
PVAuthor Developer's Guide
OHA 1.0, rev. 1

Oct 20, 2008

© 2008 PacketVideo Corporation
This document licensed under the Apache License, Version 2.0

http://www.apache.org/licenses/LICENSE-2.0

PVAuthor Developer's Guide
OHA 1.0, rev. 1

Table of Contents
1. Introduction ... 4
2. Architectural Overview ... 4

2.1. PVAuthor Structure ... 4
2.2. Overall Sequence Diagram ... 6

3. PVAuthor State Machine .. 8
4. Create and Open Session .. 8
5. Data Sources ... 9

5.1. Create and Add Data Sources .. 9
5.2. Data Source Configuration .. 9

6. File Format Composer .. 10
6.1. Composer Selection .. 10
6.2. Composer Configuration ... 10

6.2.1. 3GPP and MPEG4 Composer .. 10
6.2.2. AMR and AAC composer ... 12

7. Media Tracks ... 12
7.1. Add a Media Track ... 12
7.2. Encoder Configuration .. 13

8. Data Sinks .. 13
9. Additional Features Through Extension Interface 13

9.1. Max File Size, Duration and Progress Report 14
10. Initialize and Start Session ... 15
11. Pause and Resume Session ... 16
12. Stop Session .. 17
13. Reset and Close Session .. 17
14. Capability Query and Configuring Settings .. 18

14.1. PVAuthor Engine Key Strings ... 19
14.2. Node Level Key Strings ... 19

15. Error Handling in the PVAuthor Engine .. 20

 - Page 2 of 22 -

PVAuthor Developer's Guide
OHA 1.0, rev. 1

List of Figures
Figure 1: Class diagram of PVAuthor..5
Figure 2: Attributes and operations of the client..5
Figure 3: Overall Sequence Diagram..6
Figure 4: Overall Sequence Diagram Continued...7
Figure 5: PVAuthor state transition diagram...8
Figure 6: Create and open a recording session..8
Figure 7: Create media sources and add to PVAuthor engine..9
Figure 8: Composer selection...10
Figure 9: File name and authoring mode configuration...11
Figure 10: Adding Meta Data strings...11
Figure 11: Add media track...12
Figure 12: Query for extension interface...14
Figure 13: Max file size, duration and progress report configuration...14
Figure 14: Informational events for progress report and max file size and duration......................15
Figure 15: Initialize and start authoring session..16
Figure 16: Pause and resume an authoring session...16
Figure 17: Stop authoring session..17
Figure 18: Reset and close authoring session..18
Figure 19: Propagation of error information..21
Figure 20: PVAuthor error handling flowchart...22

 - Page 3 of 22 -

PVAuthor Developer's Guide
OHA 1.0, rev. 1

1. Introduction
This document is a guide for developers using the PVAuthor engine APIs. A client of PVAuthor
engine can be an application or an adapter layer used to map the PVAuthor engine interface to a
different framework or API layer used by the application. This documents describes how to use
PVAuthor engine interface and its extensions to create, configure and control a multimedia
authoring session.

The PVAuthor engine is the part of the PacketVideo Multimedia Framework (PVMF) that provides
media recording capabilities for its clients. It is capable of capturing audio, video, and text media
data, encoding media data to compressed formats, and multiplexing the encoded media data to
various file formats. The input media data is typically provided by live source(s) such as camera
and microphone, or in other cases, provided by unencoded media data files. The input data is
then encoded to the data formats selected by the client, followed by multiplexing of media data
into the selected file format. The multiplexed media data is written to the data sink provided by
the client.

2. Architectural Overview

2.1. PVAuthor Structure
A client controlling the PVAuthor engine interacts through the PVAutthorEngineInterface and
must also implement the PVAuthor engine observer interfaces in order to receive command
completion, status information, and error information. The interface requires that media data
sources and sinks are provided by the client for a recording session. The number and types of
sources and sinks may vary depending on the properties of the recording session. These media
sources and sinks should implement PVMFNodeInterface to allow PVAuthor engine to control
them in a uniform way. Client control of the recording session is performed through
PVAuthorEngineInterface. Figure 1 below shows the relationship between PVAuthor engine, the
client, and other objects owned by the client. Figure 2 below shows a suggested list of attributes
and operations of the client class. Note that the attributes listed here will be referred to in
sequence diagrams later in this document.

 - Page 4 of 22 -

PVAuthor Developer's Guide
OHA 1.0, rev. 1

Figure 1: Class diagram of PVAuthor

Figure 2: Attributes and operations of the
client.

 - Page 5 of 22 -

PVAuthorEngine

VideoSourceNode

DataSinkNode

<<interface>>
PVMFNodeInterface

Client

<<interface>>
PVCommandStatusObserver

<<interface>>
PVInformationalEventObserver

<<interface>>
PVErrorEventObserver

<<interface>>
PVAuthorEngineInterface

PVAuthorEngineFactory

AudioSourceNode

Key
Author Engine components

PVMF Components

Client components

+CommandCompleted(in aResponse : PVCmdResponse)
+HandleInformationalEvent(in aEvent : PVAsyncInformationalEvent)
+HandleErrorEvent(in aEvent : PVErrorEventObserver)

-iAuthor : PVAuthorEngineInterface*
-iAudioSrcNode : PVMFNodeInterface*
-iVideoSrcNode : PVMFNodeInterface*
-iTextSrcNode : PVMFNodeInterface*
-iSelectedComposer : void*
-iComposerConfig : PVInterface*
-iAudioEncoderConfig : PVInterface*
-iVideoEncoderConfig : PVInterface*
-iTextConfig : PVInterface*

Client

PVAuthor Developer's Guide

2.2. Overall Sequence Diagram
The diagrams in this section present the overall sequence of API calls to set up and control a recording session. Detail usage of the APIs
will follow in subsequent sections in this document.

Figure 3: Overall Sequence Diagram

 - Page 6 of 22 -

Client PVAuthorEngineFactory PVAuthorEngine

CreateAuthor() Create()

Open()

CommandCompleted()

AddDataSource()

CommandCompleted()

SelectComposer()

CommandCompleted()

AddMediaTrack()

CommandCompleted()

Init()

CommandCompleted()

Start()

CommandCompleted()

Repeat AddDataSource for each data
source for the recording session.

Repeat AddMediaTrack for each media
track in the recording output.

Create data source nodes.

Recording is started

Encoder Configuration.

Composer Configuration.

PVAuthor Developer's Guide

Figure 4: Overall Sequence Diagram Continued

 - Page 7 of 22 -

Client PVAuthorEngineFactory PVAuthorEngine

Pause()

CommandCompleted()

Resume()

CommandCompleted()

Stop()

CommandCompleted()

Reset()

CommandCompleted()

RemoveDataSource()

CommandCompleted()

Stop and complete a
recording session

Repeat RemoveDataSource
for each data source.

Pause - Resume

Recording is resumed

Recording is paused

Recording has stopped
Output file is now available

Close()

CommandCompleted()

PVAuthor Developer's Guide
OHA 1.0, rev. 1

3. PVAuthor State Machine
The PVAuthor engine has 6 states: Idle, Opened, Initialized, Recording, Paused, and Error. To
transition from one state to another, the user will need to call the session control APIs of
PVAuthorEngineInterface. Figure 5 shows the state transition diagram.

 Figure 5: PVAuthor state transition diagram.

4. Create and Open Session
To create a recording session, the client needs to first create a PVAuthor engine object. This
step is done through the Create() method in PVAuthorEngineFactory class, which will create a
PVAuthor engine without an active recording session. To open a session, the client needs to call
the Open() method on the PVAuthor engine object. Figure 6 illustrates the sequence of method
calls to create and open a recording session.

Figure 6: Create and open a recording session.

 - Page 8 of 22 -

Open()

Init()

Close()

Start()

Pause()

Stop()

Resume()Reset()

Recording
Idle Opened

Initialized

Paused

Reset()

Error

Non-recoverable error

Reset()

Reset()

Client PVAuthorEngineFactory PVAuthorEngine

iAuthor:=CreateAuthor(this, this, this) Create()

Open()

CommandCompleted(response)

PVAuthor Developer's Guide
OHA 1.0, rev. 1

5. Data Sources

5.1. Create and Add Data Sources
As mentioned in the previous section, a client to PVAuthor engine needs to create media data
source objects and provide them through the AddDataSource() method for capturing source data
during the authoring session. The media data source objects are PVMF Nodes that wrap around
the underlying drivers for capturing audio, video and text source data. A common method to
integrate data sources to PVAuthor engine is using the media I/O interface and
PvmfMediaInputNode. Please refer to the Media I/O Developer's Guide for information regarding
the media I/O interface. Figure 7 illustrates the sequence to create media data sources and
provide them to PVAuthor engine.

Figure 7: Create media sources and add to PVAuthor engine

5.2. Data Source Configuration
Besides creating the data source object and adding them to PVAuthor engine, the client is also
responsible for configuring the data sources to capture source data in the desired format or
properties. The available options for configuration are dependent on the data source node
implementation and the capability of the underlying capturing devices. Please refer to the
documentation of the data source nodes and capturing devices for the options available.

 - Page 9 of 22 -

Client PVAuthorEngine

AddDataSource(iVideoSrcNode)

CommandCompleted(response)

AddDataSource(iAudioSrcNode)

CommandCompleted(response)

AddDataSource(iTextSrcNode)

CommandCompleted(response)

VideoSourceNode AudioSourceNode TextSourceNode

iVideoSrcNode:=Create()

iAudioSrcNode:=Create()

iTextSrcNode:=Create()

PVAuthor Developer's Guide
OHA 1.0, rev. 1

6. File Format Composer
The next step in setting up a recording session is to select a file format composer for the session.
Multiplexing encoded media data and formatting the multiplexed data into the desired file format
is functionality provided by the PVMF framework made available to the client through PVAuthor
engine. The client is responsible for selecting a composer type, and configuring the composer
through a configuration object provided by PVAuthor engine.

6.1. Composer Selection
Composer selection is done by calling SelectComposer() method on the PVAuthor engine object.
The client would specify the Mime type of the composer to use, and a pointer to hold the
configuration object PVAuthor engine provides. Alternately, the client can specify the Uuid of the
composer to be used instead of the Mime type if such information is available to the client. When
the method completes asynchronously, an opaque identifier for the selected composer is returned
to the client in the response data. The client needs to store this opaque identifier and use it to
identify the selected composer in PVAuthor engine API calls when necessary. Figure 8 below
illustrates the sequence of method calls to select a composer.

Figure 8: Composer selection

6.2. Composer Configuration
Composer configuration is done through the composer configuration object returned by author
engine from the SelectComposer method call. The configuration interface implemented by this
object varies depending on the composer selected. The client can check for the interface
supported by the configuration object by calling the queryInterface method on the configuration
object. The client can call the configuration methods after SelectComposer is completed unless
specified otherwise by the configuration interface.

6.2.1. 3GPP and MPEG4 Composer

If the client selected a 3GPP or MPEG4 file format composer, the returned configuration object
implements the PVMp4FFCNClipConfigInterface interface. The client is required to call the
SetOutputFileName method to set the output file name for the authoring session. Furthermore, if
the client wants to author an I-Motion format file, the SetAuthoringMode method call is also

 - Page 10 of 22 -

Client PVAuthorEngine

SelectComposer("x-pvmf/ff-mux/3gp", iComposerConfig)

CommandCompleted(response)

response

iSelectedComposer:=GetResponseData()

iComposerConfig

Configure Composer

Client must save the
opaque identifier for

the selected composer
before returning from
CommandComplete

PVAuthor Developer's Guide
OHA 1.0, rev. 1

required. Please refer to author interface documentation for information on various authoring
modes. Below is a sequence diagram to illustrate the sequence of calls to configure the settings
mentioned above.

Figure 9: File name and authoring mode configuration

The PVMp4FFCNClipConfigInterface also allows the Client to add optional meta data information
to the output file. Below is a sequence diagram to illustrate the sequence of calls to add meta
data. Please note that adding meta data information is optional and does not affect the validity of
the output file whether the data is added or not.

Figure 10: Adding Meta Data strings

The following metadata are currently supported through the
PVMp4FFCNClipConfigInterface.

a. Title
b. Author
c. Copyright
d. Description
e. Rating
f. Creation Date
g. Artist or Performer
h. Genre

 - Page 11 of 22 -

Client Client::iComposerConfig

SetOutputFileName()
SetAuthoringMode call is necessary if

Client is authoring an I-Motion file.
Otherwise, the default settings is to

have interleaved media data and meta
data towards the end of the output file.

SetAuthoringMode(PVMP4FFCN_IMOTION_CONTENT_AUTHORING_MODE)

Client Client::iComposerConfig

SetTitle("Title")

SetAuthor("Author")

SetCopyright("Copyright Information")

SetDescription("Description")

SetRating("Rating")

SetCreationDate("20050203T120000Z")

PVAuthor Developer's Guide
OHA 1.0, rev. 1

i. Classification
j. Key Words
k. Location Info.

6.2.2. AMR and AAC composer

When the client selects an AMR or AAC file format composer, the configuration object should
implement the PvmfFileOutputNodeConfigInterface interface. The client is required to call the
SetOutputFileName method to set the output file name for the authoring session. Please refer to
Figure 9 for a sequence diagram.

7. Media Tracks
A media file, regardless of its format, should have at least one media track. Therefore, the client
needs to add at least one media track to the file format composer in order to compose a valid
output file. The maximum number of and types of media tracks supported varies depending on
the properties of the selected file format composer. To create a file with multiple media tracks, for
example AMR audio with H263 video and text tracks, the client will need to call AddMediaTrack
for each of the track.

7.1. Add a Media Track
Adding of media track is done through the AddMediaTrack method. The client will need to
specify the input PVMF node that provides the source data for this media track, the MIME type of
the encoder to be used to encode the source data, and the file format composer in which a media
track is added. The file format composer is identified by the opaque data returned in the
CommandCompleted callback for the SelectComposer call. Alternately, the client can specify the
Uuid of the encoder to be used instead of the Mime type if such information is available to the
client. The client also needs to specify a PVInterface pointer where PVAuthor engine will save a
pointer an instance of the configuration object of the selected encoder. Figure 11 below
illustrates the sequence of calls to add a media track.

Figure 11: Add media track

 - Page 12 of 22 -

Client PVAuthorEngine

AddMediaTrack(iAudioSrcNode, "x-pvmf/audio/encode/amr-nb", iSelectedComposer, iAudioEncoderConfig)

CommandCompleted(response)

iAudioEncoderConfig

Configure Audio Encoder

PVAuthor Developer's Guide
OHA 1.0, rev. 1

7.2. Encoder Configuration
Encoder configuration is performed through the configuration interface object returned by the
PVAuthor engine in the AddMediaTrack call. The configuration interface implemented by this
object varies depending on the encoder selected. If the selected encoder supports no
configuration interface, this pointer would be set to NULL. Also, if the input node provides
encoded source data, no encoder would be selected for the media track by PVAuthor engine, and
the configuration pointer would be set to NULL. The client can check for the interface supported
by the configuration object by calling the queryInterface method on the configuration object. The
client can call the configuration methods after AddMediaTrack call is completed unless specified
otherwise by the configuration interface.

When the client selects an H263, MPEG4 or AVC video encoder, the configuration object should
implement the PVMp4H263EncExtensionInterface interface. Please refer to PVAuthor engine
interface documentation for the options available from the interface.

8. Data Sinks
Currently, PVAuthor only supports PV’s 3GPP/MPEG4, AMR and AAC file format composer
nodes. These nodes have integrated file IO and does not require the client to add data sink
nodes for PVAuthor engine to write its output data to. The client will need to set the output file
name through the configuration interface of the selected composer.

In future, when file format nodes without integrated file IO are supported, the client will be
required to call AddDataSink method to specify the data sink node where a particular file format
composer should write its output.

9. Additional Features Through Extension Interface
Besides features and configurations available from PVAuthor engine Interface and configuration
objects provided by the Author engine, additional features are also available on demand through
QueryUUID and QueryInterface methods. These methods allow PVAuthor engine to extend and
expose new features to the client as they become available. The client can call QueryUUID to
query for the Uuid of a certain feature specified by its Mime type. Using this Uuid the client can
then call QueryInterface to retrieve an interface object to use the feature. Figure 12 below shows
the sequence of calls to query for an extension interface.

 - Page 13 of 22 -

PVAuthor Developer's Guide
OHA 1.0, rev. 1

Figure 12: Query for extension interface

9.1. Max File Size, Duration and Progress Report
PVAuthor engine has a feature to set the maximum size of the output file or the maximum time
duration of the output file. If the maximum file size or duration is set, PVAuthor engine will check
against these settings while authoring the output file and stop the authoring session automatically
when it reaches the specified maximum size or duration. Also, PVAuthor engine can be
configured to provide progress reports to the client periodically. These progress reports can be in
terms of file size written or the current duration of the output file. These features are available
through the PvmfComposerSizeAndDurationInterface extension interface. To access these
features, the client needs to first query for an instance of the extension interface, and then
configure PVAuthor engine through the provided interface. Figure 13 shows the sequence
diagram for these features.

Figure 13: Max file size, duration and progress report configuration

 - Page 14 of 22 -

Client PVAuthorEngine

QueryUUID(Mime type, UuidVector)

CommandCompleted()

QueryInterface(uuid, extensionPtr)

CommandCompleted()

PVAuthorEngine adds the PVUuid of all
interfaces specified by the mime type to
UuidVector upon command completion

PVAuthorEngine stores a pointer to the
an instance of the extension interface
with the specified uuid to extensionPtr.

If the uuid is not supported, extensionPtr
is set to NULL.

Client PVAuthorEngine

QueryInterface(PvmfComposerSizeAndDurationUuid, extension)

CommandCompleted()

PvmfComposerSizeAndDurationInt
erface

SetMaxFileSize(true, 95000 bytes)

SetMaxDuration(true, 15000 ms)

SetFileSizeProgressReport(true, every 1000 bytes)

SetDurationProgressReport(true, every 1000 ms)

PVAuthor Developer's Guide
OHA 1.0, rev. 1

After the authoring session is started, if the progress reports are enabled, PVAuthorEngine will
send informational events to the Client at the specified frequency to the
PVInformationalEventObserver for the session. If the max file size or duration feature is enabled,
when the file size or duration reaches the specified maximum, PVAuthorEngine will send an
informational event to the Client after stopping the session and completed writing the output file.
Figure 14 below illustrates the information events sent to the Client if the max file size, duration
and progress report features are enabled.

Figure 14: Informational events for progress report and max file size and
duration

10. Initialize and Start Session
After setting up the session by selecting a file format composer, adding all media tracks and
configuring all composers and encoders, the client can initialize and start the authoring session.
Once Init is called, the settings and configuration of the authoring session will be set for the
remainder of the session except special settings that are designated to be modifiable after
PVAuthor engine is initialized or started. Otherwise, to modify the settings and configuration, the
client will need to reset the authoring session and restart the session configuration process.
PVAuthor engine will allocate resources for the session and connect to the data source capturing
devices when it is being initialized. After PVAuthor engine is started, input data from various
capturing devices will be encoded to the requested data formats, formatted to the requested file
format and written out to file. Figure 15 below illustrates the sequence of calls to initialize and
start the authoring session.

 - Page 15 of 22 -

Upon receiving either max file size or
max duration reached event, the

authoring session has completed and
the output file is available for playback

Client PVAuthorEngine PVAsyncInformationalEvent

HandleInformationalEvent(event)

PVMF_COMPOSER_DURATION_PROGRESS:=GetEventType()

Duration Progress in ms :=GetEventData()

HandleInformationalEvent(event)

PVMF_COMPOSER_FILESIZE_PROGRESS:=GetEventType()

Current file size in bytes :=GetEventData()

HandleInformationalEvent(event)

PVMF_COMPOSER_MAXFILESIZE_REACHED:=GetEventType()

{OR}
HandleInformationalEvent(event)

PVMF_COMPOSER_MAXDURATION_REACHED:=GetEventType()

The duration and file size progress
event is sent by PVAuthorEngine at

the specified frequency until the
authoring session is stopped.

PVAuthor Developer's Guide
OHA 1.0, rev. 1

Figure 15: Initialize and start
authoring session

11. Pause and Resume Session
After the authoring session is started, the client can pause the session if the application user
chooses to pause the session or events such as an incoming call occurs. When PVAuthor
engine is in paused state, it will not process any new input data from the capturing devices.
However, if there are buffered input data captured before PVAuthor engine is paused, PVAuthor
engine will continue to process the data and write to file until the buffered input is exhausted. The
client can resume the authoring session any time after the session is successfully paused. After
resume is complete, PVAuthor engine will resume processing input data from the capturing
devices. Figure 16 below illustrates the sequence of calls to pause and resume an authoring
session.

Figure 16: Pause and resume an
authoring session

 - Page 16 of 22 -

Client PVAuthorEngine

Init()

CommandCompleted()

Start()

CommandCompleted()

pvAuthor Engine is now started
and new input data will be
encoded and written to file.

Client PVAuthorEngine

Pause()

CommandCompleted()

Resume()

CommandCompleted()

pvAuthor Engine is now paused
and no new input data will be
processed and recorded during
the paused state.

PVAuthor Developer's Guide
OHA 1.0, rev. 1

12. Stop Session
The client can stop the authoring session when it is in a started or paused state using the Stop
method. If there is unencoded source data captured and buffered in the data path of PVAuthor
engine, the default behavior is to encode them and add them to the output file, such that all media
captured before the Stop will be written to the output file. This behavior can potentially cause a
delay before the client would receive completion on the Stop call, depending on the amount of
buffered up data and the processing power of the device. Figure 17 below illustrates the
sequence of calls to stop an authoring session.

Figure 17: Stop authoring
session

13. Reset and Close Session
When PVAuthor engine is in initialized, started or paused state, the Reset command would return
PVAuthor engine to the opened state. If SelectComposer or AddMediaTrack were called, and
PVAuthor engine returned configuration objects for the composer or media track, the client will
need to call removeRef on the configuration object before Reset can be called. If PVAuthor
engine is in started or paused state, it would first stop the authoring session. The session would
then reset and the selected composer and media tracks for the session would be deleted.
However, the added data source and sink nodes will remain available for PVAuthor engine to
use. After Reset is complete, PVAuthor engine is returned to the open state and the client can
call SelectComposer and AddMediaTrack to set up the session once again.

To close the session, the client should call RemoveDataSource to remove all data source
previously added to PVAuthor engine and then call Close to close the session.

Figure 18 below illustrates the sequence of calls to reset and close an authoring session.

 - Page 17 of 22 -

Client PVAuthorEngine

Stop()

CommandCompleted()

PVAuthor Developer's Guide
OHA 1.0, rev. 1

Figure 18: Reset and close authoring session

14. Capability Query and Configuring Settings
PVAuthor engine utilizes the PVMF capability-and-configuration interface to allow the application
to access and modify engine and node settings not exposed by the author interface. The
extension interface (PvmiCapabilityAndConfig) is exposed via the player API, QueryInterface(),
by requesting with the UUID associated with the interface. Using the returned interface pointer,
the application can query, verify, and set settings at the engine and node levels. At the node
level, the node being used by the engine must support the capability-and-configuration interface
as well for node settings to be accessible to the application.

Capability-and-configuration interface uses key strings in PacketVideo Extended MIME String
(PvXms) format to specify the settings of interest. PvXms extends the standard MIME string
format by allowing additional levels of subtype strings all separated by the slash character.. Using
key strings adds complexity in parsing but allows flexibility and extensibility for settings without
greatly modifying code when settings are added, removed, or modified. In addition to specifying
the setting of interest, the key string also provides information on value returned with the string in
a key-value pair (KVP). The “type” parameter in the key string tells the user of the KVP whether
there is a valid value if “type=value”. The “valtype” parameter in the key string tells the user of the
KVP what the value type is so the appropriate union member can be accessed in the KVP.

 - Page 18 of 22 -

Client PVAuthorEngineClient::iComposerConfig Client::iAudioEncoderConfig Client::iVideoEncoderConfig

Reset()

CommandCompleted()

removeRef()

removeRef()

removeRef()

Close()

CommandCompleted()

RemoveDataSource(iAudioSrcNode)

CommandCompleted()

RemoveDataSource(iVideoSrcNode)

CommandCompleted()

RemoveDataSource(iTextSrcNode)

CommandCompleted()

PVAuthor Developer's Guide
OHA 1.0, rev. 1

14.1. PVAuthor Engine Key Strings
All key strings at the PVAuthor engine level start with “x-pvmf/author”.

14.2. Node Level Key Strings
The node level key strings available during PVAuthor engine usage depends on PVMF nodes
being used by the PVAuthor engine at that time and the key strings supported by a particular
node. For node level key strings, PVAuthor engine acts as a router to pass any requests to the
appropriate node. Currently, PVAuthor engine performs a hardcoded mapping from key sub-
string to certain nodes, but in the future, pvPlayer engine and nodes will determine the mapping
at runtime using a registration scheme.

Currently, the key string mapping to nodes is as follows in PVAuthor engine.

Key Sub-String Node Type
x-pvmf/video/render Video Encode Node
x-pvmf/audio/render Audio Encode Node
fileio/ Composer Node
x-pvmf/file/output File Output Node
x-pvmf/media-io Media Input Node
x-pvmf/avc/encoder AVC Encoder

PVMF video and audio encoder node key strings are listed below. The key strings allow settings
associated with M4v, H.263 and H.264 video encoding to be queried and modified when PVMF
Video Encoder node is used to encode yuv bitstreams to mp4 or 3gp. The key strings are used
by amr encoder to encode pcm data to mp4/3gp files.

Key Strings With Value Type Description
x-pvmf/video/render/output_width;valtype=uint32 Set the output frame width
x-pvmf/video/render/output_height;valtype=uint32 Set the output frame height
x-pvmf/audio/render/sampling_rate;valtype=uint32 Set the sampling rate of audio

bitstream
x-pvmf/audio/render/channels;valtype=uint32 Set the number of channels in audio

bitstream
x-pvmf/avc/encoder/encoding_mode;valtype=uint32 Set the encoding mode

MP4 Composer Node key strings are listed below:

Key Strings With Value Type Description
fileio/pv-cache-size Set the file io cache size. This setting

will depend on if the PV file cache

 - Page 19 of 22 -

PVAuthor Developer's Guide
OHA 1.0, rev. 1

setting has been turned-on in
osclconfig_io.h

fileio/presentation-timescale Set the timescale for overall mpeg4
presentation . Default value is 1000.

15. Error Handling in the PVAuthor Engine
The PVAuthor engine is responsible for mapping commands and requests from the application or
higher-level components to potentially multiple steps and commands to the set of
nodes/components under the PVAuthor engine's control. Errors may occur while processing a
specific application request or may happen asynchronously outside of any request (e.g., an error
may happen during the recording process after it has already started). The nodes/components
attached to the PVAuthor engine report errors through the following methods:

1. HandleNodeErrorEvent for errors that happen asynchronously,
2. NodeUtilCommandCompleted for errors that happen while processing a specific request.

If any errors happen while the PVAuthor engine is processing a request from the application,
PVAuthor will wait for any pending commands it has to underlying nodes/components and then
return the error information as part of the CommandComplete status. If the errors happen outside
of any request or command from the application, the information will be sent using the
HandleErrorEvent method. The idea of collecting even the asynchronous errors that happen
during the processing of a request and sending it back during CommandComplete is to avoid
reporting the same errors multiple times. The PVAuthor engine will transition to an error state
when it reports these errors and the application can call Reset as described in Section 13 to
recover. Figures 19 and 20 show the API sequences and the logic flowchart for the error
handling described here.

 - Page 20 of 22 -

PVAuthor Developer's Guide
OHA 1.0, rev. 1

 - Page 21 of 22 -

Figure 19: Propagation of error information.

PVAuthor Developer's Guide
OHA 1.0, rev. 1

 - Page 22 of 22 -

Figure 20: PVAuthor error handling flowchart.

HandleNodeErrorEvent

NodeUtilCommandCompleted

if (Status == FAILURE)

Set AuthorState = ERROR HandleErrorEvent()

CommandComplete(FAILURE)

CompleteEngineCommand(Failure)

Reset()

PVAuthorEngine TestApp/UI

if(status == FAILURE)
{
 set AuthorState = ERROR
}

{
 wait for any subtask pending
 command to complete
}

else (PendingCmd == false)
 and if (AuthorState != ERROR)

if (PendingCmd == true)
 and (AuthorState != ERROR)

	1. Introduction
	2. Architectural Overview
	2.1. PVAuthor Structure
	2.2. Overall Sequence Diagram

	3. PVAuthor State Machine
	4. Create and Open Session
	5. Data Sources
	5.1. Create and Add Data Sources
	5.2. Data Source Configuration

	6. File Format Composer
	6.1. Composer Selection
	6.2. Composer Configuration
	6.2.1. 3GPP and MPEG4 Composer
	6.2.2. AMR and AAC composer

	7. Media Tracks
	7.1. Add a Media Track
	7.2. Encoder Configuration

	8. Data Sinks
	9. Additional Features Through Extension Interface
	9.1. Max File Size, Duration and Progress Report

	10. Initialize and Start Session
	11. Pause and Resume Session
	12. Stop Session
	13. Reset and Close Session
	14. Capability Query and Configuring Settings
	14.1. PVAuthor Engine Key Strings
	14.2. Node Level Key Strings

	15. Error Handling in the PVAuthor Engine

