DV

PV2Way Communications I/0O Development Guide
OpenCORE 2.0, rev. 2
May 14, 2010

© 2010 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

Open

Table of Contents

1. INtrOdUCTION. .. ieeiresrerenirarnsransrarasressensrassassrasrasrassenssastassenseassassanseasessasensasensansnses 4
2. PYCOMMSIONOUE ..icuieeiieiimsimsinnsimuenssenssmssmssnassmssnssnsssnssnssnnssnssnssnssssassssassasassnsass 4
2.1. Two MIO ComponentS / TWO POIS ..iu.ieuiiiie ittt tisiieaaiesesiseaznsenss 4

2.2. One MIO Component / ONE POt ...ttt e et eeseeeaisiaseaeaseaenne, 5

List of Figures

Figure 1: Two MIO CompPOoNents / TWO POIS.........uuuiiiiiiiiiiiiiee e
Figure 2: One MIO CompPOoNENnt / ONE POIooiiiiiiiiieiiiiiiiee ettt e e
Figure 3: TwWo MIO ComPONENES / ONE POM.........ciiiiiiiiiiiiie ettt
Figure 4: One MIO Component / TWO POIS.........ccuiiiiiiiiiiieiiiiieiee ettt e s

1. Introduction

This document establishes guidelines for developing baseband communications I/O components
to work with the PV2Way engine’s PYCommsIONode. The PVCommslONode serves to abstract
the details (media transfer model, unidirectional/bidirectional operation, etc.) of device specific
baseband communications from the PV2Way engine. A knowledge of the interfaces detailed in

the reference documents is implied.

2. PVCommsIONode

The PVYCommsIONode is designed to abstract device specific baseband communication details
from the rest of the PV2Way Engine, and allow flexibility for both baseband side and PV2Way
Engine side sending and receiving of data. Below are the following use case scenarios for the

PVCommslIONode:

2.1. Two MIO Components / Two Ports

Scenaro: Twounidirectional baseband components, two
unidirectional part=s

The P CommszlDMNode es@blishes a Meda DataTransfer
session with each bassband component. Dat@ {owing fromthe
baseband input companent is relayed tothe output port, and
data dowing Fomthe input port is relaywed to the bas=band
media output component.

I
|
| Pt F Portinterace R
i Output port - 1 Baseband
. -. _________ Jog—hiediaDiata fer Input
i 1 | Companent
i 1
Py : I
Ernj--:.nrn}ernt : Pl F P rtintertace i P Commsl0 Node ;
i Fipit port | i Bas=band
B dia Dt fiar— g Output
1 -I. | Componerit
i] |
i
|

Figure 1: Two MIO Components /| Two Ports

2.2. One MIO Component / One Port

Scenario: One bidirectional bazseband component, ane
bidirectional part

P2y
Envronmerit

The PWCommslOMode establishesa MedaData Transfer
=ezgion with a bidirection al baseband component . Data flowing
fram the bassband component is relayed and =2 nd aut ower the
port interface, and data flowing in fomthe port interace is
relyed to the ba szband component.

Fe=T==—m—m==1

Bazzband
hput/Ouotput
Component

P F Portinterface :
10 port —
. _d' PhCommsiONode bokedia Dt fer— e
|
1 |
! I
L i

Figure 2: One MIO Component /| One Port

2.3. Two MIO Components / One Port

P2y
Envronment

Scenario: Two unidirectional baszband components, one
bidirectional part

The PCommsld Node establishesa MedaDataTransfer
zesgion with each baseband component. Data dowing from the
baseband input compenernt is relayed tothe port, and ent out
ower the port inter@ce, and data 1owing in from the port nterface
i= relayed to the bass=band media output component.

[
i I Ba=z=band
. o —t—hizdia Dt fer Input
F\.'rn.ﬂl-'lgrtlmerhce 1 — T | Component
port .
. - PyommsiONode |
1
T T e - | Bas=band
i . MediaData ki far—gs Clurtput
i I Component

Figure 3: Two MIO Components /| One Port

2.4. One MIO Component / Two Ports

Scenaro 1: One bidiredtional bas=band component, two
unidirectional ports

The PCommsl0MNode esablishes a MediaDataTransfer
zazsion with a bidirectional bassband component . Oata flowing
fomthe baseband comp onent i relawed to the output port, and
data fowing from the input port i= relaywed to the base=band
COMpa nent.

PutdF Port hiterface [me=——————

COutput port 1
= |
-,

Baseband
Py CommslOModa ed@ Datakfer—am Input/Ootput
Camponerit

e
—

Py
Envronimenit PutilF Port nterface

Input port

—r—

Figure 4: One MIO Component /| Two Ports

An instance of PVCommslIONode should be created using the
CPVCommslONodeFactory class as detailed in the PV2Way API document.

3. Implementing Baseband Comm IO components

3.1. PvmiMIOControl Interface

All baseband comms components must implement the PvmiMIOControl interface. This
provides a framework for the PYCommslONode to programmatically start, stop and
otherwise control the component. The component should return an implementation of
the PvmiMediaTransfer interface via its ::CreateMediaTransfer() method. This
PvmiMediaTransfer implementation is responsible for managing the actual transmission
and reception of data.

3.2. PvmiMediaTransfer and Data Transfer Models

Currently, the PYCommslONode supports the data push model for both input and output
data. The PVCommslONode is responsible for pushing output data to the baseband

Open

component, and the baseband component is responsible for pushing input data to the
PVCommslONode. As this relates to the PvmiMediaTransfer interface, the baseband
component should push input data by calling its peer's (PVCommsIONode) writeAsync()
method. Accordingly, the PVCommslONode should push output data to the baseband
component by calling its peer’s (baseband component) writeAsync() method.

Threading models for target environments may dictate that a pull model, requiring the
use of the readAsync() methods, be used for data transfer and future support for this is
planned.

3.3. PvmiCapabilityAndConfig Interface

All Baseband MIO components must implement the PvmiCapabilityAndConfig interface and
expose a basic set of values that can be retrieved by a peer. At a minimum, a peer should be
able to retrieve, and if necessary, set and enumerate values for the following keys:

.../linput_formats;valtype=int32 I If the component supports media output, it should
allow a query on the current value for this key, and if
more than one format is supported, it should allow
enumeration and setting of this key as well. Format
types are located in the file “pvmf_format_types.h”.
For H.324, PVMF_H223 format must be supported.

...Joutput_formats;valtype=int32 | If the component supports media input, it should allow
a query on the current value for this key, and if more
than one format is supported, it should allow
enumeration and setting of this key as well. Format
types are located in the file “pvmf_format_types.h”. For
H.324, PVMF_H223 format must be supported.

...linput/transfer_model;valtype=uint32 | If the component supports media output, it should allow
a query on the current value for this key. The key
should be read-only, and a value of 0 indicates the
component uses a data pull model for output data, 1 for
data push. Currently, the PYCommslONode requires
that this value be 1.

...Joutput/transfer_model;valtype=uint3 ||If the component supports media input, it should allow
) a query on the current value for this key. The key
should be read-only, and a value of 0 indicates the
component uses a data pull model for input data, 1 for
data push. Currently, the PYCommslIONode requires
that this value be 1.

4. FAQ

Q1. What do Comm source and Comm sink mean?

Al: Comm source and Comm sink refer to the MIO component(s) responsible for
receiving data from the peer and sending data to the peer respectively.

Q2. Does this mean we need two mios in real VT case? One for reading data from
modem(source) one for sending the data to modem(sink)?

A2: The Comm source and Comm sink may be part of the same MIO or may be
separate MIOs. The implementation depends on what makes more sense for the driver
integration. The PVCommslONode can handle both cases. Please refer use cases
described in section 2.

Q3. What are the various loopback options with pv2way engine ?

A3: The following are the loopback options. Descriptions can also be found in the
pv2way APl document.

PV_LOOPBACK_NONE: No loopback of data is involved here. This option is to be
used for any point to point connection over 3g/sockets/other.

PV_LOOPBACK_COMM: Data is looped back external to the pv2way engine. But the
pv2way engine needs to be aware of this mode so that call setup can be altered
appropriately (MSD disabled).

PV_LOOPBACK_ENGINE: This was intended for looping back media at the engine
level, without any involvement of the protocol stack. Currently not implemented.

PV_LOOPBACK_MUX: Loops back multiplexed data at the output of the protocol stack.
So, multiplexed data is not sent to the comm mio in this case.

Q4: If we want to develop our real VT COMM MIO, do we need to set the loopback
mode value to PV_LOOPBACK_NONE?

A4: Yes, if you want to connect Point-Point. If you need to test loopback at the Comm
MIO / Driver level, you would have to set the loopback mode to
PV_LOOPBACK_COMM.

Q5: If we change the mode to PV_LOOPBACK_NONE, will the 2way engine still connect
to the PvmiMIOCommLoopback? Or how we add our real VT MIO into 2way engine?

A5: No. Changing the value does not change the COMM MIO that is being used. You
would add the real Comm MIO(s) to the pv2way engine by using
PVCommslONodeFactory to create the PYCommslONode that can control the real
Comm MIO(s). Then use Terminal->Connect() to pass the PVCommslIONode to the
pv2way engine.

Q6: From the view of 2 way engine behavior , what's the difference between
PV_LOOPBACK_NONE and PV_LOOPBACK_COMM?

A6: The main difference is that the Master/Slave Determination procedure is skipped in
the case of PV_LOOPBACK_COMM. The behaviour is similar as far as sending and
receiving data is concerned. If you set the loopback mode (wrongly) as
PV_LOOPBACK_NONE while using any loopback MIO, it will result in Master/Slave
Determination timing out and the Connect command would fail.

Q7: From the view of our real COMM MIO, what's the difference between
PV_LOOPBACK_NONE and PV_LOOPBACK_COMM?

A7: The real Comm MIO would send/receive data with the remote terminal while using
PV_LOOPBACK_NONE, and would loop data back to itself while using
PV_LOOPBACK_COMM.

	1. Introduction
	2. PVCommsIONode
	2.1. Two MIO Components / Two Ports
	2.2. One MIO Component / One Port
	2.3. Two MIO Components / One Port
	2.4. One MIO Component / Two Ports

	3. Implementing Baseband Comm IO components
	3.1. PvmiMIOControl Interface
	3.2. PvmiMediaTransfer and Data Transfer Models
	3.3. PvmiCapabilityAndConfig Interface

	4. FAQ

