTestLabel.b,
                              &c_kdfTestContextU.b, &c_kdfTestContextV.b,
                              TEST_KDF_KEY_SIZE * 8, keyOut.t.buffer,
                              &counter, FALSE);
    if (   keyOut.t.size != TEST_KDF_KEY_SIZE
        || !MemoryEqual(keyOut.t.buffer, c_kdfTestKeyOut.t.buffer,
                        TEST_KDF_KEY_SIZE))
        SELF_TEST_FAILURE;

    return TPM_RC_SUCCESS;
}

//*** TestEcc()
static TPM_RC
TestEcc(
    TPM_ALG_ID              alg,
    ALGORITHM_VECTOR        *toTest
    )
{
    TPM_RC                  result = TPM_RC_SUCCESS;
    NOT_REFERENCED(toTest);
    switch(alg)
    {
        case TPM_ALG_ECC:
        case TPM_ALG_ECDH:
            // If this is in a loop then see if another test is going to deal with
            // this.
            // If toTest is not a self-test list
            if((toTest == &g_toTest)
                // or this is the only ECC test in the list
               || !(TEST_BIT(TPM_ALG_ECDSA, *toTest)
                    || TEST_BIT(ALG_ECSCHNORR, *toTest)
                    || TEST_BIT(TPM_ALG_SM2, *toTest)))
            {
                result = TestECDH(alg, toTest);
            }
            break;
        case TPM_ALG_ECDSA:
        case TPM_ALG_ECSCHNORR:
        case TPM_ALG_SM2:
            result = TestEccSignAndVerify(alg, toTest);
            break;
        default:
            SELF_TEST_FAILURE;
            break;
    }
    return result;
}

#endif // ALG_ECC

//*** TestAlgorithm()
// Dispatches to the correct test function for the algorithm or gets a list of
// testable algorithms.
//
// If 'toTest' is not NULL, then the test decisions are based on the algorithm
// selections in 'toTest'. Otherwise, 'g_toTest' is used. When bits are clear in
// 'g_toTest' they will also be cleared 'toTest'.
//
// If there doesn't happen to be a test for the algorithm, its associated bit is
// quietly cleared.
//
// If 'alg' is zero (TPM_ALG_ERROR), then the toTest vector is cleared of any bits
// for which there is no test (i.e. no tests are actually run but the vector is
// cleared).
//
// Note: 'toTest' will only ever have bits set for implemented algorithms but 'alg'
// can be anything.
//
//  Return Type: TPM_RC
//      TPM_RC_CANCELED     test was canceled
LIB_EXPORT
TPM_RC
TestAlgorithm(
    TPM_ALG_ID               alg,
    ALGORITHM_VECTOR        *toTest
    )
{
    TPM_ALG_ID              first = (alg == TPM_ALG_ERROR) ? TPM_ALG_FIRST : alg;
    TPM_ALG_ID              last = (alg == TPM_ALG_ERROR) ? TPM_ALG_LAST : alg;
    BOOL                    doTest = (alg != TPM_ALG_ERROR);
    TPM_RC                  result = TPM_RC_SUCCESS;

    if(toTest == NULL)
        toTest = &g_toTest;

    // This is kind of strange. This function will either run a test of the selected
    // algorithm or just clear a bit if there is no test for the algorithm. So,
    // either this loop will be executed once for the selected algorithm or once for
    // each of the possible algorithms. If it is executed more than once ('alg' ==
    // ALG_ERROR), then no test will be run but bits will be cleared for
    // unimplemented algorithms. This was done this way so that there is only one
    // case statement with all of the algorithms. It was easier to have one case
    // statement than to have multiple ones to manage whenever an algorithm ID is
    // added.
    for(alg = first; (alg <= last); alg++)
    {
        // if 'alg' was TPM_ALG_ERROR, then we will be cycling through
        // values, some of which may not be implemented. If the bit in toTest
        // happens to be set, then we could either generated an assert, or just
        // silently CLEAR it. Decided to just clear.
        if(!TEST_BIT(alg, g_implementedAlgorithms))
        {
            CLEAR_BIT(alg, *toTest);
            continue;
        }
        // Process whatever is left.
        // NOTE: since this switch will only be called if the algorithm is
        // implemented, it is not necessary to modify this list except to comment
        // out the algorithms for which there is no test
        switch(alg)
        {
        // Symmetric block ciphers
#if ALG_AES
            case TPM_ALG_AES:
#endif  // ALG_AES
#if ALG_SM4
            // if SM4 is implemented, its test is like other block ciphers but there
            // aren't any test vectors for it yet
//            case TPM_ALG_SM4:
#endif  // ALG_SM4
#if ALG_CAMELLIA
            // no test vectors for camellia
//            case TPM_ALG_CAMELLIA:
#endif
        // Symmetric modes
#if     !ALG_CFB
#   error   CFB is required in all TPM implementations
#endif // !ALG_CFB
            case TPM_ALG_CFB:
                if(doTest)
                    result = TestSymmetric(alg, toTest);
                break;
#if ALG_CTR
            case TPM_ALG_CTR:
#endif // ALG_CRT
#if ALG_OFB
            case TPM_ALG_OFB:
#endif // ALG_OFB
#if ALG_CBC
            case TPM_ALG_CBC:
#endif // ALG_CBC
#if ALG_ECB
            case TPM_ALG_ECB:
#endif
                if(doTest)
                    result = TestSymmetric(alg, toTest);
                else
                    // If doing the initialization of g_toTest vector, only need
                    // to test one of the modes for the symmetric algorithms. If
                    // initializing for a SelfTest(FULL_TEST), allow all the modes.
                    if(toTest == &g_toTest)
                        CLEAR_BIT(alg, *toTest);
                break;
#if     !ALG_HMAC
#   error   HMAC is required in all TPM implementations
#endif
            case TPM_ALG_HMAC:
                // Clear the bit that indicates that HMAC is required because
                // HMAC is used as the basic test for all hash algorithms.
                CLEAR_BOTH(alg);
                // Testing HMAC means test the default hash
                if(doTest)
                    TestHash(DEFAULT_TEST_HASH, toTest);
                else
                    // If not testing, then indicate that the hash needs to be
                    // tested because this uses HMAC
                    SET_BOTH(DEFAULT_TEST_HASH);
                break;
// Have to use two arguments for the macro even though only the first is used in the
// expansion.
#define HASH_CASE_TEST(HASH, hash)                                                   \
            case ALG_##HASH##_VALUE:			
                FOR_EACH_HASH(HASH_CASE_TEST)
#undef HASH_CASE_TEST
                if(doTest)
                    result = TestHash(alg, toTest);
                break;
    // RSA-dependent
#if ALG_RSA
            case TPM_ALG_RSA:
                CLEAR_BOTH(alg);
                if(doTest)
                    result = TestRsa(TPM_ALG_NULL, toTest);
                else
                    SET_BOTH(TPM_ALG_NULL);
                break;
            case TPM_ALG_RSASSA:
            case TPM_ALG_RSAES:
            case TPM_ALG_RSAPSS:
            case TPM_ALG_OAEP:
            case TPM_ALG_NULL:    // used or RSADP
                if(doTest)
                    result = TestRsa(alg, toTest);
                break;
#endif // ALG_RSA
#if ALG_KDF1_SP800_108
            case TPM_ALG_KDF1_SP800_108:
                if(doTest)
                    result = TestKDFa(toTest);
                break;
#endif // ALG_KDF1_SP800_108
#if ALG_ECC
    // ECC dependent but no tests
    //        case TPM_ALG_ECDAA:
    //        case TPM_ALG_ECMQV:
    //        case TPM_ALG_KDF1_SP800_56a:
    //        case TPM_ALG_KDF2:
    //        case TPM_ALG_MGF1:
            case TPM_ALG_ECC:
                CLEAR_BOTH(alg);
                if(doTest)
                    result = TestEcc(TPM_ALG_ECDH, toTest);
                else
                    SET_BOTH(TPM_ALG_ECDH);
                break;
            case TPM_ALG_ECDSA:
            case TPM_ALG_ECDH:
            case TPM_ALG_ECSCHNORR:
//            case TPM_ALG_SM2:
                if(doTest)
                    result = TestEcc(alg, toTest);
                break;
#endif // ALG_ECC
            default:
                CLEAR_BIT(alg, *toTest);
                break;
        }
        if(result != TPM_RC_SUCCESS)
            break;
    }
    return result;
}

#endif // SELF_TESTS